Answer all questions in the spaces provided				
0 1	This questi	on is about silver iodide.		
0 1 . 1	Define the	term enthalpy of lattice format	ion.	[2 marks]
0 1 . 2	Some enth	alpy change data are shown i	n Table 1 .	
		Tabl	e 1	1
			Enthalpy change / kJ mol ⁻¹	
		$Agl(s) \to Ag^{\scriptscriptstyle +}(aq) + I^{\scriptscriptstyle -}(aq)$	+112	
		$Ag^{+}(g) \rightarrow Ag^{+}(aq)$	-464	
		l⁻(g) → l⁻(aq)	-293	
	Use the da	ta in Table 1 to calculate the e	enthalpy of lattice formation	of
	silver iodide	9.		[2 marks]
		Enthalpy of lattice formation		_ kJ mol⁻¹

8

0 1.3	A calculation of the enthalpy of lattice formation of silver iodide based or perfect ionic model gives a smaller numerical value than the value calcu Question 1.2	n a Ilated in
	Explain this difference. [2	marks]
0 1 . 4	Identify a reagent that could be used to indicate the presence of iodide i an aqueous solution and describe the observation made. [2 Reagent	ons in marks]
	Observation	

0 1 . 2 Table 1 contains some thermodynamic data.

Table 1

	Enthalpy change / kJ mol ⁻¹
Enthalpy of formation for magnesium oxide	-602
Enthalpy of atomisation for magnesium	+150
First ionisation energy for magnesium	+736
Second ionisation energy for magnesium	+1450
Bond dissociation enthalpy for oxygen	+496
First electron affinity for oxygen	-142
Second electron affinity for oxygen	+844

Calculate a value for the enthalpy of lattice formation for magnesium oxide.

[3 marks]

Enthalpy of lattice formation_____kJ mol⁻¹

6

Turn over for the next question

Turn over ►

9	A 5.00 g sample of potassium chloride was added to 50.0 g of water initially at 20.0 °C. The mixture was stirred and as the potassium chloride dissolved, the temperature of the solution decreased.
09.1	Describe the steps you would take to determine an accurate minimum temperature that is not influenced by heat from the surroundings. [4 marks]
	The temperature of the water decreased to 14.6 °C
0 9 . 2	Calculate a value, in kJ mol ^{-1} , for the enthalpy of solution of potassium chloride.
	You should assume that only the 50.0 g of water changes in temperature and that the specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$. Give your answer to the appropriate number of significant figures. [4 marks]
	Enthalpy of solution =kJ mol ⁻¹

Typesetter code

09.3	The enthalpy of solution of calcium chloride is -82.9 kJ mol ⁻¹ . The enthalpies of hydration for calcium ions and chloride ions are -1650 and -364 kJ mol ⁻¹ , respectively. Use these values to calculate a value for the lattice enthalpy of dissociation of calcium chloride. [2 ma	ırks]
	Lattice enthalpy of dissociation =kJ n	nol ⁻¹
09.4	Explain why your answer to Question 9.3 is different from the lattice enthalpy of dissociation for magnesium chloride. [2 ma	ırks]

Г

Gibbs free-energy change _____ kJ mol⁻¹

Explanation

6

Section A					
Answer all questions in the spaces provided					
0 1	Anhydrou MgCl ₂ .4H	is magnesium chloride, Mg I_2O	Cl_2 , can absorb water to fo	rm the hydrated salt	
		$MgCl_2(s) + 4H_2$	$O(I) \rightarrow MgCl_2.4H_2O(s)$		
01.1	Suggest of directly by	one reason why the enthalp y calorimetry.	by change for this reaction	cannot be determined [1 mark]	
01.2	Some ent	thalpies of solution are show	wn in Table 1. Ie 1		
		Salt	Enthalpy of solution / kJ mol ⁻¹		
		MgCl ₂ (s)	-155		
		MgCl ₂ .4H ₂ O(s)	-39		
	Calculate	the enthalov change for the	e absorption of water by M	aCl₂(s) to form	
	MgCl ₂ .4H	$I_2O(s)$.		[2 marks]	
		Enthal	by change	kJ mol ⁻¹	
				IB/M/Jun17/7405/3	

0 1.3

Describe how you would carry out an experiment to determine the enthalpy of solution of anhydrous magnesium chloride. You should use about 0.8 g of anhydrous magnesium chloride. Explain how your results could be used to calculate the enthalpy of solution. [6 marks]

0 1.4

Anhydrous magnesium chloride can be formed by direct reaction between its elements.

$$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$$

The free-energy change, ΔG , for this reaction varies with temperature as shown in **Table 2**.

Tabl	e 2
------	-----

<i>т</i> /к	∆G / kJ mol ^{−1}		
298	-592.5		
288	-594.2		
273	-596.7		
260	-598.8		
240	-602.2		

Use these data to plot a graph of free-energy change against temperature on the grid opposite.

