8 2-Hydroxyethanoic acid, also known as glycolic acid, CH₂OHCOOH, is an alpha hydroxy acid used in some skincare products. It has a K_a value of 1.5 \times 10⁻⁴ mol dm⁻³. The structure of glycolic acid is (a) A solution of glycolic acid of concentration 0.1 mol dm⁻³ has a pH of 2.4 What is the approximate pH of the resulting solution after it has been diluted by a factor of 100? (1) - **⋈ A** 1.4 - **B** 2.4 - **C** 3.4 - ☑ D 4.4 - (b) Another solution of glycolic acid has a pH of 2.0 Calculate the concentration of this solution. (3) (c) The titration curve for adding glycolic acid to 25.0 cm³ of 0.100 mol dm⁻³ sodium hydroxide is shown. (i) Use the information given in your Data Booklet to select a suitable indicator for this titration, including the colour change you would expect to see. Justify your selection. (3) (ii) What is the concentration of this glycolic acid in mol dm⁻³? (1) - **■ B** 0.100 - **C** 0.125 - **D** 0.250 | | (1) | |---|--| | ■ B 6.0 | | | □ C 8.3 | | | ■ D 11.0 | | | | | | (d) Glycolic acid has an acid dissociation constant of 1.5 \times with a value of 1.7 \times 10 ⁻⁵ mol dm ⁻³ for ethanoic acid. | < 10 ⁻⁴ mol dm ⁻³ compared | | (i) Give a possible explanation as to why the value of | | | approximately ten times larger than that of ethano | oic acid. (2) | (ii) Complete the equation to show the conjugate acid produced when pure samples of glycolic acid and | • | | produced when pure samples of grycolic acid and | (1) | | CH₂OHCOOH + CH₃COOH → | + | | | | | | | | | | | (To | otal for Question 8 = 12 marks) | - **8** Acids can be classified as weak or strong acids. - (a) A mixture of concentrated sulfuric and nitric acids is used in the nitration of benzene. The following equilibrium is set up: $$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$ Which statement about this equilibrium is correct? (1) - A HNO₃ and H₂NO₃⁺ are a conjugate acid-base pair - **B** the nitric acid acts as an acid - □ C the nitric acid acts as an oxidising agent - **D** the sulfuric acid acts as a dehydrating agent - (b) Sulfuric acid ionises in two stages. Stage 1: $$H_2SO_4(aq) \rightarrow H^+(aq) + HSO_4^-(aq)$$ Stage 2: $$HSO_4^-$$ (aq) \rightleftharpoons H^+ (aq) + SO_4^{2-} (aq) (i) Explain, with reference to the equations, why the ${\sf HSO_4^-}$ ion is classified as a weak acid. (2) | (ii) |) A 0.100 mol dm ⁻³ solution of sulfuric acid has a pH of 0.97. | | |-----------------|--|---------------------| | | Calculate the concentration of hydrogen ions in this solution. | (1) | (c) Etl | chanoic acid, CH ₃ COOH, is a weak acid. | | | etl | student prepares 600 cm³ of a buffer solution by mixing 400 cm³ thanoic acid solution with 200 cm³ of 0.500 mol dm¬³ sodium ethat H₃COONa. | | | Ca | alculate the pH of the buffer solution produced. | | | (K _e | C_a for ethanoic acid = 1.74 × 10 ⁻⁵ mol dm ⁻³) | (4) | | | | (4) | (Total for Que | estion 8 = 8 marks) | - **7** This question is about weak acids. - (a) A weak acid, HX, has a K_a value of $5.25 \times 10^{-5} \, \text{mol dm}^{-3}$. A solution was formed by mixing $10.5 \, \text{cm}^3$ of $0.800 \, \text{mol dm}^{-3}$ dilute sodium hydroxide with $25.0 \, \text{cm}^3$ of $0.920 \, \text{mol dm}^{-3}$ HX(aq). Calculate the pH of the solution formed, showing all your working. (5) (b) (i) Propanoic acid, CH_3CH_2COOH , is a weak acid. On the grid below, sketch the change in pH during the addition of $50.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide solution to $25.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ propanoic acid solution. Volume of sodium hydroxide added / cm³ (ii) Explain how you would use the graph in (b)(i) to obtain the value of the acid dissociation constant, K_a , for propanoic acid. You are **not** expected to calculate this value. | - // | 9 | N | |------|----|----| | - 1 | _/ | -1 | | ٠. | 4 | | | (Total for Question 7 = 11 marks) | |-----------------------------------| | | | | |
