Navigation Problems

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
1	A great circle track would be most advantageous when compared to the rhumb line track on which route? (Use gnomonic tracking chart WOXZC5274)	Cayenne (LAT 4ㄴㄴㅇ́N, LONG $52^{\circ} 15^{\prime} \mathrm{W}$) to Sao Tome (LAT 000', LONG $6^{\circ} 45^{\prime} E$)	Palm Beach, FL, to the English Channel	Natal, Brazil, to Reykjavik, Iceland	Recife, Brazil, to Monrovia	
2	A vessel at LAT $07^{\circ} 05^{\prime} \mathrm{N}$, LONG $81^{\circ} 45^{\prime} \mathrm{W}$ is to proceed to LAT $08^{\circ} 40^{\prime} \mathrm{N}$, LONG $88^{\circ} 00^{\prime} \mathrm{W}$. What are the course and distance by mid-latitude sailing?	$283.1^{\circ} \mathrm{T}, 381.2$ miles	$284.3^{\circ} \mathrm{T}, 384.6$ miles	$285.6^{\circ} \mathrm{T}, 385.0$ miles	$286.8^{\circ} \mathrm{T}, 387.4$ miles	
3	A vessel at LAT $10^{\circ} 22.0^{\prime} \mathrm{S}$, LONG $7^{\circ} 18.0^{\prime} \mathrm{E}$, heads for a destination at LAT $6^{\circ} 52.0^{\prime} \mathrm{N}$, LONG $57^{\circ} 23.0^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	$285^{\circ} \mathrm{T}, 3825.3$ miles	$285{ }^{\circ} \mathrm{T}, 4025.7$ miles	$296{ }^{\circ} \mathrm{T}, 3825.3$ miles	$296{ }^{\circ} \mathrm{T}, 4025.7$ miles	
4	A vessel at LAT $11^{\circ} 22^{\prime}$ S, LONG $009^{\circ} 18^{\prime} \mathrm{E}$ heads for a destination at LAT $06^{\circ} 52^{\prime} \mathrm{N}$, LONG $57^{\circ} 23^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	296${ }^{\circ} \mathrm{T}, 3,825.3$ miles	296${ }^{\circ} \mathrm{T}, 4,154.2$ miles	$285^{\circ} \mathrm{T}, 3,825.3$ miles	$285{ }^{\circ} \mathrm{T}, 4,154.2$ miles	
5	A vessel at LAT $14^{\circ} 10^{\prime} \mathrm{N}, \mathrm{LONG} 61^{\circ} 00^{\prime} \mathrm{W}$ is to proceed to LAT $10^{\circ} 00^{\prime} \mathrm{N}$, LONG $53^{\circ} 23^{\prime} \mathrm{W}$. What is the course and distance by mid-latitude sailing?	$117.3^{\circ} \mathrm{T}, 503.0$ miles	$117.9^{\circ} \mathrm{T}, 504.0$ miles	$118.6^{\circ} \mathrm{T}, 508.0$ miles	$119.2^{\circ} \mathrm{T}, 512.0$ miles	
6	A vessel at LAT $18^{\circ} 54^{\prime} \mathrm{N}$, LONG $73^{\circ} 00^{\prime} \mathrm{E}$, heads for a destination at LAT $13^{\circ} 12^{\prime} \mathrm{N}$, LONG $54^{\circ} 00^{\prime} \mathrm{E}$. Determine the true course and distance by Mercator sailing.	$247^{\circ} \mathrm{T}, 1161$ miles	$250^{\circ} \mathrm{T}, 1172$ miles	$253{ }^{\circ} \mathrm{T}, 1154$ miles	$256^{\circ} \mathrm{T}, 1136$ miles	
7	A vessel at LAT $20^{\circ} 00^{\prime} \mathrm{N}$, LONG $107^{\circ} 30^{\prime} \mathrm{W}$ is to proceed to LAT $24^{\circ} 40^{\prime} \mathrm{N}$, LONG $112^{\circ} 30 \mathrm{~W}$. What is the course and distance by mid-latitude sailing?	$314.0^{\circ} \mathrm{T}, 389.0$ miles	$315.3^{\circ} \mathrm{T}, 394.0$ miles	$317.2^{\circ} \mathrm{T}, 397.0$ miles	$318.3^{\circ} \mathrm{T}, 399.0$ miles	
8	A vessel at LAT $20^{\circ} 10^{\prime} \mathrm{N}$, LONG $122^{\circ} 00^{\prime} \mathrm{E}$ is to proceed to LAT $26^{\circ} 18^{\prime} \mathrm{N}$, LONG $128^{\circ} 20^{\prime} \mathrm{E}$. What are the course and distance by mid-latitude sailing?	$041.2^{\circ} \mathrm{T}, 501.0$ miles	$041.9^{\circ} \mathrm{T}, 503.6$ miles	043.5 ${ }^{\circ} \mathrm{T}, 507.3$ miles	044.7${ }^{\circ} \mathrm{T}, 509.7$ miles	
9	A vessel at LAT $21^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $157^{\circ} 52.2^{\prime} \mathrm{W}$, heads for a destination at LAT $8^{\circ} 53.0^{\prime} \mathrm{N}$, LONG $79^{\circ} 31.0^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	081 ${ }^{\circ} \mathrm{T}, 4617.5$ miles	081 ${ }^{\circ} \mathrm{T}, 4915.8$ miles	099 ${ }^{\circ} \mathrm{T}, 4617.5$ miles	099${ }^{\circ} \mathrm{T}, 4915.8$ miles	
10	A vessel at LAT $21^{\circ} 32^{\prime} \mathrm{N}$, LONG $160^{\circ} 30^{\prime} \mathrm{W}$, heads for a destination at LAT $30^{\circ} 00^{\prime} \mathrm{N}$, LONG $150^{\circ} 00^{\prime} \mathrm{E}$. Determine the true course and distance by Mercator sailing.	$273^{\circ} \mathrm{T}, 2645$ miles	$273^{\circ} \mathrm{T}, 2692$ miles	281 ${ }^{\circ} \mathrm{T}$, 2733 miles	$284^{\circ} \mathrm{T}, 2762$ miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
11	A vessel at LAT $28^{\circ} 00^{\prime} \mathrm{N}$, LONG $116^{\circ} 00^{\prime} \mathrm{W}$ is to proceed to LAT $34^{\circ} 00^{\prime} \mathrm{N}$, LONG $123^{\circ} 40^{\prime} \mathrm{W}$. What is the course and distance by mid-latitude sailing?	$323^{\circ} \mathrm{T}, 428$ miles	$324^{\circ} \mathrm{T}, 453$ miles	$312^{\circ} \mathrm{T}, 533$ miles	$302^{\circ} \mathrm{T}, 539$ miles	
12	A vessel at LAT $28^{\circ} 20^{\prime} \mathrm{N}$, LONG $16^{\circ} 00^{\prime} \mathrm{W}$ is to proceed to LAT $21^{\circ} 00^{\prime} \mathrm{N}$, LONG $18^{\circ} 00^{\prime} \mathrm{W}$. What is the course and distance by mid-latitude sailing?	$194.0^{\circ} \mathrm{T}, 453.0$ miles	$195.2^{\circ} \mathrm{T}, 451.0$ miles	$196.8^{\circ} \mathrm{T}, 450.0$ miles	$197.3^{\circ} \mathrm{T}$, 448.0 miles	
13	A vessel at LAT $29^{\circ} 38.0^{\prime} \mathrm{N}$, LONG $93^{\circ} 49.0^{\prime} \mathrm{W}$, heads for a destination at LAT $24^{\circ} 38.0^{\prime} \mathrm{N}$, LONG $82^{\circ} 55.2^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	$115^{\circ} \mathrm{T}, 637$ miles	$117^{\circ} \mathrm{T}, 658$ miles	$122^{\circ} \mathrm{T}, 648$ miles	$126^{\circ} \mathrm{T}, 665$ miles	
14	A vessel at LAT $32^{\circ} 05.0^{\prime} \mathrm{N}$, LONG $81^{\circ} 06.0^{\prime} \mathrm{W}$, heads for a destination at LAT $35^{\circ} 57.0^{\prime} \mathrm{N}$, LONG $5^{\circ} 45.0^{\prime} \mathrm{W}$. Determine the distance by Mercator sailing.	3128.2 miles	3770.6 miles	4126.1 miles	4508.0 miles	
15	A vessel at LAT $32^{\circ} 14.7^{\prime} \mathrm{N}$, LONG $66^{\circ} 28.9^{\prime} \mathrm{W}$, heads for a destination at LAT $36^{\circ} 58.7^{\prime} \mathrm{N}$, LONG $75^{\circ} 42.2^{\prime} \mathrm{W}$. Determine the distance by Mercator sailing.	241.2° miles	270.2° miles	300.2° miles	538.2° miles	
16	A vessel at LAT $32^{\circ} 14.7^{\prime} \mathrm{N}$, LONG $66^{\circ} 28.9^{\prime} \mathrm{W}$, heads for a destination at LAT $36^{\circ} 58.7^{\prime} \mathrm{N}$, LONG $75^{\circ} 42.2^{\prime} \mathrm{W}$. Determine the true course by Mercator sailing.	$058.2^{\circ} \mathrm{T}$	$235.2^{\circ} \mathrm{T}$	$301 .{ }^{\circ} \mathrm{T}$	$348.3^{\circ} \mathrm{T}$	
17	A vessel at LAT $33^{\circ} 45^{\prime} \mathrm{N}$, LONG $118^{\circ} 30^{\prime} \mathrm{W}$, heads for a destination at LAT $21^{\circ} 15^{\prime} \mathrm{N}$, LONG $157^{\circ} 36^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	$109.8^{\circ} \mathrm{T}, 2196$ miles	$236.3^{\circ} \mathrm{T}, 2259$ miles	250.2° T, 2216 miles	$289.2^{\circ} \mathrm{T}, 2413$ miles	
18	A vessel at LAT $37^{\circ} 24.0^{\prime} \mathrm{N}$, LONG $178^{\circ} 15.0^{\prime} \mathrm{W}$, heads for a destination at LAT $34^{\circ} 18.0^{\prime} \mathrm{N}$, LONG $178^{\circ} 25.0^{\circ} \mathrm{E}$. Determine the true course and distance by Mercator sailing.	041 ${ }^{\circ} \mathrm{T}$, 273.9 miles	047 ${ }^{\circ} \mathrm{T}, 273.9$ miles	$221^{\circ} \mathrm{T}$, 247.2 miles	$227^{\circ} \mathrm{T}, 247.2$ miles	
19	A vessel at LAT $38^{\circ} 03.0^{\prime} \mathrm{S}$, LONG $49^{\circ} 38.0^{\prime} \mathrm{W}$, heads for a destination at LAT $41^{\circ} 26.0^{\prime} \mathrm{S}$, LONG $38^{\circ} 32.0^{\prime} \mathrm{W}$. Determine the true course by Mercator sailing.	$111.5^{\circ} \mathrm{T}$	$113.5^{\circ} \mathrm{T}$	$158.5^{\circ} \mathrm{T}$	$160.5^{\circ} \mathrm{T}$	
20	A vessel at LAT $38^{\circ} 36^{\prime} \mathrm{N}$, LONG $11^{\circ} 36^{\prime} \mathrm{W}$, heads for a destination at LAT $24^{\circ} 16^{\prime} \mathrm{N}$, LONG $71^{\circ} 52^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	$236.4^{\circ} \mathrm{T}, 2,916.9$ miles	$254.4^{\circ} \mathrm{T}, 2,916.9$ miles	254.4${ }^{\circ}$ T, 3,203.6 miles	285.6${ }^{\circ} \mathrm{T}, 3,203.6$ miles	
21	A vessel at LAT $40^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $74^{\circ} 01.0^{\prime} \mathrm{W}$, heads for a destination at LAT $14^{\circ} 41.0^{\prime} \mathrm{N}$, LONG $17^{\circ} 26.0^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	$123^{\circ} \mathrm{T}, 3066.5$ miles	$123^{\circ} \mathrm{T}, 3065.6$ miles	$118^{\circ} \mathrm{T}, 3066.5$ miles	$118^{\circ} \mathrm{T}, 3365.0$ miles	
Navig	on Problems	2				NP082812

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
22	A vessel at LAT $45^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $11^{\circ} 36.0^{\prime} \mathrm{W}$, heads for a destination at LAT $24^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $73^{\circ} 52.0^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	247${ }^{\circ} \mathrm{T}, 3299.3$ miles	$247{ }^{\circ} \mathrm{T}, 3951.6$ miles	$251^{\circ} \mathrm{T}, 3298.5$ miles	$251^{\circ} \mathrm{T}, 3951.6$ miles	
23	A vessel at LAT $49^{\circ} 45^{\prime} \mathrm{N}$, LONG $6^{\circ} 35^{\prime} \mathrm{W}$, heads for a destination at LAT $25^{\circ} 50^{\prime} \mathrm{N}$, LONG $77^{\circ} 00^{\prime} \mathrm{W}$. Determine the true course and distance by Mercator sailing.	246.5° T, 3597 miles	$253.0^{\circ} \mathrm{T}, 3648$ miles	$268.6^{\circ} \mathrm{T}, 3483$ miles	066.4${ }^{\circ}$, 3602 miles	
24	A vessel steams 1082 miles on course $047^{\circ} \mathrm{T}$ from LAT $37^{\circ} 18.0^{\prime} \mathrm{N}$, LONG $24^{\circ} 40.0^{\prime} \mathrm{W}$. What is the latitude and longitude of the point of arrival by Mercator sailing?	$\begin{aligned} & \text { LAT } 49^{\circ} 30.0^{\prime} \mathrm{N}, \text { LONG } \\ & 06^{\circ} 22.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 49^{\circ} 33.0^{\prime} \mathrm{N}, \text { LONG } \\ & 06^{\circ} 25.0^{\prime} \mathrm{W} \end{aligned}$	LAT $49^{\circ} 36.0^{\prime} \mathrm{N}$, LONG 06²8.0'W	$\begin{aligned} & \text { LAT } 49^{\circ} 39.0^{\prime} \mathrm{N}, \text { LONG } \\ & 06^{\circ} 31.0^{\prime} \mathrm{W} \end{aligned}$	
25	A vessel steams 1106 miles on course $249^{\circ} \mathrm{T}$ from LAT $13^{\circ} 30.0^{\prime} \mathrm{N}$, LONG $144^{\circ} 30.3^{\prime} \mathrm{E}$. What is the latitude and longitude of the point of arrival by Mercator sailing?	$\begin{aligned} & \text { LAT } 07^{\circ} 01.0^{\prime} \mathrm{N}, \text { LONG } \\ & 127^{\circ} 02.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 06^{\circ} 54.0^{\prime} \mathrm{N}, \text { LONG } \\ & 127^{\circ} 08.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 06^{\circ} 50.0^{\prime} \mathrm{N}, \text { LONG } \\ & 127^{\circ} 13.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 06^{\circ} 46.0^{\prime} \mathrm{N}, \text { LONG } \\ & 127^{\circ} 17.0^{\prime} \mathrm{E} \end{aligned}$	
26	A vessel steams 1650 miles on course $077^{\circ} \mathrm{T}$ from LAT $12^{\circ} 47{ }^{\prime} \mathrm{N}$, LONG $45^{\circ} 10^{\prime} \mathrm{E}$. What is the latitude and longitude of the point of arrival by Mercator sailing?	$\begin{aligned} & \text { LAT } 18^{\circ} 54^{\prime} \mathrm{N}, \text { LONG } \\ & 72^{\circ} 58^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 18^{\circ} 58^{\prime} \mathrm{N}, \text { LONG } \\ & 72^{\circ} 52^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 02^{\prime} \mathrm{N}, \text { LONG } \\ & 72^{\circ} 44^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 06^{\prime} \mathrm{N}, \text { LONG } \\ & 72^{\circ} 36^{\prime} \mathrm{E} \end{aligned}$	
