

Risk Management

 Risk is the likelihood of a threat actor taking advantage of a vulnerability by using a threat against an IT asset

Threat Actors

- Hackers
- Hacktivists
- Script kiddies
- Insiders
- Competitors
- Shadow IT
- Criminal syndicates
- State actors
- Advanced persistent threat (APT)

Quick Review

- Risk is the likelihood of a threat actor taking advantage of a vulnerability by using a threat against an IT asset
- An asset is any part of an IT infrastructure that has value
- Likelihood is the probability of assets being damaged over time
- A threat actor is anyone or anything with the motive and resources to attack another's IT infrastructure
- A vulnerability is a weakness in an asset
- A threat is an action that a threat actor can use against a vulnerability to cause harm

Vulnerability and Threat

- Vulnerability
 - A weakness inherent in an asset that leaves it open to a threat
- Threat
 - An attack (exploit) that a malicious actor will use against an asset

Threat Actors

- Individuals or organizations who perpetrate attacks against vulnerabilities
- Example: script kiddies

Attack Vectors

- Pathways to gain access to infrastructure
 - Weak configurations
 - Open firewall ports
 - Lack of user security awareness
 - Lack of multifactor authentication
 - Missing patches
 - Equifax hack
 - Infected USB thumb drives
 - Stuxnet worm

Attack Vectors

- Supply-chain attack
 - Manufacturers
 - Contractors
 - Implementers
 - Outsourced software development
 - Right-to-audit clause

Quick Review

- Vulnerabilities are weaknesses of an asset in an IT system
- Exploits take advantage of vulnerabilities
- Threat actors are the sources of threats
- Attack vectors are pathways to gain access to restricted systems

- Facilitate risk management
- Hardening can reduce incident response time
- Provide cybersecurity insight
 - Adversary tactics, techniques, and procedures (TTP)
 - Threat maps
 - Example: geographical representations of malware outbreaks

- Closed/proprietary
- OSINT (open-source intelligence)
 - Government reports
 - Media
 - Academic papers

- Closed/proprietary
- File/code repositories
 - Example: GitHub
- Vulnerability databases
 - Common Vulnerabilities and Exposures (CVEs)

- Dark Web/dark net
 - Tor network, Tor Web browser
 - Encrypted anonymous connections
 - Not indexed by search engines
 - Tor encryption and anonymity
 - Journalists
 - Law enforcement
 - Government informants

Threat Intelligence Sharing

- Automated Indicator Sharing (AIS)
 - Exchange of cybersecurity intelligence (CI) between entities
- Structured Threat Information eXpression (STIX)
 - A form of AIS
 - Data exchange format for cybersecurity intelligence

Threat Intelligence Sharing

- Trusted Automated eXchange of Intelligence
 Information (TAXII)
 - Like RSS feed for threats
 - Consists of TAXII servers and clients
 - Real-time cyber intelligence feeds

Quick Review

- OSINT (open-source intelligence) refers to public cybersecurity intelligence sources
- The Common Vulnerabilities and Exposures (CVE) database is an example of OSINT
- The Dark Web is an encrypted and anonymized Internet access mechanism allowing access to unindexed content
- STIX is a cybersecurity intelligence (CI) sharing format; TAXII exchanges CI

Episode 1.04	
Episode title:	Risk Management Concepts
Objective:	5.2 Explain the importance of applicable regulations, standards, or frameworks that impact organizational security posture.

