GLYCOLYSE

La glycolyse en quelques mots...

- 🜟 Elle est la principale voie de **dégradation** du glucose.
- 🜟 Elle se déroule dans le **cytosol** en absence d'oxygène (**anaérobie**).
- ★ La **première phase** implique une consommation de 2 molécules d'ATP, et une production de 2 trioses-phosphates.
- La seconde phase implique une production de 2 molécules d'ATP, et une production de 1 molécule de pyruvate par molécule de trioses
- 🖈 Le bilan de la glycolyse est :

1 Glucose + 2 ADP + 2 Pi + 2 NAD $^{+}$ \rightarrow 2 Pyruvate + 2 ATP + 2H₂O + NADH,H $^{+}$

Quelles sont les étapes de la glycolyse ?

Pénétration du glucose dans la cellule...

- Des transporteurs (GLUT) permettent l'entrée du glucose dans la cellule.
- Les GLUT 2 sont abondants au niveau du foie, les GLUT 1 pour le cerveau et les globules rouges, et enfin les GLUT 4 pour les muscles et le tissu adipeux.

La première étape, ou encore la phase d'activation...

- Cette étape consiste à transformer le glucose en 2 trioses phosphates : le glycéraldéhyde-3-phosphate et le dihydroxyacétone phosphate.
- La phase d'activation nécessite la consommation de 2 molécules d'ATP
- On notera 2 enzymes importantes qui synthétisent des intermédiaires de cette phase :
 - o Hexokinase/Glucokinase: permettant de former le glucose-6-phosphate
 - o **Phosphofructokinase** (PFK-1) : permettant de former le fructose 1,6-bisphosphate

La seconde étape, ou encore la phase de restitution...

- Le glycéraldéhyde-3-phosphate sera transformer en pyruvate
- La formation d'1 molécule de pyruvate entraine la production de 2 molécules d'ATP et d'1 coenzyme réduit (NADH,H⁺)
- L'enzyme clé est la pyruvate kinase qui réalise la dernière étape de la glycolyse.

Les régulations possibles de la glycolyse

Par un contrôle sur les enzymes clés catalysant les réactions irréversibles...

- Hexokinase : le glucose-6-phosphate permet un rétrocontrôle négatif sur celle-ci
- PFK-1 : inhibée par une forte activité métabolique (ATP, pH acide, citrate) ; et activée par une faible activité métabolique (ADP, AMP, fructose 2,6-bisphosphate)
- Pyruvate kinase : activé par AMP, fructose 1,6-bisphosphate, l'insuline ; et inactivé par l'ATP, Acétyl-coA, l'alanine, le glucagon.