27	A vessel steams 3312 miles on course $282^{\circ} \mathrm{T}$ from LAT $34^{\circ} 24^{\prime}$ S, LONG $18^{\circ} 18^{\prime} \mathrm{E}$. What is the latitude and longitude of the point of arrival by Mercator sailing?	$\begin{aligned} & \text { LAT } 22^{\circ} 39^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 17^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 42^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 14^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 47{ }^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 10^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 55^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 05^{\prime} \mathrm{W} \end{aligned}$	
28	A vessel steams 576 miles on course $260^{\circ} \mathrm{T}$ from LAT $40^{\circ} 36^{\prime} \mathrm{N}$, LONG $50^{\circ} 24^{\prime} \mathrm{W}$. What are the latitude and longitude of the point of arrival by mid-latitude sailing?	$\begin{aligned} & \text { LAT } 39^{\circ} 12^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 28^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 39^{\circ} 06^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 34^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \hline \text { LAT } 39^{\circ} 02^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 37^{\prime} \mathrm{W} \end{aligned}$	LAT $38^{\circ} 56^{\prime} \mathrm{N}$, LONG $62^{\circ} 42^{\prime} \mathrm{W}$	
29	A vessel steams 580 miles on course $083^{\circ} \mathrm{T}$ from LAT $13^{\circ} 12^{\prime} \mathrm{N}$, LONG $71^{\circ} 12^{\prime} \mathrm{W}$. What are the latitude and longitude of the point of arrival by mid-latitude sailing?	$\begin{aligned} & \hline \text { LAT } 14^{\circ} 17^{\prime} \mathrm{N}, \text { LONG } \\ & 61^{\circ} 23^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 14^{\circ} 20^{\prime} \mathrm{N}, \text { LONG } \\ & 61^{\circ} 21^{\prime} \mathrm{W} \end{aligned}$	LAT $14^{\circ} 23^{\prime} \mathrm{N}$, LONG 61¹9'W	LAT $14^{\circ} 25^{\prime} \mathrm{N}$, LONG $61^{\circ} 17^{\prime} \mathrm{W}$	
30	A vessel steams 640 miles on course $047^{\circ} \mathrm{T}$ from LAT $34^{\circ} 45^{\prime} \mathrm{N}$, LONG $140^{\circ} 00^{\prime} \mathrm{E}$. What are the latitude and longitude of the point of arrival by mid-latitude sailing?	$\begin{aligned} & \text { LAT } 41^{\circ} 57^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 02^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 42^{\circ} 01^{\prime} \mathrm{N}, \text { LONG } \\ & 149^{\circ} 57^{\prime} \mathrm{E} \end{aligned}$	LAT $42^{\circ} 06^{\prime} \mathrm{N}$, LONG $149^{\circ} 53^{\prime} \mathrm{E}$	$\begin{aligned} & \text { LAT } 42^{\circ} 09^{\prime} \mathrm{N}, \text { LONG } \\ & 149^{\circ} 50^{\prime} \mathrm{E} \end{aligned}$	
31	A vessel steams 666 miles on course $135^{\circ} \mathrm{T}$ from LAT $40^{\circ} 24.0^{\prime} \mathrm{N}$, LONG $74^{\circ} 30.0^{\prime} \mathrm{W}$. What is the latitude and longitude of the point of arrival by Mercator sailing?	$\begin{aligned} & \text { LAT } 32^{\circ} 30.0^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 41.0^{\prime} \mathrm{W} \end{aligned}$	LAT $32^{\circ} 33.0^{\prime} \mathrm{N}$, LONG $64^{\circ} 46.0^{\prime} \mathrm{W}$	LAT $32^{\circ} 36.0^{\prime} \mathrm{N}$, LONG 64²9.0'W	$\begin{aligned} & \text { LAT } 32^{\circ} 39.0^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 53.0^{\prime} \mathrm{W} \end{aligned}$	
32	A vessel steams 666 miles on course $295^{\circ} \mathrm{T}$ from LAT $24^{\circ} 24^{\prime} \mathrm{N}$, LONG $83^{\circ} 00^{\prime} \mathrm{W}$. What are the latitude and longitude of the point of arrival by mid-latitude sailing?	$\begin{aligned} & \text { LAT } 29^{\circ} 01^{\prime} \mathrm{N}, \text { LONG } \\ & 94^{\circ} 18^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 29^{\circ} 06^{\prime} \mathrm{N}, \text { LONG } \\ & 94^{\circ} 16^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 29^{\circ} 10^{\prime} \mathrm{N}, \text { LONG } \\ & 94^{\circ} 10^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 29^{\circ} 13^{\prime} \mathrm{N}, \text { LONG } \\ & 94^{\circ} 06^{\prime} \mathrm{W} \end{aligned}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
33	A vessel steams 720 miles on course $058^{\circ} \mathrm{T}$ from LAT $30^{\circ} 06.0^{\prime}$ S, LONG $31^{\circ} 42.0^{\prime} \mathrm{E}$. What are the latitude and longitude of the point of arrival by midlatitude sailing?	$\begin{aligned} & \text { LAT } 23^{\circ} 48^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 11^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 23^{\circ} 44^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 07^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 23^{\circ} 38^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 03^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 23^{\circ} 34^{\prime} \mathrm{S}, \text { LONG } \\ & 43^{\circ} 00^{\prime} \mathrm{E} \end{aligned}$	
34	At 1542 ZT on 23 October, in DR position LAT 37° $28.5^{\prime} \mathrm{N}$, LONG $156^{\circ} 17.3^{\prime} \mathrm{E}$, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears $282.5^{\circ} \mathrm{psc}$. The variation is 0.0°. What is the deviation?	$2.2^{\circ} \mathrm{E}$	$2.2^{\circ} \mathrm{W}$	$1.2^{\circ} \mathrm{E}$	$1.2^{\circ} \mathrm{W}$	
35	At 0100 zone time on 23 September your DR position is LAT $24^{\circ} 25.0^{\prime} \mathrm{N}$, LONG $83^{\circ} 00.0^{\prime} \mathrm{W}$. You are steering course $315^{\circ} \mathrm{T}$. The speed over the ground is 10.0 knots. You observed 3 morning sun lines. Determine the latitude and longitude of your 1100 running fix?	$\begin{aligned} & \text { LAT } 25^{\circ} 35.3^{\prime} \mathrm{N}, \text { LONG } \\ & 84^{\circ} 17.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 25^{\circ} 42.6^{\prime} \mathrm{N}, \text { LONG } \\ & 84^{\circ} 18.7^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 25^{\circ} 30.4^{\prime} \mathrm{N}, \text { LONG } \\ & 84^{\circ} 28.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 25^{\circ} 28.3^{\prime} \mathrm{N}, \text { LONG } \\ & 84^{\circ} 34.3^{\prime} \mathrm{W} \end{aligned}$	NP-0002
36	At 0327 ZT, on 29 May, your DR position is LAT $25^{\circ} 00^{\prime} \mathrm{N}$, LONG $64^{\circ} 15^{\prime} \mathrm{W}$. You are steering $270^{\circ} \mathrm{T}$ at a speed of 13.6 knots. What is the zone time of sunrise?	0521	0529	0536	0548	
37	At 0400 zone time, on 24 June , your DR position is LAT $23^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $085^{\circ} 33^{\prime} \mathrm{W}$. You are steering $295^{\circ} \mathrm{T}$ at a speed of 10.0 knots. What is the zone time of sunrise?	0452	0458	0504	0510	
38	At 0450 zone time, on 25 June your DR position is LAT $21^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $160^{\circ} 24.5^{\prime} \mathrm{W}$. You are steering course $100^{\circ} \mathrm{T}$ at a speed of 10 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0514 running fix.	$\begin{aligned} & \text { LAT } 21^{\circ} 27.0^{\prime} \mathrm{N}, \text { LONG } \\ & 160^{\circ} 17.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 21^{\circ} 25.0^{\prime} \mathrm{N}, \text { LONG } \\ & 160^{\circ} 18.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 21^{\circ} 22.0^{\prime} \mathrm{N}, \text { LONG } \\ & 160^{\circ} 17.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 21^{\circ} 20.0^{\prime} \mathrm{N}, \text { LONG } \\ & 160^{\circ} 15.5^{\prime} \mathrm{W} \end{aligned}$	NP-0020
39	At 0500 zone time, on 21 August , your DR position is LAT $47^{\circ} 00^{\prime} \mathrm{N}$, LONG $125^{\circ} 15^{\prime} \mathrm{W}$. You are steering $000^{\circ} \mathrm{T}$ at a speed of 9.8 knots. What is the zone time of sunrise?	0525	0529	0531	0535	
40	At 0520 zone time, on 17 March while taking stars for a morning fix, you observe an unidentified star bearing $050^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $45^{\circ} 00.0^{\prime}$. Your DR position at the time of the sight is LAT $27^{\circ} 23.0^{\prime} \mathrm{N}$, LONG $39^{\circ} 42.0^{\circ} \mathrm{W}$. The chronometer time of the sight is $08 \mathrm{~h} 22 \mathrm{~m} \mathrm{15s}$, and the chronometer error is 01 m 45 s fast. Your vessel is steaming on a course of $300^{\circ} \mathrm{T}$ at a speed of 18 knots. What star did you observe?	Altair	Alkaid	Arcturus	Deneb	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
41	At 0530 zone time, on 20 December, you depart Cape Town (ZD -1). You are bound for New York (ZD +5), and you estimate your speed of advance at 25 knots. The distance is 6,762 miles. What is your estimated zone time of arrival at New York?	1200, 31 December	1100, 31 December	0700, 31 December	0600, 31 December	
42	At 0600 zone time, on 16 March your DR position is LAT $20^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $81^{\circ} 30.0^{\prime} \mathrm{W}$. You are steering course $300^{\circ} \mathrm{T}$. The speed over the ground is 10 knots. You observed 3 morning sun lines. Determine the latitude and longitude of your 1130 running fix?	$\begin{aligned} & \text { LAT } 20^{\circ} 28.5^{\prime} \mathrm{N}, \text { LONG } \\ & 82^{\circ} 12.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 32.0^{\prime} \mathrm{N}, \text { LONG } \\ & 82^{\circ} 16.4^{\prime} \mathrm{W} \end{aligned}$	LAT 20³9.0'N, LONG $82^{\circ} 22.9^{\prime} \mathrm{W}$	$\begin{aligned} & \text { LAT } 20^{\circ} 42.5^{\prime} \mathrm{N}, \text { LONG } \\ & 82^{\circ} 26.2^{\prime} \mathrm{W} \end{aligned}$	NP-0004
43	At 0600 zone time, on 22 October, you depart Manila, LAT $14^{\circ} 35.0^{\prime} \mathrm{N}$, LONG $120^{\circ} 58.0^{\prime} \mathrm{E}$ (ZD -8). You are bound for Los Angeles, LAT $33^{\circ} 46.0^{\prime} \mathrm{N}$, LONG $118^{\circ} 11.0^{\prime} \mathrm{W}$, and you estimate your speed of advance at 20.2 knots. The distance is $6,385.9$ miles. What is your estimated zone time of arrival at Los Angeles?	1808, 3 November	0208, 4 November	1008, 4 November	0208, 5 November	
44	At 0600 ZT on 24 July your DR position is LAT $22^{\circ} 37^{\prime} \mathrm{N}$, LONG $32^{\circ} 45^{\prime} \mathrm{W}$. You are steering $185^{\circ} \mathrm{T}$ at a speed of 20.0 knots. Determine the computed altitude (Hc) and azimuth (Zn) for an observation of the Sun's lower limb taken at 1030 ZT . At this time the chronometer reads 00 h 30 m 16 s and is 0 m 31 s slow.	Hc 64027.5' $\mathrm{Zn} 092.3^{\circ}$	Hc 64³0.8' $\mathrm{Zn} \mathrm{090.1}{ }^{\circ}$	Hc 64041.7' $\mathrm{Zn} \mathrm{087.8}{ }^{\circ}$	Hc 64044.2' $\mathrm{Zn} \mathrm{094.7}{ }^{\circ}$	
45	At 0800 ZT on 29 June your DR position is LAT $26^{\circ} 00.0^{\prime} \mathrm{N}$, LONG $75^{\circ} 29.5^{\prime} \mathrm{W}$. Given a chronometer time of 01 h 00 m 00 s , determine the computed altitude (Hc) of the Sun for the assumed position nearest to the above given latitude and longitude.	Hc 34³8.6'	Hc 3448.6'	Hc 3458.6'	Hc 35 ${ }^{\circ} 18.6{ }^{\prime}$	
46	At 0820 zone time, on 10 April , you depart Yokohama, LAT $35^{\circ} 27.0^{\prime} \mathrm{N}$, LONG 139³9.0'E (ZD 9). You are bound for Honolulu, LAT $21^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $157^{\circ} 52.2^{\prime} \mathrm{W}(Z D+10)$ and you estimate your speed of advance at 17.5 knots. The distance is 3,397 miles. What is your estimated zone time of arrival at Honolulu?	0127, 17 April	1527, 17 April	0127, 18 April	0927, 18 April	