Risk Vector

- Mission-critical IT systems
 - Payment processing
 - Human resources
 - Emergency
- Sensitive data
 - Do we know what we have and where it is?
- Third-party access

Physical Risk Vectors

- Access control vestibules (mantraps)
- Server room access
- Limit USB bootable devices

Risk Management Frameworks (RMFs)

- Center for Internet Security (CIS)
 - Cybersecurity best practices
- NIST Risk Management Framework (RMF)/Cybersecurity Framework (CSF)
 - Cybersecurity risk management

Risk Management Frameworks (RMFs)

- International Organization for Standardization/International Electrotechnical Commission (ISO/IEC)
 - 27001/27002/27701/ 31000
 - IT system and information security

Financial RMFs

- Statement on Standards for Attestation Engagements System and Organization Controls (SSAE SOC 2)
 - Financial statement integrity
 - Internal controls
 - Type I and Type II

RMFs

- NIST Special Publication (SP) 800-30, Rev. 1
 - "Guide for Conducting Risk Assessments"
 - <u>https://csrc.nist.gov/publications/detail/sp/800-30/rev-</u> <u>1/final</u>

Data Privacy Regulations and Standards

- General Data Protection Regulation (GDPR)
 Protects EU citizens' private data
- Health Insurance Portability and Accountability Act (HIPAA)
 - Protect American patient medical information

Data Privacy Regulations and Standards

- Payment Card Industry Data Security Standard (PCI DSS)
 - Protect cardholder information
 - https://www.pcicomplianceguide.org/faq/

Types of Security Policies

- Acceptable use policy (AUP)
 E-mail, social media, Web browsing
- Resource access policies
 - App or file access
- Account policies
 - Account hardening

Types of Security Policies

- Data retention policies
 Often distated by regulation
 - Often dictated by regulations
- Change control policies
- Asset management policies

Quick Review

- Risk management frameworks (RMFs) provide guidance on identifying and managing risk
- Security regulations and standards such as GDPR, HIPAA, and PCI DSS are designed to protect sensitive data
- Organization security policies are designed to protect assets

Episode 1.05		
Episode title:	Security Controls	
Objective:	5.1 Compare and contrast various types of controls.	

Security Controls

- Solution that mitigates threat
- Example: Malware scanner mitigates malware infections
- Implemented differently based on platform/ vendor/user
 - Network infrastructure devices
 - Switches, routers, firewalls

Security Control Categories

- Managerial/administrative
 - What should be done?
 - Employee background checks
- Operational
 - How often must we do it?
 - Periodic review of security policies
- Technical
 - How exactly will we do it?
 - Firewall rule configuration

Security Control Types

- Physical
 - Access control vestibule (mantrap)
- Detective
 - Log analysis
- Corrective
 - Patching known vulnerabilities

Security Control Types

- Deterrent
 - Device logon warning banners
- Compensating
 - Network isolation for Internet of Things (IoT) devices
- https://www.shodan.io/

Cloud Security Control Documents

- Cloud Security Alliance (CSA)
 - Cloud Controls Matrix (CCM)

Security Control Documents

- Payment Card Industry Data Security Standard (PCI DSS)
 - Security controls must be in place to be compliant

Risk Example

- Risk
 - Theft of online banking credentials
- Attack vector
 - Spoofed e-mail message with link to spoofed Web site tricking an end user
- Mitigation through security controls
 - User security awareness
 - Antivirus software
 - Spam filters

Quick Review

- Security controls mitigate specific threats
- Managerial security controls include administrative functions such as background checks
- Operational security controls include policy reviews
- Technical controls relate to specific IT security solutions
- Security control types include physical, detective, corrective, preventive, deterrent, and compensating

Risk Assessment

- Prioritization of threats against assets and determining what to do about it
- Applicable to
 - Entire organization
 - A single project or department
- Targets
 - Servers
 - Legacy systems
 - Intellectual property (IP)
 - Software licensing

Risk Assessment Process

- Risk awareness
 - Cybersecurity intelligence sources
- Evaluate security controls
 - Inherent (current) and residual risk
- Implement security controls
- Periodic review

Risk Types

- Environmental
 - Flood, hurricane
- Person-made
 - Riots, terrorism, sabotage
- Internal
 - Malicious insider, malware infections
- External
 - Distributed denial of service (DDoS)

