

- 4 Proteins are important biological molecules.
 - (a) Protein structure can be represented at four levels: primary, secondary, tertiary and quaternary.

Below is a set of features that may be used when describing the structure of a protein such as haemoglobin.

Features	Letter	
hydrogen bonds	Α	
peptide bonds	В	
α and β subunits	С	
the sequence of amino acids	D	
the initial folding of the polypeptide chain	Е	
the overall 3D shape	F	
ionic bonds	G	

(i) Select the letters of the features that describe the primary level of protein structure.

[1]	
i) Select the letter or letters of the feature(s) found in the secondary level of protein structure that are not present in the primary structure.	(ii)
[1]	
i) Select the letter or letters of the feature(s) that are found in the tertiary level of protein structure that are not present in the primary and secondary structures.	(iii)
[1]	
v) Select the letter or letters of the feature(s) found only in the quaternary level of protein structure.	(iv)
[1]	

25 Fig. 25.1 represents the tertiary structure of the enzyme lysozyme.

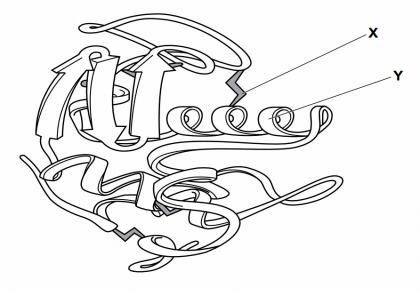
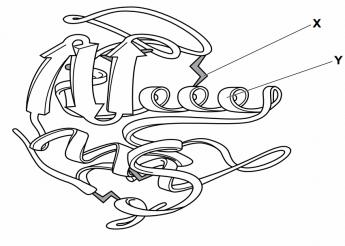


Fig. 25.1

(a) (i) Name the covalent chemical bond labelled **X** which links two cysteine amino acids.

			[1]
	(ii)	Name the structure labelled Y which forms part of the secondary structure of lysozym	e.
			[1]
	(iii)	Lysozyme consists of a single polypeptide chain of 129 amino acids.	
		State which level of protein structure is not shown by lysozyme.	
			[1]
(b)	The	function of lysozyme is to break down the cell walls of bacteria.	
	(i)	Name the molecule that is found in the cell walls of bacterial cells.	
			[1]
	(ii)	Lysozyme is also known as a glycoside hydrolase.	
		Suggest the type of chemical bond that lysozyme breaks and name the molecule ot than the substrate that is needed for this reaction	her
	т	ype of bond	
	С	Other molecule needed for this reaction	

[2]


7	(a)	Haemoglobin is a globular protein.
		Describe the structure of a haemoglobin molecule.
	Ø	In your answer, you should include details of the secondary, tertiary and quaternary structure of the molecule.
		[7]

PROTEIN STRUCTURE

C	Question		Answer		Mark	Guidance	
4	(a)	(i)	primary	B <u>and</u> D ;	1	DO NOT CREDIT if another letter is shown	
		(ii)	secondary	A <u>and</u> E ;	1	DO NOT CREDIT if another letter is shown	
		(iii)	tertiary	F <u>and</u> G;	1	DO NOT CREDIT if another letter is shown	
		(iv)	quaternary	С;	1	DO NOT CREDIT if another letter is shown	

25 Fig. 25.1 represents the tertiary structure of the enzyme lysozyme.

(a) (i) Name the covalent chemical bond labelled X which links two cysteine amino acids.

		<u>disulfide</u> ✓	[1]
	(ii)	Name the structure labelled ${f Y}$ which forms part of the secondary structure of lysozyr	ne.
		<u>α-helix</u> → → → → → → → → → →	[1]
	(iii)	Lysozyme consists of a single polypeptide chain of 129 amino acids.	
		State which level of protein structure is not shown by lysozyme.	
3 P1 19 Q25b		<u>quaternary</u> ✓	[1]
(b)	The	e function of lysozyme is to break down the cell walls of bacteria.	
	(i)	Name the molecule that is found in the cell walls of bacterial cells.	
		<u>peptidoglycan / murein</u> ✓	[1]
	(ii)	Lysozyme is also known as a glycoside hydrolase.	
		Suggest the type of chemical bond that lysozyme breaks and name the molecule o than the substrate that is needed for this reaction.	ther
	г	⊽pe of bond <u>glycosidic</u> ✓	
	C	Dther molecule needed for this reaction $water \checkmark$	[2]

IGNORE H₂O

PROTEIN STRUCTURE

Question		Expected Answer		Additional Guidance	
7 (a)	1 2	sequence / chain, of amino acids ; (amino acids) joined by peptide bonds ;		CREDIT marking points from a clearly labelled diagram 1 IGNORE polypeptide	
	•	secondary			
	S1	alpha / α , helix;			
	S2 S3	<u>small regions of</u> , beta / β, pleated sheet / fold ; hydrogen / H, bonds ;		S3 Must be in context of secondary structure	
		tertiary			
	T1	secondary structure / helix / polypeptide chain, undergoes further, coiling / folding ;		T1 ACCEPT polypeptide chain folds further	
	T2	3 bonds / interactions from: disulfide / ionic / hydrogen / hydrophobic or hydrophilic ;		T2 IGNORE if clearly in context of secondary or quaternary structures T2 H bond must be in context of tertiary structure	
	Т3	hydrophilic <u>R groups</u> on outside (of molecule) / hydrophobic <u>R groups</u> on inside (of molecule) ;			
		quaternary			
	Q1	4, polypeptides / subunits ;			
	Q2	2, alpha / $\alpha,$ chains and 2, beta / $\beta,$ chains ;		'contains 2 α and 2 β polypeptides' = 2 marks (Q1 and Q2)	
	Q3	1 haem (group) per polypeptide / 4 haems (per molecule) ;		Q3 IGNORE protein in ref to 1 haem (group) per polypeptide	
	3	prosthetic group (is) haem, (which) contains Fe ²⁺ ;		3 ACCEPT iron ion / Fe ⁺ / Fe ³⁺ 3 DO NOT CREDIT iron / Fe unqualified	
		OW/C correct refe to coconders, to first and suct and	6 max		
		QWC - correct refs to secondary, tertiary and quaternary structure ;	1	1 S mark and 1 T mark and 1 Q mark	