47	At 0900 zone time, on 23 September your DR position is LAT $28^{\circ} 48.0^{\prime} \mathrm{N}$, LONG $153^{\circ} 11.5^{\prime} \mathrm{W}$. You are steering course $257^{\circ} \mathrm{T}$ at a speed of 18.0 knots. You observed 3 morning sun lines. Determine the latitude and longitude of your 1020 running fix?	$28^{\circ} 43.3^{\prime} \mathrm{N}, 153^{\circ} 32.1^{\prime} \mathrm{W}$	28${ }^{\circ} 46.4^{\prime} \mathrm{N}, 153^{\circ} 34.6^{\prime} \mathrm{W}$	$28^{\circ} 49.1{ }^{\prime} \mathrm{N}, 153^{\circ} 37.0^{\prime} \mathrm{W}$	$28^{\circ} 52.8^{\prime} \mathrm{N}, 153^{\circ} 30.6^{\prime} \mathrm{W}$	NP-0001

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
48	At 0915 zone time, on 11 May, you depart Yokohama, LAT $35^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $139^{\circ} 39.0^{\prime}$ E (ZD 9). You are bound for Seattle, LAT $47^{\circ} 36.0^{\prime}$ N, LONG $122^{\circ} 22.0^{\prime} \mathrm{W}$, and you estimate your speed of advance at 19.5 knots. The distance is 4,276 miles. What is your estimated zone time of arrival at Seattle?	1932, 19 May	0332, 20 May	1032, 20 May	1232, 20 May	
49	At 0915 zone time, on 6 March , you depart Sydney, LAT $33^{\circ} 51.5^{\prime} \mathrm{S}$, LONG $151^{\circ} 13.0^{\prime} \mathrm{E}$ (ZD -10). You are bound for Kodiak, LAT $57^{\circ} 47.0^{\prime} \mathrm{N}$, LONG $152^{\circ} 25.0^{\prime} \mathrm{W}$, and you estimate your speed of advance at 21 knots. The distance is 6,222 miles. What is your estimated zone time of arrival at Kodiak?	0732, 17 March	2132, 17 March	0732, 18 March	2132, 18 March	
50	At 0915 zone time, on 7 April , you depart San Francisco, LAT $37^{\circ} 48.5^{\prime} \mathrm{N}$, LONG $122^{\circ} 24.0^{\prime} \mathrm{W}$ (ZD +8). You are bound for Kobe, LAT $34^{\circ} 40.0^{\prime} \mathrm{N}$, LONG $135^{\circ} 12.0^{\prime} \mathrm{E}$, and you estimate your speed of advance at 17 knots. The distance is 4,819 miles. What is your estimated zone time of arrival at Kobe?	0343, 18 April	1243, 19 April	2143, 19 April	0443, 20 April	
51	At 0915 zone time, on 7 November , you depart Seattle, LAT $47^{\circ} 36.0^{\prime} N$, LONG $122^{\circ} 22.0^{\prime} W$ (ZD +8). You are bound for Kobe, LAT $34^{\circ} 40.0^{\prime} \mathrm{N}$, LONG $135^{\circ} 12.0^{\prime} \mathrm{E}$, and you estimate your speed of advance at 18.5 knots. The distance is 4,527 miles. What is your estimated zone time of arrival at Kobe?	1257, 17 November	0657, 18 November	1857, 18 November	0657, 19 November	
52	At 0915 ZT, on 26 July , you depart Yokohama, LAT $35^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $139^{\circ} 39.0^{\prime} \mathrm{E}$ (ZD -9). You are bound for Seattle, LAT $47^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $122^{\circ} 22.0^{\prime} \mathrm{W}$, and you estimate your speed of advance at 14 knots. The distance is 4,245 miles. What is your estimated ZT of arrival at Seattle?	0728, 7 August	1528, 7 August	0028, 8 August	1528, 8 August	
53	At 1000 ZTon 21 October your DR position is LAT $29^{\circ} 00^{\prime} \mathrm{N}$, LONG $134^{\circ} 40^{\prime} \mathrm{E}$. Determine the computed altitude (Hc) of the Sun for the assumed position (AP) nearest to the above given latitude and longitude, given a chronometer time of 01 h 00 m 00 s .	Hc 42 ${ }^{\circ} 30.6{ }^{\prime}$	Hc 42 ${ }^{\circ} 32.1^{\prime}$	Hc 42 ${ }^{\circ} 34.2^{\prime}$	Hc 42 ${ }^{\circ} 35.7^{\prime}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
54	At 1200 zone time, on 10 October, you depart San Francisco, LAT $37^{\circ} 48.5^{\prime} \mathrm{N}$, LONG $122^{\circ} 24.0^{\prime} \mathrm{W}$ (ZD +8). You are bound for Yokohama, LAT $35^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $139^{\circ} 39.0^{\prime} \mathrm{E}$, and you estimate your speed of advance at 22 knots. The distance is 4,536 miles. What is your estimated zone time of arrival at Yokohama?	0111, 19 October	0211, 19 October	1011, 19 October	1911, 19 October	
55	At 1210 zone time, on 1 December, you depart Seattle, LAT $47^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $122^{\circ} 22.0^{\prime} \mathrm{W}$ (ZD +8). You are bound for Guam, LAT $13^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $144^{\circ} 37.0^{\prime} \mathrm{E}$, and you estimate your speed of advance at 20 knots. The distance is 4,948 miles. What is your estimated zone time of arrival at Guam?	1734, 11 December	1934, 11 December	0334, 12 December	1334, 12 December	
56	At 1300 ZT on 9 May your DR position is LAT $24^{\circ} 00^{\prime} \mathrm{N}$, LONG $83^{\circ} 26^{\prime} \mathrm{W}$. Determine the computed altitude (Hc) of the Sun for the assumed position (AP) nearest to the above given latitude and longitude, given a chronometer time of 07 h 00 m 00 s .	Hc 68²2.8'	Hc 68²4.1'	Hc 68²5.2'	Hc 68²6.6'	
57	At 1318 ZTon 10 September, in DR position LAT 24° 05.8' N, LONG 058º 08.3' E, you observe an amplitude of the Moon. The upper limb of the Moon is on the visible horizon and bears 254° psc. Variation is $2^{\circ} \mathrm{W}$. What is the deviation?	$8.0^{\circ} \mathrm{W}$	$8.0^{\circ} \mathrm{E}$	$4.0{ }^{\circ} \mathrm{W}$	$4.0^{\circ} \mathrm{E}$	
58	At 1337 Z on July 17, in DR position LAT $30^{\circ} 56.8^{\prime} \mathrm{S}$, LONG $039^{\circ} 36.5^{\prime} \mathrm{W}$, you observe an amplitude of the Moon. The upper limb of the moon is on the visible horizon, bearing 263.0° psc. The variation is $20^{\circ} \mathrm{W}$. What is the deviation?	$2.6^{\circ} \mathrm{E}$	$2.6{ }^{\circ} \mathrm{W}$	$3.6^{\circ} \mathrm{E}$	$3.6{ }^{\circ} \mathrm{W}$	
59	At 1400 zone time, on 11 April , your DR position is LAT $25^{\circ} 40^{\prime} \mathrm{N}$, LONG $91^{\circ} 00^{\prime} \mathrm{W}$. You are steering $180^{\circ} \mathrm{T}$ at a speed of 10.0 knots. What is your zone time of sunset?	1812	1816	1820	1825	
60	At 1423 you are on course $072 \mathrm{~T}^{\circ}$ at 12.2 knots, when you sight a rock awash bearing $070^{\circ} \mathrm{T}$ at a range of 3.6 miles. If you change course at 1427, what course would you steer to leave the rock 1.0 mile abeam to port?	049 ${ }^{\circ}$	$054{ }^{\circ}$	086 ${ }^{\circ}$	091 ${ }^{\circ}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
61	At 1430 ZT on 16 April, in DR position LAT $34^{\circ} 03.8^{\prime}$ N , LONG $061^{\circ} 02.5^{\mathrm{W}} \mathrm{W}$, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears $095.2^{\circ} \mathrm{psc}$. The variation is $12^{\circ} \mathrm{W}$. What is the deviation?	$1.7^{\circ} \mathrm{W}$	$1.7{ }^{\circ} \mathrm{E}$	$1.9^{\circ} \mathrm{W}$	$1.9{ }^{\circ} \mathrm{E}$	
62	At 1435 ZTon 27 April, in DR position LAT $51^{\circ} 56.8^{\prime}$ N, LONG $150^{\circ} 37.7^{\prime} \mathrm{E}$, the Moon's upper limb is observed on the visible horizon, bearing 242.2° psc. Variation is $2^{\circ} \mathrm{W}$. What is the deviation?	$2.2{ }^{\circ} \mathrm{W}$	$2.2^{\circ} \mathrm{E}$	$6.2^{\circ} \mathrm{E}$	$6.2^{\circ} \mathrm{W}$	
63	At 1444 ZTon 28 July, in DR position LAT $40^{\circ} 56.8^{\prime} \mathrm{N}$, LONG 167° 12.4' E, you observe an amplitude of the Moon. The upper limb of the Moon is on the visible horizon and bears $299.3^{\circ} \mathrm{psc}$. The variation is $1^{\circ} \mathrm{E}$. What is the deviation?	$3.1^{\circ} \mathrm{W}$	$3.1^{\circ} \mathrm{E}$	$2.1^{\circ} \mathrm{W}$	$2.1^{\circ} \mathrm{E}$	
64	At 1502 ZT on 4 August, in DR position LAT $11^{\circ} 21.6^{\prime}$ S, LONG $088^{\circ} 14.3^{\prime} \mathrm{E}$, you observe an amplitude of the Moon. The upper limb of the Moon is on the visible horizon and bears $289^{\circ} \mathrm{psc}$. The variation is $15^{\circ} \mathrm{W}$. What is the deviation?	$1.1^{\circ} \mathrm{E}$	$1.1^{\circ} \mathrm{W}$	$1.9^{\circ} \mathrm{E}$	$1.9^{\circ} \mathrm{W}$	
65	At 1523 ZT on 14 June, in DR position LAT $31^{\circ} 58^{\prime} \mathrm{S}$, LONG $48^{\circ} 42^{\prime} \mathrm{W}$ you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears $118.0^{\circ} \mathrm{psc}$. The variation is $10^{\circ} \mathrm{W}$. What is the deviation?	$2.5^{\circ} \mathrm{W}$	$2.1^{\circ} \mathrm{W}$	$1.7^{\circ} \mathrm{W}$	$1.7{ }^{\circ} \mathrm{E}$	
66	At 1524 ZTon 14 June, in DR position LAT $30^{\circ} 51^{\prime} \mathrm{N}$, LONG $30^{\circ} 02^{\prime} \mathrm{W}$, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears $103.9^{\circ} \mathrm{pgc}$. The variation is $10^{\circ} \mathrm{W}$. What is the gyro error?	$1.8^{\circ} \mathrm{W}$	$2.4{ }^{\circ} \mathrm{E}$	$2.2^{\circ} \mathrm{E}$	$2.0^{\circ} \mathrm{E}$	
67	At 1538 ZT on 15 October, in DR LAT position LAT 18° 12.8' S, LONG $160^{\circ} 48.4^{\prime}$ E, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears 276.2° psc. Variation is $10^{\circ} \mathrm{E}$. What is the deviation?	$2.6^{\circ} \mathrm{E}$	$2.6^{\circ} \mathrm{W}$	$3.6^{\circ} \mathrm{E}$	$3.6{ }^{\circ} \mathrm{W}$	
68	At 1544 zone time, on 5 October, your DR position is LAT $25^{\circ} 00^{\prime} \mathrm{N}$, LONG $60^{\circ} 15^{\prime} \mathrm{W}$. You are steering $270^{\circ} \mathrm{T}$ at a speed of 6.8 knots. What is the zone time of sunset?	1728	1737	1741	1745	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
69	At 1547 ZTon 22 May, in DR position LAT 45° 12.8' N, LONG 028 ${ }^{\circ} 15.4^{\prime} \mathrm{W}$, the Moon's upper limb is observed on the visible horizon, bearing 120.0° psc. Variation is $2^{\circ} \mathrm{W}$. What is the deviation?	$1.4{ }^{\circ} \mathrm{W}$	$2.6^{\circ} \mathrm{E}$	$1.4{ }^{\circ} \mathrm{E}$	$2.6^{\circ} \mathrm{W}$	
70	At 1610 ZT on 14 August, in DR position LAT 33° 24.6' S, LONG 028¹5.4'W, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon and bears $111.0^{\circ} \mathrm{psc}$. The variation is $2^{\circ} \mathrm{E}$. What is the deviation?	$1.1^{\circ} \mathrm{E}$	$1.1{ }^{\circ} \mathrm{W}$	$2.1^{\circ} \mathrm{E}$	$2.1^{\circ} \mathrm{W}$	
71	At 1620 ZTon 10 September, in DR position LAT 34° 03.8' N, LONG $050^{\circ} 28.4^{\prime} \mathrm{W}$, you observe an amplitude of the Moon. The Moon's upper limb is observed on the visible horizon and bears 110.2° psc. The variation is $2^{\circ} \mathrm{E}$. What is the deviation?	$2.0^{\circ} \mathrm{E}$	$2.0^{\circ} \mathrm{W}$	$1.2{ }^{\circ} \mathrm{E}$	$1.2^{\circ} \mathrm{W}$	
72	At 1622 ZT on 15 June, in DR position LAT $10^{\circ} 15.2^{\prime}$ $\mathrm{N}, \mathrm{LONG} 135^{\circ} 10^{\prime} \mathrm{W}$, you observe an amplitude of the Moon. The center of the Moon is on the visible horizon, bearing $101.2^{\circ} \mathrm{psc}$. The variation is $5^{\circ} \mathrm{E}$. What is the deviation?	$1.5^{\circ} \mathrm{E}$	$1.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{E}$	$0.5^{\circ} \mathrm{W}$	
73	At 1730 zone time, on 3 March , your DR position is LAT $16^{\circ} 00^{\prime} \mathrm{S}$, LONG $80^{\circ} 00^{\prime} \mathrm{W}$. You are steering $000^{\circ} \mathrm{T}$ at a speed of 7.5 knots. What is the zone time of sunset?	1829	1834	1843	1852	
74	At 1800 zone time, on 7 December, your DR position is LAT $22^{\circ} 48^{\prime} \mathrm{S}$, LONG $91^{\circ} 26^{\prime} \mathrm{W}$. You are steering $320^{\circ} \mathrm{T}$ at a speed of 14.0 knots. What is the zone time of sunset?	1830	1836	1842	1852	
75	At 1820 zone time, on 21 March , you depart San Francisco, LAT $37^{\circ} 48.5^{\prime} \mathrm{N}$, LONG $122^{\circ} 24.0^{\prime} \mathrm{W}$ (ZD $+8)$. You are bound for Melbourne, LAT $37^{\circ} 49.2^{\prime} \mathrm{S}$, LONG $144^{\circ} 56.0^{\prime} \mathrm{E}$, and you estimate your speed of advance at 21 knots. The distance is 6,970 miles. What is your estimated zone time of arrival at Melbourne?	1214, 4 April	2214, 4 April	0814, 5 April	1314, 5 April	
