
Programmatic Security

By Totally_Not_A_Haxxer via SkyPenguinLabs

Anti Reversing For Developers

Section 0x0

• 17 yr old Automotive/IoT/Systems Cybersecurity researcher

• Author of BHGM, BHPM, GHFM

• Content Creator for GuidedHacking & the Safer Internet Project

• Mass contributor / speaker / presenter / educator

• Developer behind the SkyLine programming language, the Aries network suite
(custom network protocols), and REplay

• Reverse Engineering / Web[API] security / Exploit Development / Software
engineering & PCB maker (sometimes)

• Security Analyst For The DrGreenNFT project

• A kid who has done too much

• I love tearing down systems by the root of their design...

• Written over 300+ articles

• Published over 200+ different tools and automation tools/frameworks  
on various platforms

• ex Game Hacker turned Good boy

Whoami?

@Totally_Not_A_Haxxer

Section 0x1
What is on the agenda?

• Introduction to the space - what does securing binaries look like?

• Analyzing the landscape of reverse engineers and what they target

• What goes into protecting binaries? And what does it mean to protect them?

• Why should you protect binaries?

• What is the difference between Windows and Linux applications?

• Anti-analysis, Anti-Debug, Dynamic Protections, Anti-Injection, etc.

• How mainstream applications are protected

• Major takeaways

• Thank you SIP!

• Concluding & Ending

Meet Rovax!
• Will be throughout the presentation

• Speaks in PigPen

• Is a galactic voyager from planet 3-C

• Quiet yet extremely loud

Rovax

What does securing an application
look like??

Securing Apps...

Anti-
analysis

Anti-
Debug Anti-VM

A. Process Blacklisting

B. Process Whitelisting

C. File system scanning

D. Thread Hiding

Obfuscation

A. Binary Packing

B. String / Data encryption

A. Using System APIs

B. Checking specific
portions of the programs
memory

Anti-
tamper

Secure
memory
handling

Secure
communications

Section 0x2

Why Should I Care?

• Prevent people from stealing your software easily

• Prevent people from obtaining information they should not have access to

• Prevent ease of exploitation (which can make systems all over vulnerable!)

• Saves you a ton in the future in resources, time and money

• Saves you from a nasty reputation

• Saves users from worrying about the safety of production servers/systems

Caring
makes you...

A more
experienced

developer

A better
developer

A more
proficient
problem

solver

A chance to
look from a

new
perspective

Caring gives you...

A chance to
test your own
applications

A chance to
connect with

a different
world!

Section 0x3

A wild FoPwn appearing to steal creds
from your apps...

https://youtu.be/yRdMGwBy8Ok

Timestamp - 2:55:19

https://youtu.be/yRdMGwBy8Ok

~ Haxxer #egocheck

100% of reverse engineers do not care
about your scopes or obfuscation

secure development != obfuscation

• Secret keys or administrative licenses

• To crack or steal your software

• To take advantage of flaws in your software

• To build universal interfaces for your software

• To create copies of your software

• To bypass specific restrictions or find ways around restrictions

• To discover other portions of your infrastructure (I have done this
once before on a mass research operation)

• and so much more...

What the heck do reverse engineers want with me?

Section 0x4

Section 0x5
What does it mean to protect binaries?

Dependent on
type

Desktop
Apps

System
services Drivers

other..

A. Implementing proper
memory management

B. Caring about who is and
is not allowed to access
program resources

A. Staying away from "shortcuts"
especially in kernel drivers

B. Ensuring that the driver is
configured at correctly.

C. Ensuring no direct debug
control

Protecting the application means doing whatever possible to ensure the upmost safety for your binary applications

Section 0x5

Section 0x5
What goes into binary defense?

Most common forms of protections

Anti-
Debug

Anti-
Application

Anti-VM

Anti-Mod

[Anti
modification/

tamper]

[Virtual
Machine]

A. System APIs

B. Checking PEB

C. Checking process flags

D. Checking hardware breakpoints

E. Checking software breakpoints

F. Remote DBG checking

G. etc..

Methods

Methods

Methods

Methods

A. Checking window names

B. Checking window class names

C. Checking for specific file
processes

D. Checking for specific configuration
files or environment variables

E. Checking and verifying specific
programs

A. Client side binary hashing

B. Client side integrity checking

C. Memory scanning and
validation

D. Static pre-load checks

E. .text section validation

A. Checking file system relics

B. Checking network interfaces
or network services

C. Scanning for specific system
services or configuration

D. Checking for specific
hardware identifiers

Prevents modification or binary patching

Prevents analysis in a VM

Prevents apps like IDA from
running adjacent to the app

Prevents easy information gathering

Section 0x6

C++ or not, securing applications has a lot of dynamic parts

Differences in binary protections for different systems
(Windows, Linux, etc) and compilers (gcc, VC++, etc)

What you
are

securing

How you
will secure

it
How will you
implement it

System
compatibility

What are you trying to secure?
(e.g: sensitive information,
hardcoded credentials [stupid
anyway], data transport, etc.)

