0 4

A student isolated chloroplasts from spinach leaves into a solution to form a chloroplast suspension. He used the chloroplast suspension and DCPIP solution to investigate the light-dependent reaction of photosynthesis. DCPIP solution is blue when oxidised and colourless when reduced.

The student set up three test tubes as follows:

- Tube 1 1 cm³ of solution without chloroplasts and 9 cm³ of DCPIP solution in light.
- Tube 2 1 cm³ of chloroplast suspension and 9 cm³ of DCPIP solution in darkness.
- **Tube 3** 1 cm³ of chloroplast suspension and 9 cm³ of DCPIP solution in light.

The student recorded the colour of the DCPIP in each of the tubes at the start and after the tubes had been left at 20 $^{\circ}$ C for 30 minutes.

His results are shown in **Table 1**.

Table 1

Tube	Colour of DCPIP in tube			
Tube	At start	After 30 minutes		
1	blue	blue		
2	blue	blue		
3	blue	colourless		

04.1

The solution that the student used to produce the chloroplast suspension had the same water potential as the chloroplasts.

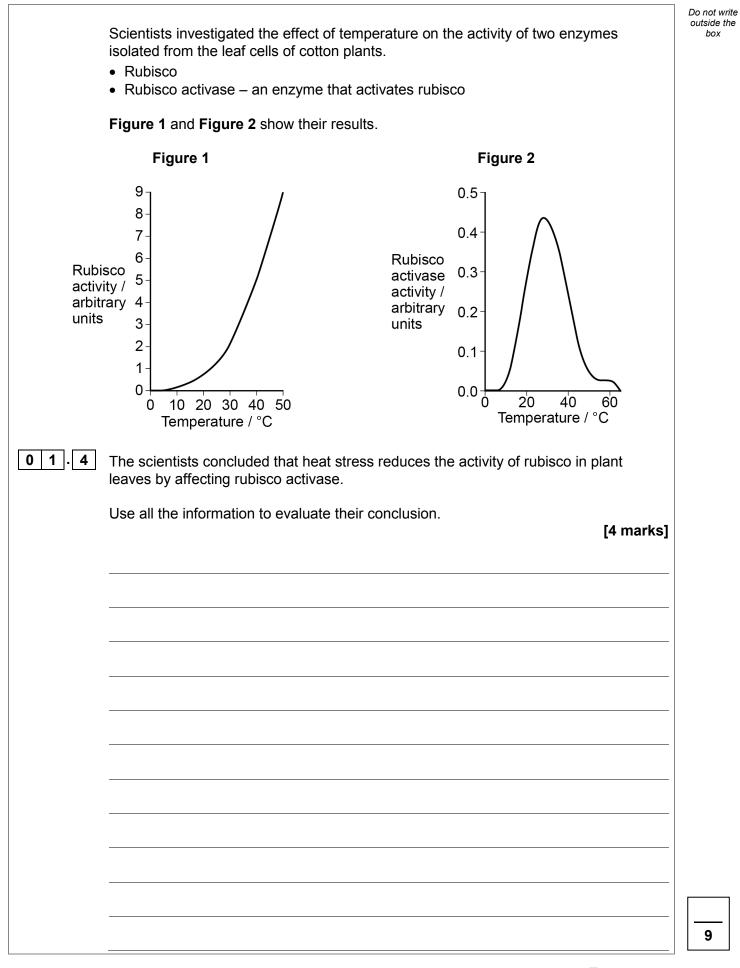
Explain why it was important that these water potentials were the same.

[2 marks]

04.2	Explain why the student set up Tube 1 . [2 marks]
04.3	Explain the results in Tube 3 . [2 marks]
04.4	The student evaluated the effectiveness of different chemicals as weed-killers by assessing their ability to prevent the decolourisation of DCPIP in chloroplast suspensions. He added different concentrations of each chemical to illuminated chloroplast suspensions containing DCPIP. He then determined the IC ₅₀ for each chemical. The IC ₅₀ is the concentration of chemical which inhibits the decolourisation of DCPIP by 50%.
	Explain the advantage of the student using the IC ₅₀ in this investigation. [1 mark]
	Question 4 continues on the next page