76	At 1830 zone time, on 6 April your DR position is LAT $26^{\circ} 33.0^{\prime} \mathrm{N}$, LONG $64^{\circ} 31.0^{\prime} \mathrm{W}$. You are steering course $082^{\circ} \mathrm{T}$ at a speed of 16.0 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1900 running fix.	$\begin{aligned} & \hline \text { LAT } 26^{\circ} 20.1^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 19.4^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 23.7^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 29.3^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 28.4^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 32.1^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 32.5^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 27.1^{\prime} \mathrm{W} \end{aligned}$	NP-0019

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
77	At 1845 zone time on 17 March, while taking stars for an evening fix, you observe an unidentified star bearing $200^{\circ} \mathrm{T}$ at an observed altitude of $53^{\circ} 45.0^{\prime}$. Your DR position at the time of the sight is LAT $25^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $66^{\circ} 48.0^{\prime} \mathrm{W}$. The chronometer time of the sight is 10 h 47 m 49 s , and the chronometer error is 1 m 54 s fast. Your vessel is steaming on a course of $290^{\circ} \mathrm{T}$ at a speed of 18.0 knots. What star did you observe?	Altair	Mirfak	Pollux	Rigel	
78	At 1845 zone time, on 24 October, you depart Bimini Island, LAT $25^{\circ} 50.0^{\prime} \mathrm{N}$, LONG $77^{\circ} 00.0^{\prime} \mathrm{W}$ (ZD +5). You are bound for Bishop Rock, LAT $49^{\circ} 40.0^{\prime} \mathrm{N}$, LONG $6^{\circ} 34.0^{\prime} \mathrm{W}$, and you estimate your speed of advance at 13.6 knots. The distance is 3,491 miles. What is your estimated zone time of arrival at Bishop Rock?	0627, 3 November	1642, 3 November	0939, 4 November	1627, 4 November	
79	At 2043 ZT on 13 October you are in DR position LAT $43^{\circ} 57.3^{\prime}$ S, LONG $147^{\circ} 16.0^{\prime}$ E, when you observe an amplitude of Venus. The planet is about one Sun's diameter above the horizon and bears $236.2^{\circ} \mathrm{pgc}$. The variation is $15^{\circ} \mathrm{E}$. What is the gyro error?	0.0°	$0.9^{\circ} \mathrm{E}$	$1.8^{\circ} \mathrm{E}$	$0.4{ }^{\circ} \mathrm{W}$	
80	At 2048 ZT on 13 October you are in DR position LAT 44으․ 8^{\prime} S, LONG $146^{\circ} 58.3^{\prime} \mathrm{E}$ when you observe an amplitude of Venus. The planet is about one Sun's diameter above the visible horizon and bears $222.2^{\circ} \mathrm{psc}$. The variation is $15^{\circ} \mathrm{E}$. What is the deviation?	0.0°	$1.1{ }^{\circ} \mathrm{E}$	$1.0^{\circ} \mathrm{W}$	$1.5{ }^{\circ} \mathrm{W}$	
81	At 2221 your course is $222^{\circ} \mathrm{pgc}$ at a speed of 11.2 knots, when radar detects a buoy bearing 355° relative, at a range of 5.8 miles. The gyro error is $2^{\circ} \mathrm{E}$. If you change course at 2226 , what course should you steer to leave the buoy 1.0 mile abeam to port?	206ºpgc	$210^{\circ} \mathrm{pgc}$	$228^{\circ} \mathrm{pgc}$	$231^{\circ} \mathrm{pgc}$	
82	At 2231 ZTon 14 July you are in DR position LAT $34^{\circ} 06^{\prime}$ S, LONG $149^{\circ} 47^{\prime} \mathrm{W}$ when you observe an amplitude of Jupiter. The planet is about one Sun's diameter above the visible horizon and bears $257.1^{\circ} \mathrm{psc}$. The variation is $15^{\circ} \mathrm{E}$. What is the deviation?	$0.5^{\circ} \mathrm{E}$	$0.5^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
83	At 2232 ZT on 14 July you are in DR position LAT $33^{\circ} 52^{\prime} \mathrm{S}$, LONG $150^{\circ} 03^{\prime} \mathrm{W}$ when you observe an amplitude of Jupiter. The planet is about one Sun's diameter above the visible horizon and bears $268.5^{\circ} \mathrm{pgc}$. The variation is $15^{\circ} \mathrm{E}$. What is the gyro error?	$1.0^{\circ} \mathrm{E}$	$0.5^{\circ} \mathrm{E}$	0.0°	$0.5^{\circ} \mathrm{W}$	
84	At 2234 ZTon 14 July you are in DR position LAT $34^{\circ} 03^{\prime}$ N, LONG $150^{\circ} 16^{\prime}$ W when you observe an amplitude of Saturn. The planet is about one Sun's diameter above the visible horizon and bears $272.1^{\circ} \mathrm{pgc}$. The variation is $14^{\circ} \mathrm{E}$. What is the gyro error?	$0.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{E}$	$1.5{ }^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{E}$	
85	At 2237 ZT on 14 July you are in DR position LAT $33^{\circ} 57^{\prime}$ N, LONG $150^{\circ} 32^{\prime} \mathrm{W}$ when you observe an amplitude of Saturn. The planet is about one Sun's diameter above the visible horizon and bears $258.6^{\circ} \mathrm{psc}$. The variation is $14^{\circ} \mathrm{E}$. What is the deviation?	$2.0^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{W}$	0.0°	$1.0^{\circ} \mathrm{E}$	
86	At 2326 ZT on 22 June your vessel's position is LAT $28^{\circ} 30^{\prime} \mathrm{N}$, LONG $150^{\circ} 04^{\prime} \mathrm{W}$. An azimuth of the planet Jupiter is observed, and the standard compass bearing is 250.4°. The chronometer reads 09h 24 m 36 s and is 01 m 12 s slow. The variation of this area is $13.5^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$3.0^{\circ} \mathrm{W}$	$3.5^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{E}$	$2.3^{\circ} \mathrm{E}$	
87	At your current speed of 17 knots you only have enough fuel remaining to travel 316 miles. You must travel 622 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	12.1	13.3	14.5	15.7	
88	At your current speed of 18 knots you only have enough fuel remaining to travel 316 miles. You must travel 731 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	10.4	11.8	13.2	14.6	
89	At your current speed of 19 knots you only have enough fuel remaining to travel 265 miles. You must travel 731 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	13.8	12.6	11.4	10.2	
90	At your current speed of 20 knots you only have enough fuel remaining to travel 218 miles. You must travel 395 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	17.4	16.2	14.9	13.7	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
91	At your current speed of 20 knots you only have enough fuel remaining to travel 360 miles. You must travel 440 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	18.1	17.5	16.9	16.3	
92	At your current speed of 21 knots you only have enough fuel remaining to travel 404 miles. You must travel 731 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	18.9	17.8	16.7	15.6	
93	At your current speed of 21 knots you only have enough fuel remaining to travel 435 miles. You must travel 755 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	15.9	17.1	18.3	19.5	
94	At your current speed of 22 knots you only have enough fuel remaining to travel 422 miles. You must travel 844 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	19.8	18.4	17.0	15.6	
95	At your current speed of 22 knots you only have enough fuel remaining to travel 440 miles. You must travel 618 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	17.8	18.6	19.4	20.2	
96	At your current speed of 23 knots you only have enough fuel remaining to travel 386 miles. You must travel 785 miles to reach your destination. What should you reduce your speed (knots) to in order to reach your destination?	19.3	17.7	16.1	14.5	
97	Determine the distance from LAT $19^{\circ} 54.0^{\prime} \mathrm{N}$, LONG $166^{\circ} 36.0^{\prime} \mathrm{E}$ to LAT $19^{\circ} 54.0^{\prime} \mathrm{N}$, LONG $157^{\circ} 54.0^{\prime} \mathrm{W}$. by parallel sailing.	2204.6 miles	2006.9 miles	2002.8 miles	1990.6 miles	
98	Determine the distance from LAT $23^{\circ} 24^{\prime} \mathrm{S}$, LONG $13^{\circ} 54^{\prime}$ E to LAT $23^{\circ} 24^{\prime} \mathrm{S}$, LONG $42^{\circ} 48^{\prime} \mathrm{W}$. by parallel sailing.	3119.3 miles	3122.2 miles	3124.5 miles	3126.6 miles	
99	Determine the distance from LAT $34^{\circ} 18^{\prime} \mathrm{S}$, LONG $172^{\circ} 40^{\prime} \mathrm{E}$ to LAT $34^{\circ} 18^{\prime} \mathrm{S}$, LONG $152^{\circ} 38^{\prime} \mathrm{E}$, by parallel sailing.	993.0 miles	995.2 miles	996.4 miles	998.6 miles	
100	Determine the distance from LAT $59^{\circ} 12^{\prime} \mathrm{N}$, LONG $14^{\circ} 00^{\prime} \mathrm{W}$ to LAT $59^{\circ} 12^{\prime} \mathrm{N}$, LONG $03^{\circ} 20^{\prime} \mathrm{W}$ by parallel sailing.	324.2 miles	325.4 miles	327.7 miles	328.9 miles	
101	Determine the distance from LAT $63^{\circ} 54.0^{\prime} \mathrm{N}$, LONG $04^{\circ} 52.0^{\prime} \mathrm{E}$ to LAT $63^{\circ} 54.0^{\prime} \mathrm{N}$, LONG $18^{\circ} 24.0^{\prime} \mathrm{W}$ by parallel sailing.	608.6 miles	610.9 miles	612.3 miles	614.2 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
102	Determine the great circle distance and initial course from LAT $08^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $126^{\circ} 17.0^{\prime} \mathrm{E}$ to LAT $02^{\circ} 12.0^{\prime} \mathrm{S}$, LONG $81^{\circ} 53.0^{\prime} \mathrm{W}$.	9015 miles, $067{ }^{\circ} \mathrm{T}$	9076 miles, $067^{\circ} \mathrm{T}$	9105 miles, $079{ }^{\circ} \mathrm{T}$	9076 miles, $079{ }^{\circ} \mathrm{T}$	
103	Determine the great circle distance and initial course from LAT $08^{\circ} 53.0^{\prime} \mathrm{N}$, LONG $79^{\circ} 31.0^{\prime} \mathrm{W}$ to LAT $33^{\circ} 51.5^{\prime} \mathrm{S}$, LONG $151^{\circ} 13.0^{\prime} \mathrm{E}$.	7809 miles, $247.0^{\circ} \mathrm{T}$	7763 miles, $247.0^{\circ} \mathrm{T}$	7635 miles, $233.9^{\circ} \mathrm{T}$	7618 miles, $230.3^{\circ} \mathrm{T}$	
104	Determine the great circle distance and initial course from LAT $12^{\circ} 45.2^{\prime} \mathrm{N}$, LONG $124^{\circ} 20.1^{\prime} \mathrm{E}$ to LAT $33^{\circ} 48.8^{\prime} \mathrm{N}$, LONG $120^{\circ} 07.0^{\prime} \mathrm{W}$.	6185.9 miles, $050.3^{\circ} \mathrm{T}$	6231.3 miles, $309.7^{\circ} \mathrm{T}$	6248.0 miles, $048.3^{\circ} \mathrm{T}$	6382.0 miles, $311.7^{\circ} \mathrm{T}$	
105	Determine the great circle distance and initial course from LAT $24^{\circ} 52.0^{\prime} \mathrm{N}$, LONG $78^{\circ} 27.0^{\prime} \mathrm{W}$ to LAT $47^{\circ} 19.0^{\prime} \mathrm{N}$, LONG 06 $42.0^{\prime} \mathrm{W}$.	3593 miles, $048.1^{\circ} \mathrm{T}$	3457 miles, $053.3^{\circ} \mathrm{T}$	3389 miles, $042.4^{\circ} \mathrm{T}$	3367 miles, $045.0^{\circ} \mathrm{T}$	
106	Determine the great circle distance and initial course from LAT $25^{\circ} 47.0^{\prime} \mathrm{N}$, LONG $79^{\circ} 59.5^{\prime} \mathrm{W}$ to LAT $38^{\circ} 42.0^{\prime} \mathrm{N}$, LONG 09${ }^{\circ} 10.5^{\prime} \mathrm{W}$.	3341.0 miles, $063{ }^{\circ} \mathrm{T}$	3347.0 miles, $063{ }^{\circ} \mathrm{T}$	3427.8 miles, $061^{\circ} \mathrm{T}$	3588.6 miles, $059{ }^{\circ} \mathrm{T}$	
107	Determine the great circle distance and initial course from LAT $25^{\circ} 50.0^{\prime} \mathrm{N}$, LONG $77^{\circ} 00.0^{\prime} \mathrm{W}$ to LAT $35^{\circ} 56.0^{\prime} \mathrm{N}$, LONG 06 $15.0^{\prime} \mathrm{W}$.	3470 miles, $298{ }^{\circ} \mathrm{T}$	3518 miles, $028^{\circ} \mathrm{T}$	3616 miles, $062^{\circ} \mathrm{T}$	3718 miles, $118^{\circ} \mathrm{T}$	
108	Determine the great circle distance and initial course from LAT $26^{\circ} 00.0^{\prime} \mathrm{S}$, LONG $56^{\circ} 00.0^{\prime} \mathrm{W}$ to LAT $34^{\circ} 00.0^{\prime} \mathrm{S}$, LONG $18^{\circ} 15.0^{\prime} \mathrm{E}$.	3705 miles, $153^{\circ} \mathrm{T}$	3841 miles, $068^{\circ} \mathrm{T}$	3849 miles, $248{ }^{\circ} \mathrm{T}$	3805 miles, $117^{\circ} \mathrm{T}$	