Risk Treatments

- Mitigation/reduction
 - Security controls are proactively put in place before undertaking the risk
- Transference/sharing
 - Some risk is transferred to a third party in exchange for payment
 - Example: cybersecurity insurance

Risk Treatments

- Avoidance
 - Avoid an activity because the risks outweigh potential gains
- Acceptance
 - The current level of risk is acceptable
 - The risk falls within the organization's risk appetite

Quick Review

- A risk assessment strives to determine the likelihood and impact of threats
- Risk types include environmental, personmade, internal, and external
- Risk treatments (management) include acceptance, mitigation, transference, and avoidance

Quantitative Risk Assessment

- Based on numeric values
- Asset value (AV)
- Exposure factor (EF)
 - Percentage of asset value loss when negative incident occurs

Single Loss Expectancy (SLE)

- How much loss is experienced during one negative incident?
- Multiply asset value (AV) by the exposure factor (EF)

Single Loss Expectancy (SLE)

- Asset value (AV) = \$24,000
- Exposure factor (EF) = 12.5%
- \$24,000 (AV) X 0.125 (EF) = \$3,000 (SLE)

Quantitative Risk Assessment

- Annualized rate of occurrence (ARO)
 - Expected number of yearly occurrences
 - Example: 2-3 times per year
- Annualized loss expectancy (ALE)
 - Total yearly cost of bad things happening
 - ALE = SLE X ARO

Annualized Loss Expectancy (ALE)

- ALE = single loss expectancy (SLE) x annualized rate of occurrence (ARO)
- Eg: \$2,500 x 2 = \$5,000
- Spending less than \$5,000 yearly to protect the asset is worthwhile

Quick Review

- The single loss expectancy (SLE) is calculated by multiplying the asset value (AV) by the exposure factor (EF)
- The annualized loss expectancy (ALE) is calculated by multiplying the annualized rate of occurrence (ARO) by the SLE

Qualitative Risk Assessment

- Based on subjective opinions regarding:
 - Threat likelihood
 - Impact of realized threat
- Threats are given a severity rating

Risk Register

- Organizations should have one (or more)
- Centralized list of risks, severities, responsibilities, and mitigations
- Generally considered qualitative
 - Example: severity or impact ratings
 - Occasionally includes hard numbers (%, \$)

Risk Register Example							
Risk #	Date	Title	Likelihood	Impact	Severity	Owner	Mitigation
1	March 5	On-premises customer PII data exfiltration	High	Med	High	User1	Refer to IRP #425-1
2	June 3	Employees not attending security awareness training	Med	High	High	User2	Company-issued devices, VPN
3	March 6	Employees using BYOD smartphones	Med	Med	Med	User2	Company-issued devices, VPN

Risk Matrix

- Table of risk details
- Similar to a heat map but without colors

Quick Review

- A qualitative risk assessment is based on subjective risk severity levels
- A risk register is an up-to-date centralized list of risks and their relative severities and mitigations
- Risk heat maps and risk matrices are used to plot and chart risk severity levels

Business Impact Analysis (BIA)

- Prioritize mission-critical processes
 - Payment processing systems
 - Customer/patient records
- Assess risk
 - Identify sensitive data
 - Identify single points of failure
 - Identify security controls and compliance

Business Impact

- Financial
 - Fines
 - Loss of contracts
- Reputation
- Data loss
 - Breach notification
 - Escalation requirements
 - Exfiltration

Failed Component Impact

- Mean time between failures (MTBF)
 - Average time between repairable component failures
 - Software patching
- Mean time to failure (MTTF)
 - Average time between NON-repairable component failures
 - Hard disks, switches, routers
- Mean time to repair (MTTR)
 - Time required to repair a failed component

Locating Critical Resources

- Data discovery and classification
 - Where is our sensitive data?
 - Privacy threshold assessment (PTA)
 - First step before implementing solutions related to sensitive data
- Impact on sensitive data
 - Privacy impact assessment (PIA)
 - Regulatory compliance