Turn over ►

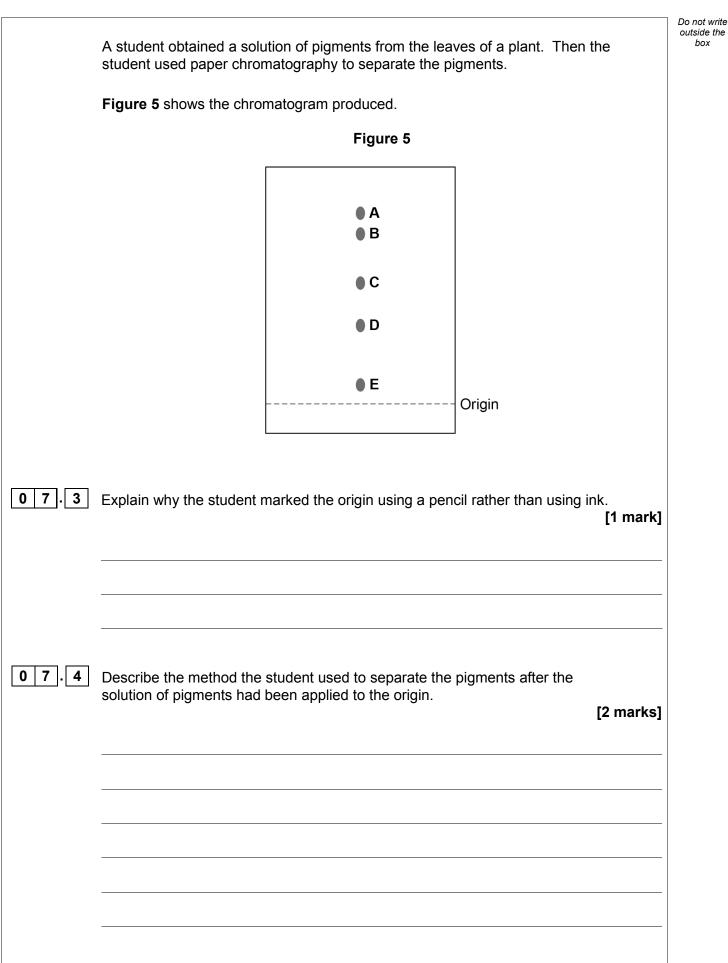
04.5


Explain how chemicals which inhibit the decolourisation of DCPIP could slow the growth of weeds. [2 marks]