109	Determine the great circle distance and initial course from LAT $27^{\circ} 51.0^{\prime} \mathrm{N}$, LONG $71^{\circ} 41.0^{\prime} \mathrm{W}$ to LAT $49^{\circ} 45.0^{\prime} \mathrm{N}$, LONG $06^{\circ} 14.0^{\prime} \mathrm{W}$.	3196 miles, $313.1^{\circ} \mathrm{T}$	3214 miles, $046.9^{\circ} \mathrm{T}$	3219 miles, $042.5^{\circ} \mathrm{T}$	3231 miles, $041.4^{\circ} \mathrm{T}$	
110	Determine the great circle distance and initial course from LAT $31^{\circ} 57.0^{\prime} \mathrm{S}$, LONG $115^{\circ} 52.0^{\prime} \mathrm{E}$ to LAT $24^{\circ} 47.0^{\prime} N$, LONG 66º $59.0^{\prime} \mathrm{E}$.	4516 miles, $134.5^{\circ} \mathrm{T}$	4407 miles, $314.5^{\circ} \mathrm{T}$	4402 miles, $319.5^{\circ} \mathrm{T}$	4378 miles, $336.8^{\circ} \mathrm{T}$	
111	Determine the great circle distance and initial course from LAT $33^{\circ} 53.3^{\prime} \mathrm{S}$, LONG $18^{\circ} 23.1^{\prime} \mathrm{E}$ to LAT $40^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $73^{\circ} 49.4^{\prime} \mathrm{W}$.	6648.0 miles, $298.7^{\circ} \mathrm{T}$	6743.5 miles, $302.7^{\circ} \mathrm{T}$	6750.8 miles, $235.5^{\circ} \mathrm{T}$	6763.0 miles, $304.5^{\circ} \mathrm{T}$	
112	Determine the great circle distance and initial course from LAT $34^{\circ} 51.0^{\prime} \mathrm{N}$, LONG $115^{\circ} 01.2^{\prime} \mathrm{E}$ to LAT $10^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $51^{\circ} 42.6^{\prime} \mathrm{E}$.	4436 miles, $245.3^{\circ} \mathrm{T}$	4598 miles, $245.6^{\circ} \mathrm{T}$	4493 miles, $245.6^{\circ} \mathrm{T}$	4582 miles, $245.6^{\circ} \mathrm{T}$	
113	Determine the great circle distance and initial course from LAT $35^{\circ} 08.0^{\prime} \mathrm{S}$, LONG $19^{\circ} 26.0^{\prime} \mathrm{E}$ to LAT $33^{\circ} 16.0^{\prime} S$, LONG $115^{\circ} 36.0^{\prime} \mathrm{E}$.	4457 miles, $126^{\circ} \mathrm{T}$	4559 miles, $121^{\circ} \mathrm{T}$	4682 miles, $059{ }^{\circ} \mathrm{T}$	4688 miles, $126^{\circ} \mathrm{T}$	
114	Determine the great circle distance and initial course from LAT $35^{\circ} 17.6^{\prime} \mathrm{N}$, LONG $144^{\circ} 23.0^{\prime} \mathrm{E}$ to LAT $47^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $124^{\circ} 22.0^{\prime} \mathrm{W}$.	3946 miles, $312^{\circ} \mathrm{T}$	3931 miles, $048^{\circ} \mathrm{T}$	3881 miles, $042^{\circ} \mathrm{T}$	3718 miles, $318^{\circ} \mathrm{T}$	
115	Determine the great circle distance and initial course from LAT $35^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $140^{\circ} 20.5^{\prime} \mathrm{E}$ to LAT $47^{\circ} 51.0^{\prime} \mathrm{N}$, LONG $122^{\circ} 51.0^{\prime} \mathrm{W}$.	4087 miles, $036^{\circ} \mathrm{T}$	4115 miles, $045^{\circ} \mathrm{T}$	4122 miles. $076{ }^{\circ} \mathrm{T}$	4136 miles, $076{ }^{\circ} \mathrm{T}$	
116	Determine the great circle distance and initial course from LAT $37^{\circ} 47.5^{\prime} \mathrm{N}$, LONG $122^{\circ} 27.8^{\prime} \mathrm{W}$ to LAT $33^{\circ} 51.7^{\prime} \mathrm{S}$, LONG $151^{\circ} 12.7^{\prime} \mathrm{E}$.	6324.2 miles, $310.3^{\circ} \mathrm{T}$	6345.3 miles, $301.7^{\circ} \mathrm{T}$	6398.0 miles, $298.3^{\circ} \mathrm{T}$	6445.2 miles, $240.3^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
117	Determine the great circle distance and initial course from LAT $38^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $09^{\circ} 10.5^{\prime} \mathrm{W}$ to LAT $32^{\circ} 05.0^{\prime} \mathrm{N}$, LONG $81^{\circ} 05.0^{\prime} \mathrm{W}$.	3402.0 miles, $072.5^{\circ} \mathrm{T}$	3412.6 miles, $085.8^{\circ} \mathrm{T}$	3432.0 miles, $278.3^{\circ} \mathrm{T}$	3449.4 miles, $287.2^{\circ} \mathrm{T}$	
118	Determine the great circle initial course from LAT $07^{\circ} 05.0^{\prime} \mathrm{N}$, LONG $81^{\circ} 45.0^{\prime} \mathrm{W}$ to LAT $21^{\circ} 15.0^{\prime} \mathrm{N}$, LONG 15740.0'W.	$128^{\circ} \mathrm{T}$	$217^{\circ} \mathrm{T}$	$290^{\circ} \mathrm{T}$	$326^{\circ} \mathrm{T}$	
119	Determine the great circle initial course from LAT $29^{\circ} 46.0^{\prime} \mathrm{S}$, LONG $30^{\circ} 26.0^{\prime} \mathrm{E}$ to LAT $31^{\circ} 52.0^{\prime} \mathrm{S}$, LONG 115²2.0'E.	074 ${ }^{\circ} \mathrm{T}$	$113^{\circ} \mathrm{T}$	$117^{\circ} \mathrm{T}$	$121^{\circ} \mathrm{T}$	
120	Determine the great circle initial course from LAT $37^{\circ} 12.6^{\prime}$ S, LONG $73^{\circ} 58.0^{\prime}$ W to LAT $10^{\circ} 33.0^{\prime} \mathrm{S}$, LONG 1420.08.0'E.	$223{ }^{\circ} \mathrm{T}$	$253^{\circ} \mathrm{T}$	$287^{\circ} \mathrm{T}$	$317^{\circ} \mathrm{T}$	
121	During evening twilight on 28 December a sextant altitude (hs) of the planet Venus was $29^{\circ} 43.2^{\prime}$. The height of eye was 40 feet, and the index error was 2.0' on the arc. What was the observed altitude (Ho)?	$2^{29} 34.1^{\prime}$	29³6.0'	$29^{\circ} 36.3^{\prime}$	${ }^{29} 3{ }^{\circ} 3.2^{\prime}$	
122	During twilight on 28 December around 1800 GMT, in DR position LAT $4^{\circ} 00^{\prime} \mathrm{N}$, LONG $0^{\circ} 06^{\prime} \mathrm{W}$, the sextant altitude (hs) of Venus was $30^{\circ} 46.8^{\prime}$. The height of eye was 36 feet, and the index error was 2.0 on the arc. The temperature was $68^{\circ} \mathrm{F}$. The barometer read 1030 mb . Calculate the observed altitude (Ho).	Ho 30³5.2'	Ho 30³7.1'	Ho 30³8.1'	Ho 3040.3'	
123	Enroute from Rio to Montevideo, the true course is 215°; the gyro error is 2° west. A north wind causes 3° leeway. What course would you steer per gyrocompass to make good the true course?	$220^{\circ} \mathrm{pgc}$	$214^{\circ} \mathrm{pgc}$	$216^{\circ} \mathrm{pgc}$	$210^{\circ} \mathrm{pgc}$	
124	Entering a harbor, you take a bearing on a range and get 338° per gyrocompass (pgc). The true bearing from the chart is $340^{\circ} \mathrm{T}$. Variation for the area is $14^{\circ} \mathrm{E}$. Your course is 329° per standard magnetic compass (psc) and $338^{\circ} \mathrm{pgc}$. The deviation on this heading is . \qquad	$3^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{W}$	$5^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{W}$	
125	From 1020, 3 March, to 1845, 5 March, your vessel steamed an observed distance of 845.6 miles. The average RPM was 78, and the pitch of the propeller was 20'03". What was the slip?	-4\%	+4\%	-8\%	+8\%	
126	If the pitch of the propeller is 19.4 feet, and the revolutions per day are 96,713 , calculate the day's run allowing 6\% positive slip.	266.4 miles	290.1 miles	308.6 miles	327.1 miles	
127	If the pitch of the propeller is 19.7 feet, and the revolutions per day are 86,178 , calculate the day's run allowing 3\% negative slip.	279.2 miles	287.6 miles	311.4 miles	326.2 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
128	If the pitch of the propeller is 20.1 feet, and the revolutions per day are 118,178, calculate the day's run allowing 6% negative slip.	367.2 miles	381.6 miles	398.4 miles	414.1 miles	
129	If the pitch of the propeller is 20.6 feet, and the revolutions per day are 107,341, calculate the day's run allowing 3% positive slip.	352.7 miles	363.6 miles	374.5 miles	389.1 miles	
130	If the pitch of the propeller is 21.2 feet, and the revolutions per day are 93,660, calculate the day's run allowing 5\% positive slip.	163.3 miles	217.8 miles	310.3 miles	342.9 miles	
131	If the pitch of the propeller is 21.3 feet, and the revolutions per day are 126,214, calculate the day's run allowing 4\% positive slip.	424.5 miles	442.1 miles	459.9 miles	477.3 miles	
132	If the pitch of the propeller is 21.5 feet, and the revolutions per day are 96,666 , calculate the day's run allowing 9\% negative slip.	311.1 miles	341.8 miles	357.9 miles	372.6 miles	
133	If the pitch of the propeller is 22.4 feet, and the revolutions per day are 103,690, calculate the day's run allowing 9\% positive slip.	321.7 miles	347.6 miles	382.0 miles	416.4 miles	
134	If the pitch of the propeller is 23.2 feet, and the revolutions per day are 94,910, calculate the day's run allowing 11% negative slip.	322.3 miles	362.3 miles	382.0 miles	402.0 miles	
135	If the pitch of the propeller is 24.8 feet, and the revolutions per day are 93,373, calculate the day's run allowing 11% positive slip.	307.3 miles	339.0 miles	380.9 miles	422.8 miles	
136	If the pitch of the propeller is 25.1 feet, and the revolutions per day are 91,591, calculate the day's run allowing 7% positive slip.	351.6 miles	378.1 miles	390.0 miles	404.6 miles	
137	If the pitch of the propeller is 26.3 feet, and the revolutions per day are 87,421 , calculate the day's run allowing 7\% negative slip.	351.7 miles	378.1 miles	404.6 miles	419.3 miles	
138	If the pitch of the propeller is 26.7 feet, and the revolutions per day are 131,717, calculate the day's run allowing 4% negative slip.	555.2 miles	578.4 miles	601.6 miles	649.4 miles	
139	If the speed necessary for reaching port at a designated time is 12.6 knots and the pitch of the propeller is 13.6 feet, how many revolutions per minute will the shaft have to turn, assuming no slip?	81	85	90	94	
140	If the speed necessary for reaching port at a designated time is 15.7 knots and the pitch of the propeller is 23.4 feet, how many revolutions per minute will the shaft have to turn, assuming a 6\% negative slip?	64	68	72	76	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
141	If the speed necessary for reaching port at a designated time is 16.4 knots and the pitch of the propeller is 23.8 feet, how many revolutions per minute will the shaft have to turn, assuming a 6\% positive slip?	66	74	82	90	
142	If the speed necessary for reaching port at a designated time is 16.8 knots and the pitch of the propeller is 22.3 feet, how many revolutions per minute will the shaft have to turn, assuming a 4\% negative slip?	61	66	73	80	
143	If the speed necessary for reaching port at a designated time is 17.4 knots and the pitch of the propeller is 25.6 feet, how many revolutions per minute will the shaft have to turn, assuming a 3\% positive slip?	63	67	71	75	
144	If the speed necessary for reaching port at a designated time is 17.8 knots and the pitch of the propeller is 24.7 feet, how many revolutions per minute will the shaft have to turn, assuming a 7\% positive slip?	67	71	75	79	
145	If the speed necessary for reaching port at a designated time is 18.2 knots and the pitch of the propeller is 23.9 feet, how many revolutions per minute will the shaft have to turn, assuming a 2% negative slip?	70	73	76	79	
146	If the speed necessary for reaching port at a designated time is 18.5 knots and the pitch of the propeller is 21.7 feet, how many revolutions per minute will the shaft have to turn, assuming a 4\% negative slip?	83	90	97	114	
147	If the speed necessary for reaching port at a designated time is 18.6 knots, and the pitch of the propeller is 26.2 feet, how many revolutions per minute will the shaft have to turn, assuming a 4\% negative slip?	69	72	75	78	
148	If the speed necessary for reaching port at a designated time is 19.2 knots and the pitch of the propeller is 22.7 feet, how many revolutions per minute will the shaft have to turn, assuming a 4\% positive slip?	82	89	96	103	
149	If the speed necessary for reaching port at a designated time is 19.6 knots and the pitch of the propeller is 24.6 feet, how many revolutions per minute will the shaft have to turn, assuming a 5\% positive slip?	76	85	97	106	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
150	If the speed necessary for reaching port at a designated time is 20.7 knots and the pitch of the propeller is 23.8 feet, how many revolutions per minute will the shaft have to turn, assuming a 3\% negative slip?	74	79	86	98	
