8 2-Hydroxyethanoic acid, also known as glycolic acid, CH₂OHCOOH, is an alpha hydroxy acid used in some skincare products.

It has a K_a value of 1.5 \times 10⁻⁴ mol dm⁻³.

The structure of glycolic acid is

(a) A solution of glycolic acid of concentration 0.1 mol dm⁻³ has a pH of 2.4

What is the approximate pH of the resulting solution after it has been diluted by a factor of 100?

(1)

- **⋈ A** 1.4
- **B** 2.4
- **C** 3.4
- ☑ D 4.4
- (b) Another solution of glycolic acid has a pH of 2.0

Calculate the concentration of this solution.

(3)

(c) The titration curve for adding glycolic acid to 25.0 cm³ of 0.100 mol dm⁻³ sodium hydroxide is shown.

(i) Use the information given in your Data Booklet to select a suitable indicator for this titration, including the colour change you would expect to see.

Justify your selection.

(3)

(ii) What is the concentration of this glycolic acid in mol dm⁻³?

(1)

- **■ B** 0.100
- **C** 0.125
- **D** 0.250

	(1)
■ B 6.0	
□ C 8.3	
■ D 11.0	
(d) Glycolic acid has an acid dissociation constant of 1.5 \times with a value of 1.7 \times 10 ⁻⁵ mol dm ⁻³ for ethanoic acid.	< 10 ⁻⁴ mol dm ⁻³ compared
(i) Give a possible explanation as to why the value of	
approximately ten times larger than that of ethano	oic acid. (2)
(ii) Complete the equation to show the conjugate acid produced when pure samples of glycolic acid and	•
produced when pure samples of grycolic acid and	(1)
CH₂OHCOOH + CH₃COOH →	+
(To	otal for Question 8 = 12 marks)

- **8** Acids can be classified as weak or strong acids.
 - (a) A mixture of concentrated sulfuric and nitric acids is used in the nitration of benzene.

The following equilibrium is set up:

$$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$

Which statement about this equilibrium is correct?

(1)

- A HNO₃ and H₂NO₃⁺ are a conjugate acid-base pair
- **B** the nitric acid acts as an acid
- □ C the nitric acid acts as an oxidising agent
- **D** the sulfuric acid acts as a dehydrating agent
- (b) Sulfuric acid ionises in two stages.

Stage 1:
$$H_2SO_4(aq) \rightarrow H^+(aq) + HSO_4^-(aq)$$

Stage 2:
$$HSO_4^-$$
 (aq) \rightleftharpoons H^+ (aq) + SO_4^{2-} (aq)

(i) Explain, with reference to the equations, why the ${\sf HSO_4^-}$ ion is classified as a weak acid.

(2)

(ii)) A 0.100 mol dm ⁻³ solution of sulfuric acid has a pH of 0.97.	
	Calculate the concentration of hydrogen ions in this solution.	(1)
(c) Etl	chanoic acid, CH ₃ COOH, is a weak acid.	
etl	student prepares 600 cm³ of a buffer solution by mixing 400 cm³ thanoic acid solution with 200 cm³ of 0.500 mol dm¬³ sodium ethat H₃COONa.	
Ca	alculate the pH of the buffer solution produced.	
(K _e	C_a for ethanoic acid = 1.74 × 10 ⁻⁵ mol dm ⁻³)	(4)
		(4)
	(Total for Que	estion 8 = 8 marks)

- **7** This question is about weak acids.
 - (a) A weak acid, HX, has a K_a value of $5.25 \times 10^{-5} \, \text{mol dm}^{-3}$. A solution was formed by mixing $10.5 \, \text{cm}^3$ of $0.800 \, \text{mol dm}^{-3}$ dilute sodium hydroxide with $25.0 \, \text{cm}^3$ of $0.920 \, \text{mol dm}^{-3}$ HX(aq).

Calculate the pH of the solution formed, showing all your working.

