
Blazor WebAssembly Template Files 
Before we wrap this module up, let’s go through the Blazor WebAssembly 
template and inspect some of the most important files we’ll be looking at and 
modifying throughout this course. The first file we want to look at is the 
launchSettings.json file, located inside the Properties folder of our template. This 
is the file that Visual Studio uses to determine which debugging profiles are 
available to use for our concrete application. By default, there are two debugging 
profiles available, “IIS Express” one, and “{Name of the Project}” one.This means 
we can currently launch our application both as an IIS hosted application or as a 
self-hosted application. Both of these options can be seen in the navigation menu 
on the top: And IIS Express is selected as the default option. We can also define 
different environment variables within it. There is one example of it already in this 
file, and that’s the ASPNETCORE_ENVIRONMENT variable that is set to 
“Development” and is used by our application to indicate that we’re working in 
the development environment. Other options present at default are: 
commandName which is basically a name of the profile launchBrowser which tells 
whether the application should launch in the browser or not inspectUrl, the URL 
we can access to debug Blazor WebAssembly application. We’ll talk more about 
this one later on. applicationUrl which is the URL on which our application will be 
running and environmentVariables, which is a list of all the environment variables 
for our application. Okay, let’s move on to the next file we want to look at and 
that’s Program.cs file. If you’ve done any work in .NET Core, you are familiar with 
this file. This is the main entry to our project, but the main thing to take away 
here is that we’ll be using this file to register our services, unlike Startup.cs in 
ASP.NET Core Web API and other types of applications. Blazor WebAssembly 
doesn’t have a Startup class, so all the service registrations are to be done here. 
This is a very basic Program.cs file, but we’ll be changing it several times during 
this course. Next on, we have the App.razor which is the main component of the 
application. Inside it, we can see that client routing is set up, and that we can 
define/change the main layout file. The router component is in charge of 
intercepting the browser navigation and directing it to the right page of our 
application. Right beside our App.razor file, there is a file called _Imports.razor. 
Inside this file, we can define common Razor directives as @using directive to 
include our dependencies. We’ve already seen how our main layout is called in 
the App.razor file, and it’s located right in the Shared folder. The 
MainLayout.razor file inherits from the LayoutComponentBase and contains two 
important components of our application, NavMenu component, dedicated to the 



navigation menu to the left, and @Body which is all the content that needs to be 
rendered. NavMenu.razor file contains a bit more logic that’s responsible for 
making our menu work as it does. We’ll go into more detail about navigation later 
on the course. There is another folder called Pages, which contains all the 
routable components/pages in our application. By default, we have Index.razor, 
Counter.razor, and FetchData.razor files in here. Each of these represents a single 
navigation route route in our menu Finally, we have the wwwroot folder, which is 
a folder that contains all the static files for our application. This includes files such 
as stylesheets, images, favicon… and of course index.html file which is the main 
entry file of the application. We’ve already mentioned that inside index.html we 
can find the reference to blazor.webassembly.js file which we need for the Blazor 
WebAssembly project type. That’s it for the important files for now. We’ll be 
adding some more like the appsettings.json file to define values for different 
environments, but more on that later. Now that we’ve learned a bit of theory 
about Blazor and we’ve seen how it works in practice, let’s conclude this module 
and recap what we’ve learned so far. 
 