151	If the speed necessary for reaching port at a designated time is 21.6 knots and the pitch of the propeller is 22.5 feet, how many revolutions per minute will the shaft have to turn, assuming a 2% positive slip?	81	87	95	99	
152	If the speed necessary for reaching port at a designated time is 23.7 knots and the pitch of the propeller is 20.8 feet, how many revolutions per minute will the shaft have to turn, assuming a 7% negative slip?	108	112	116	124	
153	In planning a North Pacific voyage, you wish to steam the minimum distance from LAT $48^{\circ} 30^{\prime} \mathrm{N}$, LONG $124^{\circ} 45^{\prime} \mathrm{W}$ to LAT $44^{\circ} 00^{\prime} \mathrm{N}$, LONG $150^{\circ} 00^{\prime} \mathrm{E}$, while remaining south of $51^{\circ} \mathrm{N}$ latitude. Which track meets these requirements? (Use gnomonic tracking chart WOXZC 5270)	A Mercator sailing from departure to the midlongitude at $51^{\circ} \mathrm{N}$, thence great circle to arrival	A great circle between departure and arrival with parallel sailing between the longitudes where the great circle intersects $51^{\circ} \mathrm{N}$	A great circle tangent to $51^{\circ} \mathrm{N}$ from departure to the mid-longitude then a great circle to arrival	A great circle from departure to LAT $51^{\circ} \mathrm{N}$, LONG $148^{\circ} \mathrm{W}$, parallel sailing to LAT $51^{\circ} \mathrm{N}$, LONG $171^{\circ} \mathrm{W}$, then a great circle to arrival	
154	On 1 April at 0515 zone time, morning stars were observed, and the vessel's position was determined to be LAT $27^{\circ} 05.0^{\prime} \mathrm{N}$, LONG $16^{\circ} 30.0^{\prime} \mathrm{W}$. Your vessel is steaming at 19.0 knots on a course of 022°. A sextant observation of the Sun's lower limb is made at 0930 zone time. The chronometer reads 10 h 28 m 25 s , and the sextant altitude is $46^{\circ} 20.3^{\prime}$. The index error is 4.5 off the arc, and the chronometer error is 02 m 15 s slow. Your height of eye on the bridge is 57.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	$121.6^{\circ} \mathrm{T}$	$117.9^{\circ} \mathrm{T}$	$115.0^{\circ} \mathrm{T}$	$112.2^{\circ} \mathrm{T}$	
155	On 1 December, your 1600 ZT DR position is LAT $22^{\circ} 48.0^{\prime} \mathrm{S}$, LONG $91^{\circ} 26.0^{\prime} \mathrm{E}$. You are on course $327^{\circ} \mathrm{T}$ at a speed of 16 knots. What will be the zone time of sunset at your vessel?	1823	1827	1831	1847	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
156	On 1 July your 0515 zone time fix gives you a position of LAT $23^{\circ} 24.0^{\prime} \mathrm{S}$, LONG $151^{\circ} 42.0^{\prime} \mathrm{W}$. Your vessel is on course $240^{\circ} \mathrm{T}$, and your speed is 10.0 knots. Local apparent noon (LAN) occurs at 1215 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $42^{\circ} 55.0^{\prime}$. What is the latitude at 1200 ZT?	24*02.5'S	2401.0'S	2359.7'S	2358.6'S	
157	On 1 July your 0515 ZT fix gives you a position of LAT $24^{\circ} 36.0^{\prime} \mathrm{S}$, LONG $151^{\circ} 42.0^{\prime} \mathrm{W}$. Your vessel is on course $300^{\circ} \mathrm{T}$, and your speed is 10.0 knots. Local apparent noon (LAN) occurs at 1215 ZT , at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $42^{\circ} 55.0^{\prime}$. What is the calculated latitude at LAN?	2403.6'S	2402.5'S	2401.0'S	2400.0'S	
158	On 1 March your 2135 zone time DR position is LAT $23^{\circ} 54.0^{\prime} \mathrm{N}$, LONG $63^{\circ} 22.0^{\prime} \mathrm{W}$. At that time, you observe Schedar bearing $328^{\circ} \mathrm{psc}$. The chronometer reads 01 h 35 m 16 s , and the chronometer error is 00 m 07 s slow. The variation is $3.5^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$2.3^{\circ} \mathrm{E}$	$2.5^{\circ} \mathrm{W}$	$3.2{ }^{\circ} \mathrm{W}$	$4.2^{\circ} \mathrm{E}$	
159	On 1 November your 1600 zone time DR position is LAT $27^{\circ} 48^{\prime}$ S, LONG $91^{\circ} 26^{\prime} E$. Your vessel is on a course of $327^{\circ} \mathrm{T}$ at a speed of 16 knots. What will be the zone time of sunset at your vessel?	1815	1821	1829	1836	
160	On 1 October you determine the zone time of evening twilight will be 1835. Your DR position at this time is LAT $27^{\circ} 18.0^{\prime} \mathrm{N}$, LONG $48^{\circ} 52.0^{\prime} \mathrm{W}$. Considering their magnitude and location, which group of three stars are best suited to be used in obtaining a fix at star time?	Altair, Rasalhague, Vega	Alphecca, Kochab, Deneb	Diphda, Hamal, Mirfak	Antares, Rigil Kentaurus, Peacock	
161	On 1 September your 1115 zone time DR position is LAT $25^{\circ} 20.0^{\prime} \mathrm{N}$, LONG $28^{\circ} 24.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing $160.5^{\circ} \mathrm{psc}$. The chronometer reads 01 h 14 m 58 s , and the chronometer error is 01 m 17 s fast. The variation is $13.5^{\circ} \mathrm{W}$. What is the deviation of the standard compass?	$2.1^{\circ} \mathrm{E}$	$4.1^{\circ} \mathrm{E}$	$11.0^{\circ} \mathrm{W}$	$11.0^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
162	On 10 April , your 1630 ZT DR position is LAT $21^{\circ} 03.0^{\prime} \mathrm{N}$, LONG $63^{\circ} 11.0^{\prime} \mathrm{W}$. You are on course $324^{\circ} \mathrm{T}$ at a speed of 22 knots. What will be the zone time of sunset at your vessel?	1805	1814	1818	1833	
163	On 10 August your 0430 ZT position is LAT $29^{\circ} 56.7^{\prime}$ S, LONG $139^{\circ} 11.0^{\prime} \mathrm{E}$. Your course is $321^{\circ} \mathrm{T}$, speed 18.2 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0500 running fix.	$\begin{aligned} & \text { LAT } 29^{\circ} 46.0^{\prime} \mathrm{S}, \text { LONG } \\ & 138^{\circ} 54.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 29^{\circ} 49.2^{\prime} \mathrm{S}, \text { LONG } \\ & 138^{\circ} 57.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 29^{\circ} 56.0^{\prime} \mathrm{S}, \text { LONG } \\ & 139^{\circ} 03.8^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 30^{\circ} 07.5^{\prime} \mathrm{S}, \text { LONG } \\ & 138^{\circ} 55.2^{\prime} \mathrm{E} \end{aligned}$	NP-0021
164	On 10 August your vessel's 0426 zone time DR position is LAT $52^{\circ} 07^{\prime} \mathrm{N}$, LONG $142^{\circ} 16^{\prime} \mathrm{E}$, when an amplitude of the Sun is observed. The Sun's lower limb is about 20 minutes of arc above the visible horizon and bears 074.5° per standard compass. Variation in the area is $12^{\circ} \mathrm{W}$. The chronometer reads 07 h 24 m 19 s and is 02 m 34 s fast. Which of the following is the deviation of the standard compass?	0.0°	$1.3^{\circ} \mathrm{W}$	$1.3{ }^{\circ} \mathrm{E}$	$2.3^{\circ} \mathrm{W}$	
165	On 10 December, your 1300 zone time (ZT) DR position is LAT $26^{\circ} 27.0^{\prime} \mathrm{S}$, LONG $79^{\circ} 04.0^{\prime} \mathrm{E}$. You are on course $068^{\circ} \mathrm{T}$ at a speed of 14 knots. What will be the zone time of sunset at your vessel?	1824	1846	1854	1908	
166	On 10 February in DR position LAT $25^{\circ} 32.0^{\prime} \mathrm{N}$, LONG $135^{\circ} 15.0^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears $109^{\circ} \mathrm{psc}$. The chronometer reads 09 h 43 m 25 s and is 03 m 20s fast. Variation in the area is $4.5^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$1.6^{\circ} \mathrm{E}$	$2.9^{\circ} \mathrm{W}$	$10.5^{\circ} \mathrm{E}$	$30.5{ }^{\circ} \mathrm{W}$	
167	On 10 January at 0550 ZT , morning stars were observed, and the vessel's position was determined to be LAT $25^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $123^{\circ} 18.0^{\prime} \mathrm{W}$. Your vessel is steaming at 22.0 knots on a course of $295^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0915 ZT . The chronometer reads 05 h 14 m 02 s , and the sextant altitude is $24^{\circ} 00.7^{\prime}$. The index error is 2.6 off the arc, and the chronometer error is 01 m 34 s slow. Your height of eye on the bridge is 55.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	$127.8^{\circ} \mathrm{T}$	$129.8^{\circ} \mathrm{T}$	${ }^{131.9}{ }^{\circ} \mathrm{T}$	$133.6^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
168	On 10 July your 0930 zone time DR position is LAT $26^{\circ} 31.0^{\prime} \mathrm{S}$, LONG $4^{\circ} 41.0^{\prime} \mathrm{E}$. Your vessel is on course $308^{\circ} \mathrm{T}$ at a speed of 22.0 knots. What is the zone time of local apparent noon (LAN)?	1144	1149	1153	1159	
169	On 10 June your 1712 zone time DR position is LAT $25^{\circ} 10.0^{\prime} \mathrm{S}$, LONG $06^{\circ} 58.0^{\prime} \mathrm{E}$. You are on course $213^{\circ} \mathrm{T}$ at a speed of 9.0 knots. Considering their magnitude, azimuth, and altitude, which group includes the three stars best suited for a fix at star time?	Procyon, Antares, Sirius	Sirius, Procyon, Regulus	Acrux, Canopus, Regulus	Acrux, Procyon, Arcturus	
170	On 10 June your 2010 zone time DR position is LAT $41^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $61^{\circ} 15.0^{\prime} \mathrm{W}$. At that time, you observe Polaris with a sextant altitude (hs) of $40^{\circ} 35.8^{\prime}$. The chronometer time of the sight is 00 h 08 m 18 s , and the chronometer error is 01 m 54 s slow. The index error is 2.0^{\prime} on the arc, and the height of eye is 40 feet. What is your latitude by Polaris?	$41^{\circ} 10.6{ }^{\prime} \mathrm{N}$	41¹5.0'N	41¹8.3'N	$41^{\circ} 21.2^{\prime} \mathrm{N}$	
171	On 10 June your vessel's 0519 zone time DR position is LAT $27^{\circ} 07.0^{\prime} \mathrm{N}$, LONG $92^{\circ} 10.0^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the visible horizon and bears 063.6° per standard magnetic compass. The variation in the area is $4.8^{\circ} \mathrm{E}$. The chronometer reads 11 h 17 m 32 s and is 01 m 18 s slow. What is the deviation of the compass?	$5.6^{\circ} \mathrm{E}$	$4.8^{\circ} \mathrm{E}$	$4.2^{\circ} \mathrm{W}$	$4.8{ }^{\circ} \mathrm{W}$	
172	On 10 March in DR position LAT $21^{\circ} 42.0^{\prime} \mathrm{S}$, LONG $57^{\circ} 28.0^{\prime} \mathrm{E}$, you take an ex-meridian observation of the Sun's lower limb. The chronometer time of the sight is 08 h 28 m 17 s , and the chronometer error is 00 m 00s. The sextant altitude (hs) is $72^{\circ} 08.0^{\prime}$. The index error is 3.4' on the arc, and your height of eye is 52.7 feet. What is the latitude at meridian transit?	LAT $21{ }^{\circ} 32.5$ S	LAT $21{ }^{\circ} 40.6$ S	LAT $21{ }^{\circ} 45.5$ S	LAT 21050.2'S	
173	On 10 November, your 1630 zone time DR position is LAT $25^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $71^{\circ} 12.0^{\prime} \mathrm{W}$. You are on course $335^{\circ} \mathrm{T}$ at a speed of 24 knots. What will be the zone time of sunset at your vessel?	1650	1700	1715	1730	
174	On 10 October your 0930 zone time position is LAT $25^{\circ} 00.0^{\prime} \mathrm{S}$, LONG $164^{\circ} 38.6^{\prime} \mathrm{W}$. Your vessel is on course $180^{\circ} \mathrm{T}$ at a speed to 10.0 knots. What is the zone time of local apparent noon (LAN)?	1145	1151	1203	1206	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
175	On 10 October your 1500 zone time DR position is LAT $27^{\circ} 35.6^{\prime} \mathrm{S}$, LONG $44^{\circ} 49.0^{\prime} \mathrm{W}$. You are on course $342^{\circ} \mathrm{T}$ at a speed of 24 knots. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Venus, Moon, Fomalhaut	Venus, Arcturus, Hamal	Moon, Al Na'ir, Rigil Kentaurus	Deneb, Spica, Markab	