 | | | | | | | | | | | - **9** This question is about buffer solutions. - (a) A buffer solution is formed from disodium hydrogenphosphate, containing HPO $_4^{2-}$ ions, and sodium dihydrogenphosphate, containing H $_2$ PO $_4^{-}$ ions. Write the **ionic** equations involving HPO_4^{2-} and $H_2PO_4^{-}$ ions to show how this solution acts as a buffer solution. (2) (b) Another buffer solution was formed by mixing 20.0 cm³ of sodium hydroxide solution of concentration 0.100 mol dm⁻³ with 25.0 cm³ of ethanoic acid of concentration 0.150 mol dm⁻³. $$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$ Calculate the pH of this buffer solution. [$$K_a$$ for ethanoic acid = 1.74 \times 10⁻⁵ mol dm⁻³] (5) (Total for Question 9 = 7 marks) | Question
Number | Answer | Mark | |--------------------|--|------| | 8(a) | The only correct answer is C | (1) | | | A is not correct because this is for a 100-fold increase in concentration | | | | B is not correct because this is for no change in concentration | | | | D is not correct because this is for a 10000-fold decrease in concentration | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | 8(b) | • calculation of [H ⁺] (1) | Example of calculation $[H^+] = 10^{-pH} = 0.01 / 1 \times 10^{-2} / 10^{-2} \text{ (mol dm}^{-3)}$ | (3) | | | • expression relating K_a , [H ⁺] and [CH ₂ OHCOOH] (1) | $K_a = \frac{[H^+]^2}{[CH_2OHCOOH]}$ or $[CH_2OHCOOH] = \frac{[H^+]^2}{K_a}$ Allow [HA] in M2 and M3 | | | | • calculation of [CH₂OHCOOH] (1) | $[CH2OHCOOH] = \underbrace{0.01^{2}}_{1.5 \times 10^{-4}}$ $= 0.667 / 0.67 \text{ (mol dm}^{-3}\text{)}$ | | | | | Ignore SF except 1 SF | | | | | Ignore units | | | | | Correct answer with no working scores (3) | | | Additional Guidance | Mark | |---|--| | Examples of indicators and colour changes phenol red – red to orange / yellow phenolphthalein ((in ethanol)) – red / pink to colourless (do not allow purple or clear) bromothymol blue – blue to yellow M2 is conditional on a correct indicator in M1 Do not allow unsuitable indicators e.g. litmus Stand alone mark Allow pK_{in} (\pm 1) is in the vertical jump or pK_{in} is nearest to the pH at the end / equivalence point or indicator will change colour at the end / equivalence point or (because it is a) titration of a weak acid with | (3) | | | Examples of indicators and colour changes phenol red – red to orange / yellow phenolphthalein ((in ethanol)) – red / pink to colourless (do not allow purple or clear) bromothymol blue – blue to yellow M2 is conditional on a correct indicator in M1 Do not allow unsuitable indicators e.g. litmus Stand alone mark Allow pK _{in} (± 1) is in the vertical jump or pK _{in} is nearest to the pH at the end / equivalence point or indicator will change colour at the end / equivalence point or | | Question