(5)

(b) (i) Propanoic acid, CH_3CH_2COOH , is a weak acid. On the grid below, sketch the change in pH during the addition of $50.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide solution to $25.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ propanoic acid solution.

Volume of sodium hydroxide added / cm³

(ii) Explain how you would use the graph in (b)(i) to obtain the value of the acid dissociation constant, K_a , for propanoic acid. You are **not** expected to calculate this value.

- //	9	N
- 1	_/	-1
٠.	4	

(Total for Question 7 = 11 marks)

- **9** This question is about buffer solutions.
 - (a) A buffer solution is formed from disodium hydrogenphosphate, containing HPO $_4^{2-}$ ions, and sodium dihydrogenphosphate, containing H $_2$ PO $_4^{-}$ ions.

Write the **ionic** equations involving HPO_4^{2-} and $H_2PO_4^{-}$ ions to show how this solution acts as a buffer solution.

(2)

(b) Another buffer solution was formed by mixing 20.0 cm³ of sodium hydroxide solution of concentration 0.100 mol dm⁻³ with 25.0 cm³ of ethanoic acid of concentration 0.150 mol dm⁻³.

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

Calculate the pH of this buffer solution.

[
$$K_a$$
 for ethanoic acid = 1.74 \times 10⁻⁵ mol dm⁻³]

(5)

(Total for Question 9 = 7 marks)

Question Number	Answer	Mark
8(a)	The only correct answer is C	(1)
	A is not correct because this is for a 100-fold increase in concentration	
	B is not correct because this is for no change in concentration	
	D is not correct because this is for a 10000-fold decrease in concentration	

Question Number	Answer	Additional Guidance	Mark
8(b)	• calculation of [H ⁺] (1)	Example of calculation $[H^+] = 10^{-pH} = 0.01 / 1 \times 10^{-2} / 10^{-2} \text{ (mol dm}^{-3)}$	(3)
	• expression relating K_a , [H ⁺] and [CH ₂ OHCOOH] (1)	$K_a = \frac{[H^+]^2}{[CH_2OHCOOH]}$ or $[CH_2OHCOOH] = \frac{[H^+]^2}{K_a}$ Allow [HA] in M2 and M3	
	• calculation of [CH₂OHCOOH] (1)	$[CH2OHCOOH] = \underbrace{0.01^{2}}_{1.5 \times 10^{-4}}$ $= 0.667 / 0.67 \text{ (mol dm}^{-3}\text{)}$	
		Ignore SF except 1 SF	
		Ignore units	
		Correct answer with no working scores (3)	

Additional Guidance	Mark
Examples of indicators and colour changes phenol red – red to orange / yellow phenolphthalein ((in ethanol)) – red / pink to colourless (do not allow purple or clear) bromothymol blue – blue to yellow M2 is conditional on a correct indicator in M1 Do not allow unsuitable indicators e.g. litmus Stand alone mark Allow pK_{in} (\pm 1) is in the vertical jump or pK_{in} is nearest to the pH at the end / equivalence point or indicator will change colour at the end / equivalence point or (because it is a) titration of a weak acid with	(3)
	Examples of indicators and colour changes phenol red – red to orange / yellow phenolphthalein ((in ethanol)) – red / pink to colourless (do not allow purple or clear) bromothymol blue – blue to yellow M2 is conditional on a correct indicator in M1 Do not allow unsuitable indicators e.g. litmus Stand alone mark Allow pK _{in} (± 1) is in the vertical jump or pK _{in} is nearest to the pH at the end / equivalence point or indicator will change colour at the end / equivalence point or

Question Number	Answer	Mark
8(c)(ii)	The only correct answer is C	(1)
	A is not correct because used the volumes the wrong way round	
	B is not correct because not used the volume of glycolic acid from the graph	
	D is not correct because used a 1:2 mole ratio	