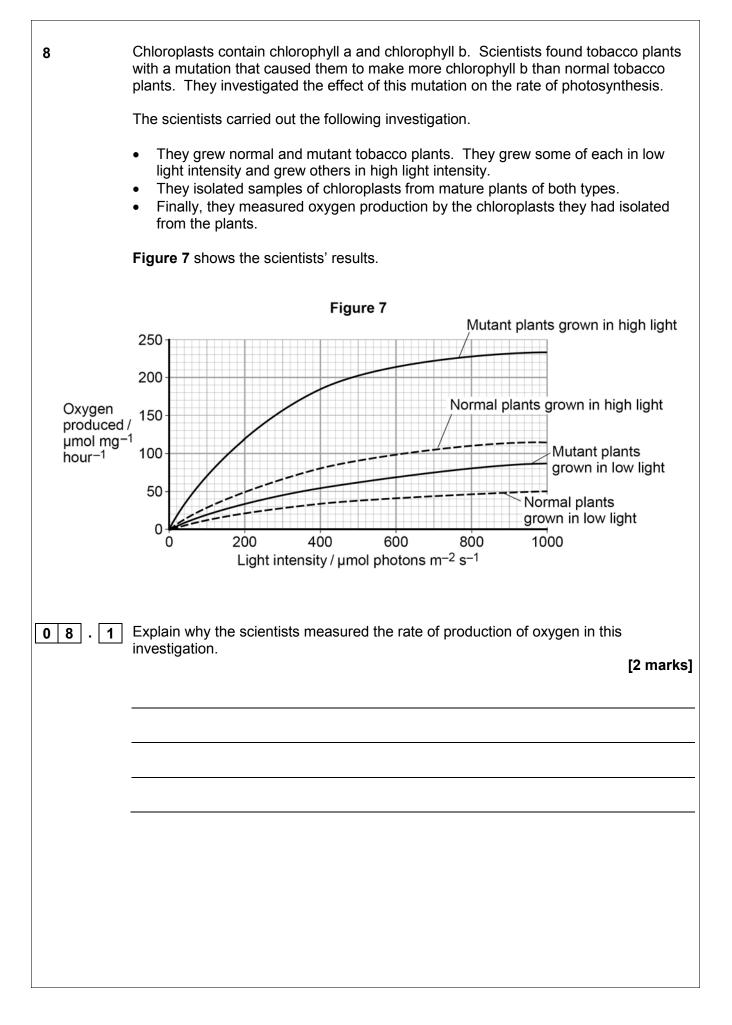
9

IB/M/Jun17/E5

Answer all questions in the spaces provided.	
1 Heat stress is a condition that often occurs in plants exposed to high temperatures for a prolonged period of time. Heat stress is a major factor in limiting the rate of photosynthesis.	or
1 . Heat stress decreases the light-dependent reaction of photosynthesis.	
Explain why this leads to a decrease in the light-independent reaction . [2 mark	(s]
 Another effect of heat stress is a decrease in the activity of the enzyme rubisco. A decrease in the activity of an enzyme means that the rate of the reaction it catalyses becomes slower. 	
decrease in the activity of an enzyme means that the rate of the reaction it catalyses	
decrease in the activity of an enzyme means that the rate of the reaction it catalyses becomes slower.	is.
 decrease in the activity of an enzyme means that the rate of the reaction it catalyses becomes slower. A decrease in the activity of the enzyme rubisco would limit the rate of photosynthes Explain why. 	is.
 decrease in the activity of an enzyme means that the rate of the reaction it catalyses becomes slower. A decrease in the activity of the enzyme rubisco would limit the rate of photosynthes Explain why. 	is.
 decrease in the activity of an enzyme means that the rate of the reaction it catalyses becomes slower. A decrease in the activity of the enzyme rubisco would limit the rate of photosynthes Explain why. 	is.
 decrease in the activity of an enzyme means that the rate of the reaction it catalyses becomes slower. A decrease in the activity of the enzyme rubisco would limit the rate of photosynthes Explain why. 	is.



0 7.1	In photosynthesis, which chemicals are needed for Tick (\checkmark) one box.	r the light-dependent reaction? [1 mark]	Do not write outside the box
	Reduced NADP, ADP, Pi, water and oxygen.		
	NADP, ATP and water.		
	Reduced NADP, ATP, water and carbon dioxide.		
	NADP, ADP, Pi and water.		
0 7.2	Describe what happens during photoionisation in t	he light-dependent reaction. [2 marks]	
	Question 7 continues on the nex	t page	
	Question 7 continues on the nex	r hage	



07.5	Calculating the R _f values of the pigments can help to identify each pigment. An R _f value compares the distance the pigment has moved from the origin with the distance the solvent front has moved from the origin. $R_{f} = \frac{\text{distance pigment has moved from the origin}}{\text{distance solvent front has moved from the origin}}$	Do not write outside the box
	The distance each pigment has moved is measured from the middle of each spot.	
	Pigment A has an R _f value of 0.95	
	Use Figure 5 to calculate the R _f value of pigment C . [1 mark]	
	R _f value of pigment C =	
0 7.6	The pigments in leaves are different colours. Suggest and explain the advantage of having different coloured pigments in leaves. [1 mark]	
	Turn over for the next question	8

08.2	In each trial, the scientists collected oxygen for 15 minutes. Calculate the difference in the oxygen produced by the chloroplasts from mutant
	plants grown in low and high light intensities at a light intensity of 500 μ mol photons m ⁻² s ⁻¹ during these trials.
	Show your working. [2 marks]
	Difference µmol O ₂ mg ⁻¹
08.3	The scientists suggested that mutant plants producing more chlorophyll b would grow faster than normal plants in all light intensities.
	Explain how these data support this suggestion. [4 marks]
	[Extra space]

3.	Comparison of mode = one mark i.e.	3. Accept: adult
	Adult (fibres) peak/most common/frequent/mode at 50 (μm) and young (fibres) peak/most common/frequent/mode at 30 (μm);	(fibres) peaks at higher diameter or young (fibres) peak/most frequent at lower diameter.
		3. Reject: reference to mean/average.