Calculate the gradient of the line on your graph and hence calculate the entropy change, ΔS , in J K⁻¹ mol⁻¹, for the formation of anhydrous magnesium chloride from its elements.

Show your working.

[5 marks]

14

Question	Answers	Mark	Additional Comments/Guidance
01.1	Enthalpy change or heat energy change when <u>1 mol</u> of <u>solid</u> ionic compound/substance or <u>1 mol</u> of <u>ionic lattice</u>	1	Allow: <u>enthalpy change</u> for: $M^+(g) + X^-(g) \rightarrow MX(s)$ or $Ag^+(g) + I^-(g) \rightarrow AgI(s)$
01.1	is formed from its gaseous ions.	1	dissociation or ΔH of formation/ or heat energy required) Ignore heat energy released
01.2	lattice dissociation energy= $(112 + 464 + 293) = + 869$ (kJmol ⁻¹)	1	
0112	lattice formation energy = -869 (kJ mol ⁻¹)	1	(+)869 = 1 mark
		T	
01.3	Agl contains <u>covalent</u> character	1	CE=0/2 if atoms/molecules For M1, allow the following: not completely ionic / ions not spherical / ions distorted/ some covalent bonding
	Forces/bonds (holding the lattice together) are stronger	1	Ignore covalent bonds stronger (than ionic bonds) Ignore electronegativity Ignore references to energy
r		1	
	AgNO₃	1	Ignore ammonia/acidified/nitric acid/sulphuric acid
01.4	<u>yellow</u> ppt		
	or	1	M2 dependent on correct M1 but mark on from Ag^+ or Tollens
	Cl ₂ or Br ₂ brown solution/black ppt		

|--|

Question	Answers	Additional Comments/Guidance	Mark
	$\frac{Mg^{2^{+}}(g) + 2e^{-} + O(g)}{\uparrow}$	One mark for each level with correct state symbols	1
01.1	Mg ²⁺ (g) + e [−] + O [−] (g)		1
	Mg ⁺ (g) + e ⁻ + O (g)		1
	$\Delta_{\rm f}H = \Delta_{\rm a}H ({\rm Mg}) + \frac{1}{2} \Delta_{\rm BD}H ({\rm O}_2) + \Delta_{\rm 1st \ IE}H ({\rm Mg}) + \Delta_{\rm 2nd \ IE}H ({\rm Mg}) + \Delta_{\rm 1st \ EA}H ({\rm O}) + \Delta_{\rm 2nd \ EA}H ({\rm O}) + \Delta_{\rm LE}H ({\rm MgO})$		1
01.2	- 602 = 150 + (½ x 496) + 736 +1450 – 142 + 844 + Δ_{LE} H (MgO) Δ_{LE} H (MgO) = -3888 / -3890 (kJ mol ⁻¹)	Allow answers to 2sf or more 1 mark for +3888 or +3890 1 mark for -4136 or -4140 (not 496 x 1/2)	1 1
Total			6

Question	Marking guidance	Mark	AO	Comments
09.1	Start a clock when KCl is added to water	1	AO3 2b	
	Record the temperature every subsequent minute for about 5 minutes	1	AO3 2b	Allow record the temperature at regular time
	Plot a graph of temperature vs time	1	AO3 2a	intervals until some time after all the solid has dissolved for M2
	Extrapolate back to time of mixing = 0 and determine the temperature	1	AO3 2a	
09.2	Heat taken in = $m \times c \times \Delta T$ = 50 × 4.18 × 5.4 = 1128.6 J	1	AO2h	Max 2 if 14.6 °C used as ΔT
	Moles of KCl = 5.00/74.6 = 0.0670	1	AO2h	
	Enthalpy change per mole = $+1128.6/0.0670 = 16839 \text{ J mol}^{-1}$	1	AO2h	
	$= +16.8 (kJ mol^{-1})$	1	AO1b	Answer must be given to this precision
09.3	$\Delta H_{\text{solution}} = \Delta H_{\text{lattice}} + \Delta H(\text{hydration of calcium ions}) + 2 \times \Delta H(\text{hydration of chloride ions})$			
	$\Delta H_{\text{lattice}} = \Delta H_{\text{solution}} - \Delta H(\text{hydration of calcium ions}) - 2 \times \Delta H(\text{hydration})$			
	of chloride ions)	1	AO2f	
	$\Delta H_{\text{lattice}} = -82.9 - (-1650 + 2 \times -364) = +2295 \text{ (kJ mol}^{-1}\text{)}$	1	AO2f	
09.4	Magnesium ion is smaller than the calcium ion	1	AO2a	
	Therefore, it attracts the chloride ion more strongly / stronger ionic bonding	1	AO2a	