176	On 11 December your 1816 ZT DR position is LAT $26^{\circ} 30.0^{\prime} N$, LONG $140^{\circ} 35.0^{\prime} \mathrm{E}$. At that time, you observe Venus bearing $230^{\circ} \mathrm{pgc}$. The chronometer reads 09h 14 m 52 s and the chronometer error is 01 m 02s slow. The variation is $3.5^{\circ} \mathrm{E}$. What is the gyro error?	$2.2{ }^{\circ} \mathrm{E}$	$3.3{ }^{\circ} \mathrm{E}$	$3.2{ }^{\circ} \mathrm{W}$	$4.2^{\circ} \mathrm{W}$	
177	On 11 February your 1832 zone time DR position is LONG $110^{\circ} 52.6^{\prime}$ W. At that time you observe Polaris with a sextant altitude (hs) of $26^{\circ} 19.8^{\prime}$. The chronometer time of the sight is 01 h 34 m 56 s , and the chronometer error is 02 m 16 s fast. The index error is 2.7 ' off the arc, and the height of eye is 60.2 feet. What is your latitude by Polaris?	25²7.2'N	$25^{\circ} 34.2^{\prime} \mathrm{N}$	26²7.2'N	26³4.2'N	
178	On 11 January, your 0450 ZT position is LAT $38^{\circ} 42^{\prime} \mathrm{N}$, LONG $14^{\circ} 16^{\prime} \mathrm{W}$. You observe Polaris bearing $358.5^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $160^{\circ} \mathrm{pgc}$ and $173^{\circ} \mathrm{psc}$. The variation is $9^{\circ} \mathrm{W}$. What is the deviation for that heading?	$1^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{W}$	$13^{\circ} \mathrm{W}$	
179	On 11 January your vessel's 0655 zone time DR position is LAT $24^{\circ} 30^{\prime} \mathrm{N}$, LONG $122^{\circ} 02^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the celestial horizon and bears 101.0° per standard compass. Variation in the area is $11.6^{\circ} \mathrm{E}$. The chronometer reads 02 h 52 m 48 s and is 02 m 12s slow. What is the deviation of the standard compass?	$1.4{ }^{\circ} \mathrm{E}$	$1.4{ }^{\circ} \mathrm{W}$	$4.6^{\circ} \mathrm{E}$	$4.6{ }^{\circ} \mathrm{W}$	
180	On 11 July , your 0240 ZT position is LAT $14^{\circ} 52^{\prime} \mathrm{N}$, LONG $34^{\circ} 23^{\prime} \mathrm{W}$. You observe Polaris bearing $359.8^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $279^{\circ} \mathrm{pgc}$ and $299^{\circ} \mathrm{psc}$. The variation is $19^{\circ} \mathrm{W}$. What is the deviation for that heading?	0°	$1^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
181	On 11 March your 1846 zone time DR position is LAT $25^{\circ} 05.7^{\prime} \mathrm{N}$, LONG $124^{\circ} 29.0^{\prime} \mathrm{W}$. At that time you observe Polaris with a sextant altitude (hs) of $25^{\circ} 59.1^{\prime}$. The chronometer time of the sight is 02 h 44 m 01 s , and the chronometer error is 02 m 15 s slow. The index error is 3.9 on the arc, and the height of eye is 42.7 feet (13.0 meters). What is your latitude by Polaris?	25¹4.2'N	25º $17.9^{\prime} \mathrm{N}$	$25^{\circ} 28.1{ }^{\prime} \mathrm{N}$	26¹5.2'N	
182	On 11 May in DR position LAT $28^{\circ} 13.7^{\prime} \mathrm{N}$, LONG $168^{\circ} 36.3^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears $283^{\circ} \mathrm{psc}$. The chronometer reads 07 h 13 m 19 s and is 02 m 56 s slow. Variation in the area is $13^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$5.2^{\circ} \mathrm{W}$	$5.6^{\circ} \mathrm{W}$	$7.4^{\circ} \mathrm{E}$	$7.8^{\circ} \mathrm{E}$	
183	On 11 May in DR position LAT $37^{\circ} 06.0^{\prime} \mathrm{N}$, LONG $45^{\circ} 45.0^{\prime} \mathrm{W}$ you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears 089.0° psc. The chronometer reads 07 h 57 m 06 s and is 01 m 48 s slow. Variation in the area is $20.0^{\circ} \mathrm{W}$. What is the deviation?	$3.6{ }^{\circ} \mathrm{W}$	$2.2^{\circ} \mathrm{W}$	$1.4{ }^{\circ} \mathrm{W}$	$3.6{ }^{\circ} \mathrm{E}$	
184	On 11 May your vessel's 1839 ZT position is LAT $17^{\circ} 30^{\prime} \mathrm{N}$, LONG $63^{\circ} 55^{\prime} \mathrm{W}$, when an amplitude of the Sun's center is observed on the celestial horizon bearing 301° per standard magnetic compass. Variation for this area is $10.5^{\circ} \mathrm{W}$. The chronometer reads 10 h 37 m 10 s and is 02 m 08 s slow. What is the deviation of the compass?	$2.5^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{E}$	
185	On 11 November your 0200 zone time DR position is LAT $26^{\circ} 32^{\prime}$ S, LONG $154^{\circ} 16^{\prime} \mathrm{E}$. You are on course $058^{\circ} \mathrm{T}$ at a speed of 21 knots. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Polaris, Regulus, Rigel	Jupiter, Spica, Canopus	Saturn, Peacock, Rigel	Mars, Betelgeuse, Miaplacidus	
186	On 11 November your 0730 zone time position was LAT $19^{\circ} 58.0^{\prime} \mathrm{N}$, LONG $143^{\circ} 54.0^{\prime} \mathrm{W}$. Your vessel was steaming on course $084^{\circ} \mathrm{T}$ at a speed of 15.0 knots. An observation of the Sun's lower limb was made at 0931 ZT . The chronometer read 07h 29m 22s and was slow 02 m 22 s . The observed altitude (Ho) was $44^{\circ} 17.6^{\prime}$. LAN occurred at 1125 zone time (ZD +10). The observed altitude (Ho) was $52^{\circ} 17.4^{\prime}$. What was the longitude of your 1200 zone time running fix?	142 ${ }^{\circ} 34.7^{\prime} \mathrm{W}$	142³7.1'W	$142^{\circ} 40.2^{\prime} \mathrm{W}$	142044.2'W	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
187	On 11 October at 0516 ZT, morning stars were observed, and the vessel's position was determined to be LAT $23^{\circ} 21.0^{\prime} \mathrm{N}$, LONG $139^{\circ} 27.0^{\prime} \mathrm{W}$. Your vessel is steaming at 14.0 knots on a course of 293° T. A sextant observation of the Sun's lower limb is made at 0927 ZT . The chronometer reads $06 \mathrm{~h} \mathrm{30m}$ 21s, and the sextant altitude (hs) is $39^{\circ} 48.7^{\prime}$. The index error is 2.0 on the arc, and the chronometer error is 02 m 56 s fast. Your height of eye on the bridge is 63.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	$116.2^{\circ} \mathrm{T}$	$123.4^{\circ} \mathrm{T}$	$126 .{ }^{\circ} \mathrm{T}$	$128.4^{\circ} \mathrm{T}$	
188	On 12 April at 0515 ZT, morning stars were observed, and the vessel's position was determined to be LAT $21^{\circ} 05^{\prime} \mathrm{S}$, LONG $16^{\circ} 30^{\prime} \mathrm{W}$. Your vessel is steaming at 19 knots on a course of $278^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0930 ZT . The chronometer reads 10 h 28 m 25 s , and the sextant altitude (hs) is $40^{\circ} 15.9^{\prime}$. The index error is 2.5^{\prime} off the arc, and the chronometer error is 2 m 15 s slow. Your height of eye on the bridge is 57 feet. What are the intercept (a) and azimuth (Zn) from the assumed position of this sight?	Zn 057.7º, a 15.4' T	Zn 057.0ㅇ, a 17.7' A	Zn 122.30, a 17.7' A	Zn 123.0 ${ }^{\circ}$, a 22.7' A	
189	On 12 December your 1830 ZT DR position is LAT $24^{\circ} 16.0^{\prime}$ S, LONG $41^{\circ} 18.0^{\prime} \mathrm{W}$. You are on course $235^{\circ} \mathrm{T}$ at a speed of 16.0 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1930 running fix.	$\begin{aligned} & \text { LAT } 24^{\circ} 12.5^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 10.9^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 16.9^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 18.2^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 25.2^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 39.9^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 46.9^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 31.2^{\prime} \mathrm{W} \end{aligned}$	NP-0009
190	On 12 February your 0542 zone time (ZT) fix gives you a position of LAT $26^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $60^{\circ} 18.0^{\prime} \mathrm{W}$. Your vessel is on course $300^{\circ} \mathrm{T}$, and your speed is 9.8 knots. Local apparent noon (LAN) occurs at 1220 ZT at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $49^{\circ} 10.0^{\prime}$. What is the calculated latitude at LAN?	$27^{\circ} 13.5^{\prime} \mathrm{N}$	27016.3'N	$27^{\circ} 17.6^{\prime} \mathrm{N}$	$27^{\circ} 19.2^{\prime} \mathrm{N}$	
191	On 12 February your 0900 zone time DR position is LAT $16^{\circ} 43.0^{\prime} \mathrm{N}$, LONG $51^{\circ} 42.0^{\prime} \mathrm{W}$. Your vessel is on course $093^{\circ} \mathrm{T}$ at a speed of 18.5 knots. What is the zone time of local apparent noon (LAN)?	1237	1233	1230	1226	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
192	On 12 February your 0930 zone time DR position is LAT $25^{\circ} 20.0^{\prime} \mathrm{N}$, LONG $30^{\circ} 40.0^{\prime} \mathrm{W}$. Your vessel is on course $135^{\circ} \mathrm{T}$ at a speed of 11.2 knots. What is the zone time of local apparent noon (LAN)?	1210	1215	1220	1224	
193	On 12 July your 0800 ZT DR position is LAT $24^{\circ} 15.0^{\prime} \mathrm{N}$, LONG $132^{\circ} 30.0^{\prime} \mathrm{W}$. Your vessel is on course $045^{\circ} \mathrm{T}$ at a speed of 15.0 knots. What is the ZT of local apparent noon (LAN)?	1146	1148	1152	1159	
194	On 12 June , at 0919 zone time, your position is LAT $26^{\circ} 52^{\prime} \mathrm{N}$, LONG $84^{\circ} 34^{\prime} \mathrm{W}$. The chronometer reads 03 h 17 m 00s. Chronometer error is 01 m 40 s slow. At that time, an azimuth of the Sun is obtained. The bearing is 089.5° per standard magnetic compass. Variation for this area is $4.5^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$9.5^{\circ} \mathrm{E}$	$9.5{ }^{\circ} \mathrm{W}$	$5.2^{\circ} \mathrm{E}$	$5.2^{\circ} \mathrm{W}$	
195	On 12 June , your 0400 ZT DR position is LAT $22^{\circ} 31.0^{\prime} \mathrm{N}$, LONG $31^{\circ} 45.0^{\prime} \mathrm{W}$. You are on course $240^{\circ} \mathrm{T}$ at a speed of 16.5 knots. What will be the zone time of sunrise at your vessel?	0507	0515	0523	0645	
196	On 12 June , your 1845 DR position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $019.0^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $53^{\circ} 56.2^{\prime}$. The index error is 0.5^{\prime} on the arc, and the height of eye is 45 feet. The chronometer reads 09h 43 m 27 s , and the chronometer error is 1 m 46 s slow. What star did you observe?	Phecda	Mimosa	Gamma Ursae Minoris	Mizar	
197	On 12 June , your 1845 DR position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $031^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $70^{\circ} 10.3^{\prime}$. The index error is 0.5^{\prime} on the arc, and the height of eye is 45 feet. The chronometer reads 09h 43 m 27 s , and the chronometer error is 1 m 46 s slow. What star did you observe?	Sheratan	Ruchbah	Mimosa	Cor Caroli	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
198	On 12 June , your 1845 DR position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $162^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $28^{\circ} 36.5^{\prime}$. The index error is 0.5^{\prime} on the arc, and the height of eye is 45 feet. The chronometer reads 09 h 43 m 27 s , and the chronometer error is 1 m 46 s slow. What star did you observe?	Gamma Virginis	Iota Centauri	Spica	Mimosa	
199	On 12 June , your 1845 DR position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $270^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $65^{\circ} 41.7^{\prime}$. The index error is 0.5^{\prime} on the arc, and the height of eye is 45 feet. The chronometer reads 09 h 43 m 27 s , and the chronometer error is 1 m 46 s slow. What star did you observe?	Epsilon Leonis	Scheat	Merak	Algeiba	
200	On 12 June , your 1845 DR position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $282.5^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $14^{\circ} 22.3^{\prime}$. The index error is 0.5^{\prime} on the arc, and the height of eye is 45 feet. The chronometer reads 09h 43m 27s, and the chronometer error is 1 m 46 s slow. What star did you observe?	Wezen	Alhena	Mirzam	Menkalinan	