Business Impact

- Recovery point objective (RPO)
 - Maximum tolerable amount of data loss
 - Directly related to backup frequency
- Recovery time objective (RTO)
 - Maximum tolerable amount of downtime
 - Return systems and data to usable state

Quick Review

- A business impact analysis (BIA) identifies how negative incidents will impact business processes and sensitive data
- MTBF, MTTF, and MTTR are related to the impact of failed components
- The recovery time objective (RTO) defines the maximum tolerable amount of downtime
- The recovery point objective (RPO) defines the maximum tolerable amount of data loss

Data Classification

- Government/military classification
 - Top secret
 - Secret
 - Confidential

Data Classification

- Standard classification
 - PII (personally identifiable information)
 - PHI (protected health information)
 - Proprietary
 - Public/private
 - Critical
 - Financial

Data Privacy Standards

- Ensure data privacy and breach notification
- Levy fines
- Protect intellectual property (IP)
- Example: HIPAA (Health Insurance Portability and Accountability Act)

Data Privacy Standards

- PCI DSS (Payment Card Industry Data Security Standard)
 - Cardholder information
- GDPR (General Data Protection Regulation)
 - Protects EU citizens' data regardless of location

Data Classification Tools

- Any method of applying metadata
 - Example: cloud resource tagging

Data Roles and Responsibilities

- Owner
 - Legal data owner
 - Set policies on how data will be managed
- Controller
 - Ensure data complies with applicable regulations
- Processor
 - Handles data in accordance with privacy guidelines
- · Custodian/steward
 - Responsible for managing data (permissions, backup) in alignment with data owner policies
- Data privacy officer (DPO)
 - Ensures data privacy regulation compliance such as with GDPR

Quick Review

- Data classification assigns labels to data to facilitate management
- Common data privacy standards include HIPAA, PCI DSS, and GDPR
- Data owners determine data management policies
- Data custodians apply data management policies

Information Life Cycle

- Security involved at every phase
- Data collection
 - Consent
- Implementation depends on regulations/ standards

Personally Identifiable Information (PII)

- One or more pieces of sensitive information that can be traced back to an individual
 - Social security number
 - E-mail address
 - Credit card number
 - Home address
 - Web browser cookie containing sensitive session identifiers

Protected Health Information (PHI)

- One or more pieces of sensitive medical information that can be traced back to an individual
 - Health insurance plan number
 - Blood type
 - Patient medical ailments

Privacy-Enhancing Technologies

- Anonymization
- The GDPR allows anonymized data collection and use without user consent
- Anonymized data has limited marketing value

Anonymization Techniques

- Pseudo-anonymization
 - Replace PII with fake identifiers
- Data minimization
 - Limit stored/retained sensitive data
- Tokenization
 - A digital token authorizes access instead of the original credentials
- Data masking
 - Hide sensitive data from unauthorized users
 - Masked out credit card number digits on a receipt

Data Sovereignty

- Location of data and laws that apply to it
 - Where did the data originate?
 - Where does the data reside?
 - Which laws/regulations apply to the data?

Quick Review

- The information life cycle includes data collection, storage, processing, sharing, and archiving then deletion
- Sensitive data can be anonymized through pseudo-anonymization, data minimization, data masking, and tokenization
- Data sovereignty refers to the origin and storage location of data related to applicable laws

Episode 1.12	
Episode title:	Data Destruction
Objective:	2.7 Explain the importance of physical security controls.