Number | Answer | Mark | |--------------------|---|------| | 8(c)(ii) | The only correct answer is C | (1) | | | A is not correct because used the volumes the wrong way round | | | | B is not correct because not used the volume of glycolic acid from the graph | | | | D is not correct because used a 1:2 mole ratio | | | Question
Number | \\ne\W\Delta F | | | | |--|---|-----|--|--| | 8(c)(iii) The only correct answer is C | | (1) | | | | | A is not correct because this is the pH of glycolic acid | | | | | | B is not correct because this is the pH at the end of the vertical jump in the curve | | | | | | D is not correct because this is the pH at the start of the vertical jump | | | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | 8(d)(i) | An explanation that makes reference to the following points: | | (2) | | | the O of the (extra) OH / hydroxyl group (in the 2 / alpha position / CH₂OH) withdraws / attracts electrons | Allow reference to intramolecular hydrogen bonding | | | | stabilises the anion / CH₂OHCOO⁻ ion or weakens O-H bond in acid so hydrogen ion / H⁺ lost more easily (1) | Allow hydrogen ion / H ⁺ more easily dissociates | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|------| | 8(d)(ii) | (CH ₂ OHCOOH + CH ₃ COOH →) | Both correct for the mark | (1) | | | • CH ₂ OHCOO ⁻ + CH ₃ COOH ₂ ⁺ | Allow formulae in either order | | | | | Allow formulae in brackets with charge outside | | | | | Allow displayed formulae | | | | | Do not allow CH ₃ C(OH) ₂ ⁺ | | (Total for Question 8 = 12 marks) | Question number | Answer | | Additional guidance | Marks | |-----------------|--|-----|---|----------| | 8(a) | A | | | 1 | | 8(b)(i) | An explanation that makes reference to the following points: | | | 2 | | | stage 2 is an equilibrium reaction / only partial ionisation occurs | (1) | Accept dissociation for ionisation | | | | therefore fewer hydrogen ions are formed | (1) | | | | 8(b)(ii) | rearrangement of equation pH = - log [H⁺] and
substitution to give final answer | (1) | Example calculation:
$[H^+] = 10^{-pH}$
$10^{-0.97} = 0.107 \text{ (mol dm}^{-3})$ | 1 | | | | | Allow 0.11 (mol dm ⁻³) Correct answer with no working scores 1 mark | | | 8(c) | • rearrangement of K_a expression | (1) | Example of calculation : $[H^{+}] = K_{a} \frac{[CH_{3}COOH]}{[CH_{3}COO^{-}]}$ | 4 | | | calculation of [CH₃COOH] and [CH₃COO⁻] | (1) | $[CH_3COOH] = 0.333 \text{ mol dm}^{-3} \text{ and}$ | | | | substitution, and evaluation of [H⁺] in the buffer solution | (1) | $[CH_3COO^-] = 0.167 \text{ mol dm}^{-3}$
$[H^+] = 1.74 \times 10^{-5} \times 0.333 / 0.167$ | | | | conversion of [H⁺] to pH for buffer solution | (1) | $= 3.48 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ so pH = -lg 3.48 x 10^{-5} = 4.46 | | | | | | Accept answers that use forms of the
Henderson-Hasselbach equation | | | | | | Correct answer with no working scores 4 marks (Total for Question 8 = | 8 marks) | (Total for Question 8 = 8 marks) | Question
Number | Acceptable Answers | Additional Guidance | Mark | |--------------------|--|--|------| | 7(a) | calculates moles of X⁻ / NaOH present in the mixture (1) calculates moles of HX which remain unreacted calculates / shows ratio of [HX] to [X⁻] OR ratio of moles of HX : X⁻ (as total V cancels) (1) | Example of calculation: $ (\text{moles of X}^- = \text{mol NaOH} = \underbrace{0.8(00) \times 10.5}_{1000}) $ $= 0.0084(0) / 8.4(0) \times 10^{-3} \text{ (mol)} $ $ (\text{moles of HX} - \text{mol NaOH} = \underbrace{0.92(0) \times 25.0}_{1000} - 0.0084(0) $ $= 0.023(0) - 0.0084(0)) $ $= 0.0146 / 1.46 \times 10^{-2} \text{ (mol)} $ $ [HX] = \underbrace{0.0146}_{0.0355} \text{ and } [X^-] = \underbrace{0.0084(0)}_{0.0355} $ | (5) | | | re-arranges K_a or pK_a expression correctly and substitutes appropriate values (1) final pH to 2 or 3SF (1) | = 0.411 and 0.237 (mol dm ⁻³) Allow use of the ratio of the moles as above (as total V cancels) $[H^+] = K_a \times [HX] = 5.25 \times 10^{-5} \times \underbrace{0.411}_{0.237}$ $[X^-] \qquad \qquad 0.237$ $[H^+] = 9.10443038 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ $pH = 4.04$ Allow use of pH expression to get answer: pH = p K_a – log $[HX]$ or pK_a + log $[X^-]$ $[X^-]$ $[HX]$ ALLOW TE M5 for calculation of pH from any $[H^+]$ Correct answer with no working scores (5) | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|--|-----|---|------| | 7(b)(i) | A sketch graph which shows the following: | | 14- | (4) | | | • a starting pH between 2 and 4 (inclusive) | (1) | 9- | | | | • correct general shape and ends at pH = 12-13 | (1) | 6- | | | | • (any) vertical at 25 cm ³ | (1) | 3- | | | | • vertical between pH = 6 - 7 and pH = 10 − 12 | (1) | Vertical must be no more than 5 pH units within these | | | | | | ranges | | | Question
Number | Acceptable Answers | | Additional Guidance | Mark | |--------------------|---|-----|--|------| | 7(b)(ii) | An explanation that makes reference to the following points: | | | (2) | | | | | May be shown on the sketch graph | | | | OR | | ALLOW read equivalence vol, add same | | | | pH at half-equivalence (point) | (1) | volume of (propanoic) acid and measure | | | | | | pH | | | | • As pH = p K_a / [H ⁺] = K_a / K_a = 10 ^{-pH} | (1) | | | | | | | M2 dependent on mentioning half | | | | | | equivalent / 12.5 cm ³ | | (Total for Question 7 = 11 marks) | Question
Number | Answer | | Additional Guidance | Mark | |--------------------|--|-----|--|------| | 9(a) | | | Penalise non-ionic equations, e.g. using NaOH or HCl once only | (2) | | | | | Equations must show reaction of ions with H ⁺ / H ₃ O ⁺ and OH ⁻ | | | | | | Allow ⇒ | | | | | | Ignore state symbols | | | | • $HPO_4^{2-} + H^+ \rightarrow H_2PO_4^-$ or | | | | | | $HPO_4^{2-} + H_3O^+ \rightarrow H_2PO_4^- + H_2O$ | (1) | | | | | • $H_2PO_4^- + OH^- \rightarrow HPO_4^{2-} + H_2O$ | (1) | Allow $H_2PO_4^- \rightarrow HPO_4^{2-} + H^+$ and $H^+ + OH^- \rightarrow H_2O$ | | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | 9(b) | calculation of the amount of NaOH / salt | Example of calculation
amount of NaOH = amount of salt formed
=0.100 x 20.0/1000 = 0.00200 | (5) | | | calculation of initial amount of acid (1) | initial amount of acid = 0.150 x 25.0/1000
= 0.00375 | | | | • calculation of the amount of acid left (1) | amount of acid left = 0.00375 - 0.00200
= 0.00175 | | | | • calculation of [H ⁺] (1) | [salt] = $0.00200 \times 1000/45.0 = 0.0444 \text{ (mol dm}^{-3}\text{)}$
[acid] = $0.00175 \times 1000/45.0 = 0.0389 \text{ (mol dm}^{-3}\text{)}$
$K_a = [H^+][\text{salt}] \text{ so } [H^+] = K_a[\text{acid}]$ | | | | | [acid] [salt] $[H^{+}] = 1.74 \times 10^{-5} \times 0.0389/0.0444$ $= 1.52446 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ Allow use of moles instead of concentrations | | | | calculation of pH (1) | pH = $-\log[H^+]$ = $-\log(1.52446 \times 10^{-5})$
= $4.817 / 4.82 / 4.8$ | | | | | Allow TE for each step | | | | | Ignore SF except 1 SF | | | | | Correct answer without working score (5) | | (Total for Question 9 = 7 marks)