Question	Marking Guidance	Mark	Comments
04.1	 <u>Osmosis</u> does not occur; Chloroplast/organelle does not burst/lyse/shrivel/shrink; 	2	 Accept: osmosis would occur if water potentials were not the same. and 2, Accept: correct reference to osmotic lysis for 2 marks. Accept: chloroplast would burst/lyse/shrivel/shrink if water potentials were not the same. Reject: '<u>cell</u> bursts/shrivels' Ignore: damage to chloroplasts on its own is not enough for a mark. Reject: becomes turgid/flaccid.
04.2	 To show light does not affect <u>DCPIP;</u> To show chloroplasts are required; 	2	Ignore: comparison with other tubes.
04.3	 Reduction of DCPIP by electrons; (From) chlorophyll/light dependent reaction; 	2	 Accept: hydrogen/H for electrons but not protons/hydrogen ions/H[*] on their own. Accept: from chloroplasts/photosystems/water.

04.4	Provides a standard / reference point OR Can compare different chemicals/weed- killers OR Can compare different concentrations of chemicals/weed-killers;	1	Accept: decolourises quicker than 100% or saves time waiting for complete decolourisation. Note: comparisons must be qualified. Accept: find the most effective weed-killer or the most effective concentration. Accept: answers relating to cost effectiveness.
04.5	 Less/no ATP produced; Less/no reduced NADP produced; Less/no GP reduced/converted to TP; 	2 max	2, Accept: less/no NADPH/NADPH ₂ /NADPH + H

Question	Marking Guidance	Mark	Comments
01.1	1. (Less/no) ATP;	2	2. Accept NADPH, NADPH + H, NADPH₂ NADPH + H ⁺
	2. (Less/no) reduced NADP;		2. Reject reduced NAD, NADH etc,
01.2	1. (Less/no) carbon dioxide (reacts) with RuBP;	2	
	2. (Less/no) GP;		
		1	Reject: stoma
			Reject stroma of cytoplasm/chlorophyll
01.3	1. Stroma (of/in chloroplast);		Reject stroma of mitochondrion
			Ignore references to Calvin cycle or the light-independent reaction
	1. Rubisco activity increases with temperature	4 max	2. Accept denatures at high temperature (allow
	OR Rubisco optimum temperature is above (rubisco activase);		any temperature above 25 °C)
	2. (Rubisco) activase activity decreases at		
	high temperatures (allow any temperature above 25 °C.)		
01.4	OR (Rubisco) activase optimum (allow in range) 25 to 30 °C.;		4. Accept may not be the same in other
	 (Results/graphs suggest) activase cannot/does not affect activity of rubisco; 		species/types of plant Ignore: only one study
	4. (Results are) only for cotton;		
	5. (Results are) for isolated enzymes;		
	6. No stats test;		

Question	Marking Guidance	Mark	Comments
07.1	☑ NADP, ADP, Pi and water;	1	
07.2	1. <u>Chlorophyll</u> <u>absorbs</u> light OR	2	1. Ignore photosystems.
	Light excites/moves electrons in chlorophyll;		2. Ignore site/molecule from where electrons are lost.
	 2. Electron/s are lost OR (Chlorophyll) becomes positively charged; 		2. Accept electrons go to electron transport/carrier chain for 'electrons lost'.
07.3	Ink <u>and</u> (leaf) pigments would mix OR (With ink) origin/line in different position OR (With pencil) origin/line in same position OR (With pencil) origin/line still visible;	1	
07.4	 Level of solvent below origin/line; Remove/stop before (solvent) reaches top/end; 	2	 Reject water or any named aqueous solution. Accept named organic solvent.
07.5	Accept any answer in range of 0.58 to 0.62;	1	Accept 0.58 or 0.62. Ignore any numbers which follow numbers in range.
07.6	(Absorb) different/more wavelengths (of light) for photosynthesis;	1	Accept wider/larger range of wavelengths. Accept frequency for wavelength. Accept light- dependent reaction /photophosphorylation /photoionisation for photosynthesis.

Question	Marking Guidance	Mark	Comments
08.1	 Oxygen produced in light-dependent reaction; The faster (oxygen) is produced, the faster the light-dependent reaction; 	2	
08.2	35–36 (μmol O ₂ mg ⁻¹);;	2	Correct difference at 500 μ mol photons m ⁻² s ⁻¹ or incorrect difference but division by 4 shown = 1 mark
08.3	 At all light intensities, chloroplasts from mutant plants: 1. Have faster production of ATP and reduced NADP; 2. (So) have faster/more light-independent reaction; 3. (So) produce more sugars that can be used in respiration; 4. (So) have more energy for growth; 5. Have faster/more synthesis of new organic materials; 	4 max	Accept converse points if clear answer relates to non-mutant plants