Anti...(debugging,
analysis,
virtualization, etc)

Using a system API?
From scratch? A
known security
provider?

Ensuring
reliability

Is the implementation of the
system easy to bypass or
simple? Or is it overly
complex and too
dangerous? Is it resourceful?

Is the security system
cross platform or
system / architecture
specific?

Before we go to the methods- lets recap...

Up Next: Methods & Their Inner
Workings In C++/Windows

What does it look like?

Anti-Debug

Attacker

Opens
debugger

Uses unknown debugger
and bypasses debug
application checks

Attempts
obtaining a
process handle

Blocked

Blocked

Uses a form of remote
debugging

Attempts
attachment

Blocked

Using a custom
debugger

Bypasses first
anti-debug
check

Attempts new
handle.

Blocked

Checks using system API

Manually checks PEB

Checks using system API

Process sets security controls

Anti-Analysis

What does it look like?

Attacker
Tries running the
software in a VM

Temporary
blockRuns static analysis

tools like IDA to

Tries to analyze the
environment interaction

Blocked

Blocked

Uses applications like
HTTPanalyzer or

wireshark

Blocked

Scans the system for VM Relics

Obfuscation is in place

Tries to dump the
memory using task

manager
Memory

dump works

Hacker attempts
to analyze dump

Dump
analysis fails

Anti
dumping

Environment analysis tools are not allowed

Is In The Blacklisted App List

Kamikaze Files

https://github.com/LordNoteworthy/al-khaser/blob/master/al-khaser/AntiDump/
ErasePEHeaderFromMemory.cpp

https://github.com/LordNoteworthy/al-khaser/blob/master/al-khaser/AntiDump/ErasePEHeaderFromMemory.cpp
https://github.com/LordNoteworthy/al-khaser/blob/master/al-khaser/AntiDump/ErasePEHeaderFromMemory.cpp

Anti-Tampering
What does it look like?

Attacker

Uses software like IDA pro
to patch over something

such as a login function in
the application to bypass it

Patches
and saves

the file
Runs app

Blocked

Attempts dynamic
patching utility

Attempts to
obtain a

process handle

Client Side Binary Integrity

Process Memory Lock

Statically patches
binary integrity

system

Patches
and saves

the file
Runs app

Blocked
Dynamic Memory Signature Validation

Blocked

Anti-Application
Inner Workings

Person A
(maybe a
blue teamer)

App1

App2

App3

App4

Super
secure

app

Apps running in
the background

App 5 with intense
anti-application
systems

Opens IDA
Pro and a
debugger

Goes to grab
some energy
drinks or
something

Meanwhile
..

Application starts threaded
routine to scan for all
currently running processes

Sends
process to
processmng

Adds it to
the process
list

IDA.exe

Runs a
function for
each process
name

["ida.exe"]

WARN:
FOUND
IDA.exe

SEND TRIGGER

Attempt to send kill
signal

Blocked

SEND USER ERROR

"APPLICATION
NOT ALLOWED"

How are mainstream applications
protected?

Some resources!

A. https://github.com/LordNoteworthy/al-khaser/tree/master

B. Anti-Debug with Structured Exception Handling + Trap Flag (https://
www.youtube.com/watch?v=ww2INI76ydQ&t=1s)

C. Time Based Anti-Debug Techniques (https://www.youtube.com/watch?
v=sirFxSNSXDY&t=2s)

D. Windows API (https://learn.microsoft.com/en-us/windows/win32/apiindex/
windows-api-list)

https://github.com/LordNoteworthy/al-khaser/tree/master
https://www.youtube.com/watch?v=ww2INI76ydQ&t=1s
https://www.youtube.com/watch?v=ww2INI76ydQ&t=1s
https://www.youtube.com/watch?v=sirFxSNSXDY&t=2s
https://www.youtube.com/watch?v=sirFxSNSXDY&t=2s
https://learn.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://learn.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://learn.microsoft.com/en-us/windows/win32/apiindex/windows-api-list

Major Takeaways

• Secure now, not later

• Security promotes good
development practices

• More security = more trust in
product

• Most importantly- why not?

• Keep up on how hackers can
bypass your security systems

Resources for securing C++  
applications

A. https://github.com/LordNoteworthy/al-khaser

B. https://github.com/orgs/KeyAuth/repositories

C. https://www.youtube.com/watch?v=ww2INI76ydQ (guided
hacking, anti-debug with structured exception handling + trap
flag

D. https://www.youtube.com/watch?v=ww2INI76ydQ (guided
hacking, anti debug techniques)

E. and more...

https://github.com/LordNoteworthy/al-khaser
https://github.com/orgs/KeyAuth/repositories
https://www.youtube.com/watch?v=ww2INI76ydQ
https://www.youtube.com/watch?v=ww2INI76ydQ

Thank you SIP!
• Good to be back!

• Will be doing more presentations in
the future

• most importantly- join with this link!