Data Destruction

- Paper, film, magnetic tape
 - Burning
 - Pulping
 - Shredding (pulverizing)

Digital Data Destruction

- Failed or decommissioned storage devices
- Storage device end-of-life policies
 - Reuse? Donate? Destroy?
 - Update asset inventory

Digital Media Sanitization

- Data is still recoverable
 - Deleted files, repartitioned, or reformatted drives
- Disk wiping tools
 - SSD and HD
 - Multiple pass disk overwrites
 - HD only
 - Degaussing

Digital Media Sanitization

- Cryptographic erasure
 - Destroy storage media decryption key
 - Self-encrypting drives (SEDs)

Quick Review

- Data sanitization ensures sensitive data cannot be recovered
- Organizational policies define how physical and digital data is safely destroyed
- Data sanitization methods include burning, shredding, cryptographic erasure, disk wiping tools, and degaussing

Personnel Management Policies

- Standard operating procedure (SOP)
 - Example: proper steps for sending sensitive data via email
- Mandatory vacation, job rotation
 - Detection of irregularities
- Separation of duties (multi-person control)
 - Reduce likelihood of internal fraud
 - Does not prevent collusion

Employee/ Contractor Hiring

- Social media analysis
- Web search
- Background check
 - Criminal record
 - Unpaid fines
 - Credit check
 - Interviews with friends, family, colleagues

User Onboarding

- Non-disclosure agreement (NDA)
 Proprietary secrets, PII/PHI
- Security policy awareness
 - User sign-off
- User account and resource access
- Issue security badge, smart card

User Habits

- Clean desk policies
- Physical and digital document shredding
 - Mitigates dumpster diving, data recovery
- Personally-owned devices
 - Mobile device management (MDM)
 - Bring your own device (BYOD)

User Training

- Ongoing, role-based
- Computer-based training (CBT)
- Gamification
 - Capture the flag contests
- Phishing campaigns/ simulations
 - Lunch and learn
 - Can be part of a penetration test

User Offboarding

- Termination letter
- Exit interview
- Return of equipment
- Knowledge transfer
- Account disablement vs. deletion

Quick Review

- Securing personnel management can be implemented with job rotation, mandatory vacations, and separation of duties
- Employee and contractor background checks help ensure trustworthiness
- User onboarding occurs after hiring and includes training and account provisioning
- Clean desk and secure data disposal policies reduce the risk of security breaches

Third-Party Risk Management

- Measurement systems analysis (MSA)
 - Quality assurance

Supply Chain Security Risks

- Hardware and software vendors
 - End-of-service life (EOL, EOSL) means no more patches or support
- Cloud service providers security compliance
- Contractors
 - Data privacy notices
- Company mergers and system linking
- Software developers using third-party components

Third-Party Risk Management

- Data Loss Prevention (DLP) systems
 - Reduce intentional/ unintentional sensitive data exfiltration

Quick Review

- A measurement systems analysis (MSA) can identify supply chain improvements
- Supply chain risks include unstable or insecure hardware, software, or contractors, or suppliers not meeting security standards
- Sensitive data stored in the public cloud presents a third-party risk
- The intentional/unintentional disclosure of sensitive data can be controlled with DLP

Agreement Types

- Interconnection security agreement (ISA)
 - Legal review, regulatory compliance
 - Linking companies, partners, agencies
 - Vulnerability scan results
 - Mandatory training/ certification
 - Input from IT security professionals
- Service level agreement (SLA)
 - Contractual document stating level of service
 - Guarantee service uptime
 - Consequences for not meeting requirements

Agreement Types

- Memorandum of understanding (MOU)
 Broad terms of agreement between parties
- Memorandum of agreement (MOA)
 - Detailed terms between parties
- Business partnership agreement (BPA)
 - Legal document
 - Responsibilities, investment, decision-making
- Non-disclosure agreement (NDA)
 - Prevent sensitive data disclosure to third parties

Quick Review

- Interconnection security agreements (ISAs) apply when connecting different entities together
- Service level agreements (SLAs) detail expected service uptime from a provider
- Memorandums of understanding (MOUs) state broad agreement terms between parties, memorandums of agreement (MOAs) are more detailed
- Non-disclosure agreements (NDAs) prevent sensitive data disclosure to third parties