Question Number	\\ne\W\Delta F			
8(c)(iii) The only correct answer is C		(1)		
	A is not correct because this is the pH of glycolic acid			
	B is not correct because this is the pH at the end of the vertical jump in the curve			
	D is not correct because this is the pH at the start of the vertical jump			

Question Number	Answer	Additional Guidance	Mark
8(d)(i)	An explanation that makes reference to the following points:		(2)
	 the O of the (extra) OH / hydroxyl group (in the 2 / alpha position / CH₂OH) withdraws / attracts electrons 	Allow reference to intramolecular hydrogen bonding	
	 stabilises the anion / CH₂OHCOO⁻ ion or weakens O-H bond in acid so hydrogen ion / H⁺ lost more easily (1) 	Allow hydrogen ion / H ⁺ more easily dissociates	

Question Number	Answer	Additional Guidance	Mark
8(d)(ii)	(CH ₂ OHCOOH + CH ₃ COOH →)	Both correct for the mark	(1)
	• CH ₂ OHCOO ⁻ + CH ₃ COOH ₂ ⁺	Allow formulae in either order	
		Allow formulae in brackets with charge outside	
		Allow displayed formulae	
		Do not allow CH ₃ C(OH) ₂ ⁺	

(Total for Question 8 = 12 marks)

Question number	Answer		Additional guidance	Marks
8(a)	A			1
8(b)(i)	An explanation that makes reference to the following points:			2
	 stage 2 is an equilibrium reaction / only partial ionisation occurs 	(1)	Accept dissociation for ionisation	
	therefore fewer hydrogen ions are formed	(1)		
8(b)(ii)	 rearrangement of equation pH = - log [H⁺] and substitution to give final answer 	(1)	Example calculation: $[H^+] = 10^{-pH}$ $10^{-0.97} = 0.107 \text{ (mol dm}^{-3})$	1
			Allow 0.11 (mol dm ⁻³) Correct answer with no working scores 1 mark	
8(c)	• rearrangement of K_a expression	(1)	Example of calculation : $[H^{+}] = K_{a} \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]}$	4
	 calculation of [CH₃COOH] and [CH₃COO⁻] 	(1)	$[CH_3COOH] = 0.333 \text{ mol dm}^{-3} \text{ and}$	
	 substitution, and evaluation of [H⁺] in the buffer solution 	(1)	$[CH_3COO^-] = 0.167 \text{ mol dm}^{-3}$ $[H^+] = 1.74 \times 10^{-5} \times 0.333 / 0.167$	
	 conversion of [H⁺] to pH for buffer solution 	(1)	$= 3.48 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ so pH = -lg 3.48 x 10^{-5} = 4.46	
			Accept answers that use forms of the Henderson-Hasselbach equation	
			Correct answer with no working scores 4 marks (Total for Question 8 =	8 marks)

(Total for Question 8 = 8 marks)

Question Number	Acceptable Answers	Additional Guidance	Mark
7(a)	 calculates moles of X⁻ / NaOH present in the mixture (1) calculates moles of HX which remain unreacted calculates / shows ratio of [HX] to [X⁻] OR ratio of moles of HX : X⁻ (as total V cancels) (1) 	Example of calculation: $ (\text{moles of X}^- = \text{mol NaOH} = \underbrace{0.8(00) \times 10.5}_{1000}) $ $= 0.0084(0) / 8.4(0) \times 10^{-3} \text{ (mol)} $ $ (\text{moles of HX} - \text{mol NaOH} = \underbrace{0.92(0) \times 25.0}_{1000} - 0.0084(0) $ $= 0.023(0) - 0.0084(0)) $ $= 0.0146 / 1.46 \times 10^{-2} \text{ (mol)} $ $ [HX] = \underbrace{0.0146}_{0.0355} \text{ and } [X^-] = \underbrace{0.0084(0)}_{0.0355} $	(5)
	 re-arranges K_a or pK_a expression correctly and substitutes appropriate values (1) final pH to 2 or 3SF (1) 	= 0.411 and 0.237 (mol dm ⁻³) Allow use of the ratio of the moles as above (as total V cancels) $[H^+] = K_a \times [HX] = 5.25 \times 10^{-5} \times \underbrace{0.411}_{0.237}$ $[X^-] \qquad \qquad 0.237$ $[H^+] = 9.10443038 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ $pH = 4.04$ Allow use of pH expression to get answer: pH = p K_a – log $[HX]$ or pK_a + log $[X^-]$ $[X^-]$ $[HX]$ ALLOW TE M5 for calculation of pH from any $[H^+]$ Correct answer with no working scores (5)	

