

PHYSICS
Learn faster
Learn better

Class 11/12 | AP Physics | IIT JEE | NEET

Impulse and Momentum

Key Idea

1. Impulse (J) : The product of the average force (F_{av}) and the time interval $(\Delta \mathrm{t})$ during which the force acts.

$$
J=F_{\text {av }} \Delta t
$$

2. If the exact relation between force and time is know, impulse can be expressed as

$$
J=\int \bar{F}(t) d t \quad \text { Limits }-\mathrm{t}_{\text {initial }} \text { to } \mathrm{t}_{\text {final }}
$$

3. Impulse is also defined as the change in momentum or

$$
\Delta \bar{p}=J
$$

Understanding Impulse

When you hit a ball with a bat, a force is exerted on the ball. During the collision:

- The force starts at zero, increases to a maximum when the ball and bat are in full contact, and then decreases as they separate.
- This force varies, altering the ball's linear momentum $\overline{\mathrm{p}}$.
- This change of momentum is termed as
 the impulse on the ball

Newton's Second Law in Momentum Form \& Derivation of Impulse

$\bar{F}=d \bar{p} / d t \quad$ or

$$
d \bar{p}=\bar{F}(t) d t
$$

integrating both sides

$$
\int d \bar{p}=\int \bar{F}(t) d t
$$

$$
\text { tinitial } \text { to } \mathrm{t}_{\text {final }}
$$

$$
\Delta \overline{\mathrm{p}}=\int \overline{\mathrm{F}}(\mathrm{t}) \mathrm{dt}=\mathrm{J}
$$

$$
\text { Where } J \text { is impulse }
$$

Or
$\Delta \bar{p}=\bar{J} \quad$ (Impulse-Momentum Theorem)

The direction of impulse is always in the direction of change of momentum

Impulse-Momentum Theorem: The impulse experienced by an object is equal to the change in its momentum

Force vs. Time Graphs

- The area under a force-time (F-t) graph represents the impulse.
- If the force varies, the area under the curve is the integral of F over time.

Area under each of the 3 graphs is equal and therefore the impulse is also equal

Average Force and Impulse

When the force is constant over a time interval Δt, the impulse can be calculated as: $J=F_{\text {av }} \Delta t$

$J=\int F d t$	
$\Delta p=J$	
$J=$ Favg Δt	(on ball)
$J=-F_{\text {avg }} \Delta t$	(on bat)

Example Problem

Given:

- A 0.40 kg ball is thrown against a wall at $30 \mathrm{~m} / \mathrm{s}$ and rebounds at $20 \mathrm{~m} / \mathrm{s}$.
- Collision duration is 0.01 s .

To Find:

- Impulse on the ball.
- Average horizontal force exerted by the wall.

Solution:

1. Initial Momentum:

$$
\begin{aligned}
& \mathrm{p}_{1}=\mathrm{m} \mathrm{v}_{1}=0.40 \mathrm{~kg}(-30 \mathrm{~m} / \mathrm{s})=-12 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& \mathrm{p}_{2}=\mathrm{m} v_{2}=0.40 \mathrm{~kg}(+20 \mathrm{~m} / \mathrm{s})=+8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& \mathrm{~J}=\mathrm{p}_{2}-\mathrm{p}_{1}=8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}-(-12 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})=20 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& \mathrm{~F}_{\mathrm{av}}=\mathrm{J} / \Delta \mathrm{t}=20 \mathrm{~N} \cdot \mathrm{~s} / 0.01 \mathrm{~s}=2000 \mathrm{~N}
\end{aligned}
$$

2. Final Momentum:
3. Impulse:
4. Average Force:

Comparing Momentum and Kinetic Energy

Impulse $\bar{J}=\bar{p}_{2}-\bar{p}_{1}$ is a result of change in particle's momentum, which depends on the time over which the net force acts ($\left.J=\int \bar{F}(t) d t\right)$

Work-energy theorem $W_{\text {tot }}=K_{2}-K_{1}$, gives us the change in kinetic energy when work is done on a particle. Total work done depends on the distance over which the net force acts and has no dependence on time it took. $(\mathrm{W}$ tot $=\mathrm{Fd})$

Example Comparison:

Catching a $0.10-\mathrm{kg}$ ball at $20 \mathrm{~m} / \mathrm{s}$ vs. a $0.50-\mathrm{kg}$ ball at $4 \mathrm{~m} / \mathrm{s}$. Which is easier to catch?

- Both have the same momentum ($\mathrm{p}=2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$).
- But, kinetic energy differs: KE of the small ball is 20 J , and the larger ball is 4 J .
- Although momentum and impulse are the same, more work is needed to stop the smaller ball due to its higher kinetic energy $\left(W_{\text {tot }}=K_{2}-K_{1}\right)$

Momentum Vs. Kinetic Energy	$m=0.1 \mathrm{~kg}$	$m=0.5 \mathrm{~kg}$
	$v=20 \mathrm{~m} / \mathrm{s}$	$v=4 \mathrm{~m} / \mathrm{s}$
Impulse Momentum Theorem	$p=0.1 * 20=2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$	$p=0.5 * 4=2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$\Delta p=J$	$K=1 / 2\left(0.1 * 20^{2}\right)=20 \mathrm{~J}$	$K=1 / 2\left(0.5 * 4^{2}\right)=4 \mathrm{~J}$
$J=F \Delta t$		
Work Energy Theorem		
$W=K_{2}-K_{1}$		$=4 J / F X$
$W=F d$	V	
Force Hand $=F$	$d=20 \mathrm{~J} / \mathrm{F} 5 \mathrm{X}$	4
$J=F \Delta t$	0	
$\Delta t=J / F$		

\#\#\#

Summary of Formulas \＆Equations

Formula	When to Use	Caution／Keep in Mind
$F=d p / d t$	When determining the relationship between force and momentum	Ensure F is the net external force
$\int d p=\int F d t \quad$ from t_{i} to $t f$		
$\Delta p=\int F d t$	To calculate total change in momentum over a time interval	Properly set the integration limits from t_{i} to tf
$J=\int F d t$	from t_{i} to tf	To find the impulse when force varies over time
$\Delta p=J$	To relate change in momentum to impulse	Accurately integrate over the time interval
$J=F_{a v} \Delta t$	When the force is constant over the time interval Δt	Use average force Faver in the direction
$p=m v$	To calculate linear momentum of an object	Momentum p is a vector，direction is important