Question	Answers	Mark	Additional Comments/Guidance
	$\Delta S = \Sigma_S$ products – ΣS reactants or 253 + (2 x 198) – (2 x 223 + 2 x 5.7 + 50.2) (= 649 – 507.6)	1	This expression could also score M1
	$\Delta S = 141(.4) (J K^{-1} mol^{-1})$	1	This scores M1 and M2 Allow ecf for M3, M4 and M5 from incorrect M2
	$\Delta G = \Delta H - T \Delta S$	1	
05.1	$\Delta G = -60 - (\underline{1262} \times 141(.4) \times 10^{-3})$	1	This expression also scores M3. For M4, allow $\Delta G = -60 - (1262 \text{ x their M2 x } 10^{-3})$
	= −238 (kJ mol ⁻¹) to 3 sig figs	1	If calculated in joules M4: Allow $\Delta G = -60 \times 10^3 - (1262 \times 141(.4))$ M5: Allow - <u>238 000</u> J mol ⁻¹ providing units shown
	feasible since ΔG is negative/less than zero	1	Allow consequential M6 from their ΔG

|--|

Section A

Question	Answers	Mark	Additional Comments/Guidance
01.1	Not possible to prevent some dissolving	1	ALLOW It is soluble / dissolves / other hydrates may form / suggestions related to difficulty of measuring T (change) of a solid
	$(\Delta_{hyd}H =) -155 - (-39)$	1	OR labelled cycle
			Minimum needed for 'labelled cycle'
01.2			ΔH -155 -39 or -155 (+)39
	–116 (kJ mol ⁻¹)	1	1/2 for (+)116 or for -29 or for seeing -116 that has then be processed further

01.3	This question	is marked using levels of response. Refer to the Mark		Indicative Chemistry content
	Scheme Instruction	ructions for examiners for guidance on how to mark		Stage 1 Method
	Level 3	All stages are covered and the explanation of each stage is correct and virtually complete		(1a) Measures water with named appropriate apparatus
	5-6 marks	Stage 2 must include use of a graphical method for Level 3 (i.e. 'highest T reached' method is max Level 2)		 (1d) Meddaleo Water With Hamed appropriate apparates (1b) Suitable volume/mass / volume/mass in range 10 – 200 cm³/g (1c) Into insulated container / polystyrene cup (NOT just 'lid')
		Answer communicates the whole explanation, including reference to enthalpy, coherently and shows a logical progression through all three stages		 (1d) Add known mass of MgCl₂(s) (1e) Use of 'before and after' weighing method. NOT 'added with washings'
		For the answer to be coherent there must be some indication of how the graph is used to find ΔT		Stage 2 Measurements (could mark from diagram)
	Level 2	All stages are covered (NB 'covered' means min 2 from each of stage 1 and 3) but the explanation of		(2a) Record initial temperature (min 2 measurements)(2b) Record T at regular timed intervals for 5+ mins / until
	3-4 marks	each stage may be incomplete or may contain inaccuracies OR two stages covered and the explanations are	6	trend seen (2c) Plot T vs time
		generally correct and virtually complete		Stage 3 Use of Results (3a and 3b could come from diagram)
		Answer is coherent and shows some progression through all three stages. Some steps in each stage may be out of order and incomplete		(3a) Extrapolate lines to when solid added (to find initial and final T)
	Level 1	Two stages are covered but the explanation of each stage may be incomplete or may contain		(3b) $T_{\text{final}} - T_{\text{initial}} = \Delta T / \text{ idea of finding } \Delta T \text{ from graph at}$ point of addition
	1-2 marks	OR only one stage is covered but the explanation is generally correct and virtually complete		(3c) $q = mc\Delta 7$ (3d) amount = mass/M _r (0.80/95.3 = 8.39 x 10 ⁻³ mol) (3e) $\Delta H_{soln} = -q/8.39 x 10^{-3}$ or in words
		Answer shows some progression between two stages		This could all be described in words without showing actual calculations but describing stages
	Level 0 0 marks	Insufficient correct Chemistry to warrant a mark		If method based on 'combustion' Max Level 1

Question	Answers	Mark	Additional Comments/Guidance
01.4	240 250 260 T /2 K0 280 290 300 -593 -593 -593 -594 -595 -596 -596 -596 -597 -598 -599 -599 -600 -601 -602 -603	2	M1 = 5 points correctly plotted M2 = line drawn correctly (NOT if curved, doubled or kinked) (Check line of best fit – if through 250, -600.5 and 280, -595.5 +/- one small square then award M2, if all crosses on line award M1 as well)
	Gradient = $\Delta(\Delta G)/\Delta T$ = 0.167 (kJ K ⁻¹ mol ⁻¹)	1	
	$(\Delta G = \Delta H - T\Delta S \text{ so gradient} = -\Delta S)$ $\Delta S = -167 (J \text{ K}^{-1} \text{ mol}^{-1})$	1+1	M4 = unit conversion i.e. M3 x1000; M5 = –sign (process marks) Correct answer with sign gets M3. M4 and M5
			ALLOW -163 to -171

	Total 14
--	----------