Question Number	Acceptable Answers		Additional Guidance	Mark
7(b)(i)	A sketch graph which shows the following:		14-	(4)
	• a starting pH between 2 and 4 (inclusive)	(1)	9-	
	• correct general shape and ends at pH = 12-13	(1)	6-	
	• (any) vertical at 25 cm ³	(1)	3-	
	• vertical between pH = 6 - 7 and pH = 10 − 12	(1)	Vertical must be no more than 5 pH units within these	
			ranges	

Question Number	Acceptable Answers		Additional Guidance	Mark
7(b)(ii)	An explanation that makes reference to the following points:			(2)
			May be shown on the sketch graph	
	OR		ALLOW read equivalence vol, add same	
	pH at half-equivalence (point)	(1)	volume of (propanoic) acid and measure	
			pH	
	• As pH = p K_a / [H ⁺] = K_a / K_a = 10 ^{-pH}	(1)		
			M2 dependent on mentioning half	
			equivalent / 12.5 cm ³	

(Total for Question 7 = 11 marks)

Question Number	Answer		Additional Guidance	Mark
9(a)			Penalise non-ionic equations, e.g. using NaOH or HCl once only	(2)
			Equations must show reaction of ions with H ⁺ / H ₃ O ⁺ and OH ⁻	
			Allow ⇒	
			Ignore state symbols	
	• $HPO_4^{2-} + H^+ \rightarrow H_2PO_4^-$ or			
	$HPO_4^{2-} + H_3O^+ \rightarrow H_2PO_4^- + H_2O$	(1)		
	• $H_2PO_4^- + OH^- \rightarrow HPO_4^{2-} + H_2O$	(1)	Allow $H_2PO_4^- \rightarrow HPO_4^{2-} + H^+$ and $H^+ + OH^- \rightarrow H_2O$	

Question Number	Answer	Additional Guidance	Mark
9(b)	calculation of the amount of NaOH / salt	Example of calculation amount of NaOH = amount of salt formed =0.100 x 20.0/1000 = 0.00200	(5)
	calculation of initial amount of acid (1)	initial amount of acid = 0.150 x 25.0/1000 = 0.00375	
	• calculation of the amount of acid left (1)	amount of acid left = 0.00375 - 0.00200 = 0.00175	
	• calculation of [H ⁺] (1)	[salt] = $0.00200 \times 1000/45.0 = 0.0444 \text{ (mol dm}^{-3}\text{)}$ [acid] = $0.00175 \times 1000/45.0 = 0.0389 \text{ (mol dm}^{-3}\text{)}$ $K_a = [H^+][\text{salt}] \text{ so } [H^+] = K_a[\text{acid}]$	
		[acid] [salt] $[H^{+}] = 1.74 \times 10^{-5} \times 0.0389/0.0444$ $= 1.52446 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ Allow use of moles instead of concentrations	
	calculation of pH (1)	pH = $-\log[H^+]$ = $-\log(1.52446 \times 10^{-5})$ = $4.817 / 4.82 / 4.8$	
		Allow TE for each step	
		Ignore SF except 1 SF	
		Correct answer without working score (5)	

(Total for Question 9 = 7 marks)