
Ubuntu Linux Fundamentals 
Ubuntu Server - BASH Scripting - Controlling Flow - 

pipe, redirect, and tee


Linux Data Flow 
When you’re working at the command line, in Linux in a terminal window, there’s a standard 
way for data to flow.


The three flows defined are standard input, standard output, and standard error.


Standard in is the keyboard.


Standard out is the terminal window or computer screen.


Standard error is also the terminal window or computer screen.


Here’s how it works.


You type a command and hit Enter.


The command comes from Standard Input and is recognized and processed.


The results of normal processing are sent to Standard Output, or the screen.


The results of any errors encountered are also sent to Standard Output or the screen.


We’ll call Standard Input stdin, Standard Output stdout, and Standard Error stderr for the rest 
of this lesson, and you’ll often see them represented that way.


This behavior can be easily modified in Linux. You’ve done it already with the pipe command, 
which we’ll go into further later in the lesson.


stdin, stdout, and stderr can be represented by the numbers 0, 1, and 2, respectively.


stdin  |  stdout  |  stderr 
  0    |     1    |     2 

You’ll see how this can be used later in the lesson.


Here’s an “American Standard Code for Information Interchange (ascii) art” representation. 


                Flow Control in Linux 

Standard Input  = Keyboard 
Standard Output = Screen 
Standard Error  = Screen 

   Standard                          Standard 
    Input (0)                         Output (1) 



  ----------       ---------          -------- 
 | keyboard | --> | program | -----> | screen | 
  ----------       ---------          -------- 
                       | 
                       |       Standard 
                       |        Error (2) 
                       |        -------- 
                       ------> | screen | 
                                -------- 

When representing data flow in Linux, 

0 = Standard Input 
1 = Standard Output 
2 = Standard Error 

Piping Output - | 
When you pipe output, you take it from one command and feed it to the next.


                    Piping in Linux 

Piping = Send stdout to another command 

   Standard                                          Standard 
    Input (0)                                         Output (1) 
  ----------       ---------       -----------       -------- 
 | keyboard | --> | program | --> | program 2 | --> | screen | 
  ----------       ---------       -----------       -------- 
                       | 
                       |       Standard 
                       |        Error (2) 
                       |        -------- 
                       ------> | screen | 
                                -------- 
stdin  = Keyboard 
stdout = Input for program 2 
stderr = Print to screen 

You can pipe multiple times. 

Try this command:


cat /etc/group | grep <your username> 

Substitute <your username> with the username you entered when installing.


Here are my results.


theo@ubuntu-server:~$ cat /etc/group | grep theo 
adm:x:4:syslog,theo 
cdrom:x:24:theo 
sudo:x:27:theo,lskywalker 
dip:x:30:theo 



plugdev:x:46:theo 
lxd:x:110:theo 
theo:x:1000: 
lpadmin:x:115:theo 
sambashare:x:116:theo 

Yours will likely be similar.


Now, pipe that to grep again, and grep for cdrom.


For me, that would be:


cat /etc/group | grep theo | grep cdrom 

My output:


theo@ubuntu-server:~$ cat /etc/group | grep theo | grep cdrom 
cdrom:x:24:theo 

So, you can see the standard output was captured and redirected to grep, then the grep results 
were fed to grep again, this time looking for something different.


Redirecting Output - >, and >> 
If, instead of sending output to another command, you want to send it to a file, you use the 
redirect symbol. 


> will overwrite the contents of a file with the output from stdout.


>> will append stdout to the end of a file.


In either case, if the file doesn’t exist, it will be created.


           Redirecting in Linux 

Piping = Send stdout to another command 

   Standard                       Standard 
    Input (0)                      Output (1) 
  ----------       ---------       ------ 
 | keyboard | --> | program | --> | file | 
  ----------       ---------       ------ 
                       | 
                       |       Standard 
                       |        Error (2) 
                       |        -------- 
                       ------> | screen | 
                                -------- 
stdin  = Keyboard 
stdout = File specified 
stderr = Print to screen 

Try this:




ls /etc > file1 

Have a look at the contents of file1.


cat file1 

 You can see the output of listing the contents of the /etc directory.


Now try:


ls /etc | grep ^p > file1 

This lists the /etc directory, but uses grep to filter for only things starting with p, then overwrites 
the content of file1.


cat file1 to check.


Now try:


ls /etc >> file1 

Now, the normal contents of the ls command are written below the entries captured that begin 
with p in the last command.


Redirecting Errors 
What if you know you’ll get some errors, but you don’t want to see them on the screen?


You can redirect stderr to a place where you won’t see it.


A special device, dev null, is like a trash chute. Anything sent to dev null is quietly 
discarded.


Try the following:


find /var -user <your username> 


You should get several errors.


Now, try this:


find /var -user <your username> 2> dev null 

Nothing prints to screen because all of the errors were sent to dev null and discarded.


Reading A File Into stdin - < 
You can have stdin come from a file instead of from the keyboard.


If you still have file1 from the Redirecting Output portion of the lesson, please do the next 
steps. If not, please follow the steps above to re-create it then do the following:


sort -r < file1 



The sort command will sort what it is fed from lowest to highest numerically and alphabetically. 
The -r option sorts in reverse order, or highest to lowest.


That’s not super useful, and the same thing can be accomplished by just typing sort -r 
file1. 


We’ll then take that output and redirect it to a new file.


sort -r < file1 > file1-reverse-sort 

If you cat file1-reverse-sort, you’ll see that it’s reverse sorted.


tee 
What if you want to send output to two places at once?


That’s what the tee command does.


Like a t-fitting for a pipe, it takes what comes in and sends it in two directions, kind of down 
two different pipes.


     Tee Command - stdout In Two Directions 

                             -------- 
                   -------> | stdout | 
                   |         -------- 
                   | 
   -------       ----- 
  | stdin | --> | tee | 
   -------       ----- 
                   | 
                   |        ------- 
                   ------> | file1 | 
                            ------- 

stdout and file1 are just examples. 
The output can be directed any way you choose. 

Type:


ls /etc | tee file2 
You’ll see the output of the command, but if you cat file2, it will also be in the file.


Please practice with these commands and try some things yourself.


Great work getting through it!


More Information 
Ryans Tutorials, Piping and Redirection

https://ryanstutorials.net/linuxtutorial/piping.php


https://ryanstutorials.net/linuxtutorial/piping.php


LearnLinux.org tutorial on stdin, stdout, and stderr

http://www.learnlinux.org.za/courses/build/shell-scripting/ch01s04.html


Linux 101 Hacks, Tee Command Usage Examples

http://linux.101hacks.com/unix/tee-command-examples/


http://LearnLinux.org
http://www.learnlinux.org.za/courses/build/shell-scripting/ch01s04.html
http://linux.101hacks.com/unix/tee-command-examples/

