

Two changes are described below.

For each change,

- write an equation, including state symbols,
- state and explain how the entropy changes.

(i)	The reaction of aqueous barium nitrate with aqueous sodium sulfate.
	Full equation with state symbols
	Explanation of entropy change
	roz
	[2]
(ii)	The change that accompanies the standard enthalpy change of atomisation of iodine.
	Equation with state symbols
	Explanation of entropy change
	[2]

Methanol is formed when carbon dioxide and hydrogen react.

$$CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$$

Table 5 contains enthalpy of formation and entropy data for these substances.

Table 5

	CO ₂ (g)	H₂(g)	CH₃OH(g)	H₂O(g)
$\Delta_{\rm f}H$ / kJ mol $^{-1}$	-394	0	-201	-242
S / J K ⁻¹ mol ⁻¹	214	131	238	189

. 1	Use the equation and the data in Table 5 to calculate the	
	Gibbs free-energy change (ΔG), in kJ mol ⁻¹ , for this reaction at 890 K	
		[6 marks

 ΔG _____ kJ mol⁻¹

Ammonia is produced industrially by reacting nitrogen and hydrogen.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H^{\oplus} = -92.0 \text{ kJ mol}^{-1}$

A temperature in the range of 673 to 773 K is used.

The standard entropies, S^{\ominus} , of $N_2(g)$, $H_2(g)$ and $NH_3(g)$ at 298 K are given in the table.

substance	N ₂ (g)	H ₂ (g)	NH ₃ (g)
S [⊕] / JK ⁻¹ mol ⁻¹	192	131	193

(a)	Show that this reaction is feasible at 298 K by calculating ΔG^{\oplus} in kJ mol ⁻¹ . G	iive
	your answer to an appropriate number of significant figures.	

(5)

(b) Explain, in terms of entropy, why this reaction is not feasible at very high temperatures.

(2)