201	On 12 June , your 1845 DR position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $313^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $14^{\circ} 56.3^{\prime}$. The index error is 0.5^{\prime} on the arc, and the height of eye is 45 feet. The chronometer reads 09 h 43 m 27 s , and the chronometer error is 1 m 46 s slow. What star did you observe?	Menkalinan	Mirzam	Theta Aurigae	Alnitak	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
202	On 12 June , your 1845 DR position is LAT $21^{\circ} 47^{\prime} \mathrm{N}$, LONG $46^{\circ} 52^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $174.0^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $18^{\circ} 58.6^{\prime}$. The index error is 0.5° on the arc, and the height of eye is 45 feet. The chronometer reads 09h 43 m 27 s , and the chronometer error is 1 m 46 s slow. What star did you observe?	Muhlifain	Alpha Hydri	Almak	Alpha Muscae	
203	On 12 June , your 1945 DR position is LAT $21^{\circ} 47.0^{\prime} \mathrm{N}$, LONG $46^{\circ} 52.0^{\prime} \mathrm{W}$ when you observe a faint unidentifiable star through a break in the clouds. The star bears $130^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $45^{\circ} 21.2^{\prime}$. The index error is 0.5^{\prime} on the arc, and the height of eye is 45 feet. The chronometer reads 10 h 43 m 27 s , and the chronometer error is 1 m 46 s slow. What star did you observe?	Theta Carinae	Epsilon Leonis	Beta Librae	Zeta Puppis	
204	On 12 March your 1846 zone time DR position is LONG $129^{\circ} 16.5^{\prime}$ W. At that time you observe Polaris with a sextant altitude (hs) of $28^{\circ} 01.5^{\prime}$. The chronometer time of the sight is 03 h 44 m 10s, and the chronometer error is 01 m 55 s slow. The index error is 2.2^{\prime} off the arc, and the height of eye is 59.8 feet (18.2 m). What is your latitude by Polaris?	$27^{\circ} 33.7^{\prime} \mathrm{N}$	$27^{\circ} 40.9^{\prime} \mathrm{N}$	$27^{\circ} 54.4{ }^{\prime} \mathrm{N}$	$28^{\circ} 06.9^{\prime} \mathrm{N}$	
205	On 12 November, you are taking a time tick using the 1600 GMT BBC Broadcast. You hear five pulses followed by a longer pulse. At the start of the longer pulse you start a stopwatch. You stop the stopwatch at the same time reading the chronometer with the following results: stopwatch 03m 19s, chronometer 15 h 59 m 46 s . What is the chronometer error?	01m 14s slow	03m 19s fast	03m 33s slow	06m 54s slow	
206	On 12 October your vessel is on course $081^{\circ} \mathrm{T}$, speed 20 knots. Your 1800 zone time DR position is LAT $26^{\circ} 11.0^{\prime}$ S, LONG $77^{\circ} 18.0^{\prime}$ E. You observed 3 celestial bodies. Determine the latitude and longitude of your 1835 running fix.	$\begin{aligned} & \text { LAT } 26^{\circ} 05.5^{\prime} \mathrm{S}, \text { LONG } \\ & 77^{\circ} 14.5^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 07.5^{\prime} \mathrm{S}, \text { LONG } \\ & 77^{\circ} 34.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 09.0^{\prime} \mathrm{S}, \text { LONG } \\ & 77^{\circ} 27.5^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 12.0^{\prime} \mathrm{S} \text {, LONG } \\ & 77^{\circ} 31.0^{\prime} \mathrm{E} \end{aligned}$	NP0024

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
207	On 12 September your 0600 zone time (ZT) fix gives you a position of LAT $22^{\circ} 51.9^{\prime} \mathrm{N}$, LONG $133^{\circ} 40.1^{\prime} \mathrm{W}$. Your vessel is on course $062^{\circ} \mathrm{T}$, and your speed is 12.3 knots. Local apparent noon (LAN) occurs at 1142 ZT , at which time a meridian altitude of the Sun's upper limb is observed. The observed altitude (Ho) for this sight is $70^{\circ} 33.2^{\prime}$. What is the calculated latitude at LAN?	$23^{\circ} 23.0$ '	$23^{\circ} 24.8^{\prime} \mathrm{N}$	$23^{\circ} 26.5^{\prime} \mathrm{N}$	23²7.9'N	
208	On 12 September, your 0736 zone time DR position is LAT $28^{\circ} 34.0^{\prime} \mathrm{S}$, LONG $174^{\circ} 49.0^{\prime} \mathrm{E}$. At that time, you observe the Sun bearing 084° per standard magnetic compass (psc). The chronometer reads 07h 38 m 11 s , and the chronometer error is 01 m 46 s fast. The variation is $11^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$2.9^{\circ} \mathrm{W}$	$3.2{ }^{\circ} \mathrm{E}$	$3.9^{\circ} \mathrm{E}$	$4.7^{\circ} \mathrm{W}$	
209	On 13 August , your 0345 ZT DR position is LAT 21옹.0' N, LONG $135^{\circ} 26.0^{\prime} \mathrm{W}$. You are on course $052^{\circ} \mathrm{T}$ at a speed of 14 knots. What will be the zone time of sunrise at your vessel?	0443	0449	0536	0540	
210	On 13 February , at 0325 zone time, your DR position is LAT $23^{\circ} 20^{\prime} \mathrm{N}$, LONG $155^{\circ} 15^{\prime} \mathrm{W}$. You are steering $240^{\circ} \mathrm{T}$ at a speed of 13.6 knots. What is the zone time of sunrise?	0652	0657	0706	0711	
211	On 13 June your 0445 DR position is LAT $20^{\circ} 12.0^{\prime} \mathrm{N}$, LONG $44^{\circ} 45.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $168^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $38^{\circ} 56.0^{\prime}$. The chronometer reads 07 h 43 m 20 s , and is 01 m 39 s slow. Which star did you observe?	Peacock	Ankaa	Al Na'ir	Fomalhaut	
212	On 13 November at 0438 ZT, morning stars were observed and the vessel's position was determined to be LAT $22^{\circ} 14.0^{\prime} \mathrm{S}$, LONG $79^{\circ} 23.0^{\prime} \mathrm{E}$. Your vessel is steaming at 13.0 knots on a course of $242^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0822 ZT . The chronometer reads 03 h 20 m 16 s , and the sextant altitude (hs) is $45^{\circ} 49.7^{\prime}$. The index error is 1.0' on the arc, and the chronometer error is 01 m 47 s slow. Your height of eye on the bridge is 61.0 feet (18.6 meters). What is the azimuth (Zn) of this sight using the assumed position?	092.6T	$096 .{ }^{\circ} \mathrm{T}$	$0^{098.7}{ }^{\circ} \mathrm{T}$	${ }^{099.7}{ }^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
213	On 13 November your 1030 ZT DR position is LAT $19^{\circ} 03^{\prime} \mathrm{S}$, LONG $6^{\circ} 34^{\prime} \mathrm{E}$. You are on course $164^{\circ} \mathrm{T}$, speed 12 knots. Determine your 1200 position using the following observations of the Sun.	LAT 19²2.3'S, LONG $6^{\circ} 37.8^{\prime} \mathrm{E}$	$\begin{aligned} & \text { LAT } 19^{\circ} 20.1^{\prime} \mathrm{S}, \text { LONG } \\ & 6^{\circ} 41.4^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 17.6^{\prime} \mathrm{S}, \text { LONG } \\ & 6^{\circ} 39.2^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 15.8^{\prime} \mathrm{S}, \text { LONG } \\ & 6^{\circ} 36.8^{\prime} \mathrm{E} \end{aligned}$	
214	On 13 October at 1847 ZT, your vessel's DR position is LAT $42^{\circ} 17.4^{\prime} \mathrm{N}$, LONG $138^{\circ} 46.2^{\prime} \mathrm{W}$. At approximately this time, you obtain a sextant altitude (hs) of Polaris reading $42^{\circ} 16.8^{\prime}$, with an index error of 3.2 ' on the arc. Your chronometer reads 03 h 45 m 20 s and is 1 m 32 s slow. What is your latitude by Polaris, given a height of eye of 44 feet?	$42^{\circ} 09.1{ }^{\prime} \mathrm{N}$	$42^{\circ} 12.5{ }^{\prime} \mathrm{N}$	42 ${ }^{\circ} 16.0^{\prime} \mathrm{N}$	$42^{\circ} 19.5{ }^{\prime} \mathrm{N}$	
215	On 13 October your 0515 zone time (ZT) fix gives you a position of LAT $26^{\circ} 53.0^{\prime} \mathrm{N}$, LONG $90^{\circ} 05.0^{\prime} \mathrm{W}$. Your vessel is on course $068^{\circ} \mathrm{T}$, and your speed is 7.8 knots. Local apparent noon (LAN) occurs at 1145 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $54^{\circ} 51.5^{\prime}$. What is the calculated latitude at LAN?	$27^{\circ} 12.6^{\prime} \mathrm{N}$	27º $14.1{ }^{\prime} \mathrm{N}$	$27^{\circ} 15.7^{\prime} \mathrm{N}$	$27^{\circ} 16.2^{\prime} \mathrm{N}$	
216	On 13 October your 0515 zone time fix gives you a position of LAT $26^{\circ} 53.0^{\prime} \mathrm{N}$, LONG $90^{\circ} 05.0^{\prime} \mathrm{W}$. Your vessel is on course $068^{\circ} \mathrm{T}$, and your speed is 7.8 knots. Local apparent noon (LAN) occurs at 1145 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $54^{\circ} 51.5^{\prime}$. What is the latitude at 1200 ZT?	$27^{\circ} 13.3^{\prime} \mathrm{N}$	27º $14.6^{\prime} \mathrm{N}$	$27^{\circ} 15.7^{\prime} \mathrm{N}$	$27^{\circ} 16.8^{\prime} \mathrm{N}$	
217	On 13 October your vessel's 1722 zone time DR position is LAT $27^{\circ} 36^{\prime}$ S, LONG $136^{\circ} 16^{\prime} \mathrm{E}$, when an amplitude of the Sun is observed. The Sun's center is on the celestial horizon and bears 266° per standard magnetic compass. Variation in the area is $2^{\circ} \mathrm{W}$. The chronometer reads 08 h 24 m 19 s and is 01 m 43 s fast. What is the deviation of the standard magnetic compass?	$2.3^{\circ} \mathrm{E}$	$2.8{ }^{\circ} \mathrm{W}$	$4.8^{\circ} \mathrm{E}$	$6.8^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
218	On 13 September, your 1830 ZT DR position was LAT $23^{\circ} 03^{\prime} \mathrm{S}$, LONG $105^{\circ} 16^{\prime} \mathrm{E}$ when you observe a faint unidentifiable star through a hole in the clouds. The star bore $132.3^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $29^{\circ} 34.6^{\prime}$. The chronometer read 11 h 24 m 39 s and is 5 m 08s slow. The index error is 1.0 off the arc, and the height of eye is 52 feet. What star did you observe?	Beta Gruis	Sigma Capricorni	Scheat	Alpha Indi	
219	On 13 September, your 1830 ZT DR position was LAT $23^{\circ} 03^{\prime}$ S, LONG $105^{\circ} 16^{\prime}$ E when you observed a faint unidentifiable star through a hole in the clouds. The star bore $265.0^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $62^{\circ} 25.4^{\prime}$. The chronometer read 11 h 24 m 39 s and is 5 m 08 s slow. The index error is 1.0 off the arc, and the height of eye is 52 feet. What star did you observe?	Sigma Ophiuchi	Alcyone	Dschubba	Gamma Lupi	
220	On 13 September, your 1830 ZT DR position was LAT $23^{\circ} 03^{\prime} \mathrm{S}$, LONG $105^{\circ} 16^{\prime}$ E when you observed a faint unidentifiable star through a hole in the clouds. The star bore $351.5^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $62^{\circ} 05.6^{\prime}$. The chronometer read 11 h 24 m 39 s and is 5 m 08 s slow. The index error is 1.0 off the arc, and the height of eye is 52 feet. What star did you observe?	Alpha Herculis	Kappa Scorpii	Alpha Arae	Beta Ophiuchi	
221	On 13 September, your 1830 ZT DR position was LAT $23^{\circ} 03^{\prime}$ S, LONG $105^{\circ} 16^{\prime}$ E, when you observed a faint unidentifiable star through a hole in the clouds. The star bore $148.0^{\circ} \mathrm{T}$ at a sextant altitude (hs) of $32^{\circ} 24.3^{\prime}$. The chronometer read 11 h 24 m 39 s and is 05 m 08s slow. The index error is 1.0 ' off the arc, and the height of eye is 52 feet. What star did you observe?	Beta Gruis	Alpha Tucanae	Beta Aquarii	Alpha Indi	
222	On 14 January, your 0746 zone time DR position is LAT $26^{\circ} 37.0^{\prime} \mathrm{N}$, LONG $153^{\circ} 19.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing $123^{\circ} \mathrm{psc}$. The chronometer reads 05 h 49 m 16 s , and the chronometer error is 02 m 29 s fast. The variation is $3^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$1.4{ }^{\circ} \mathrm{W}$	$1.6^{\circ} \mathrm{E}$	$3.4{ }^{\circ} \mathrm{E}$	$4.4{ }^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
223	On 14 January your 0550 DR position is LAT $25^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $38^{\circ} 16.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $043^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $37^{\circ} 12.1^{\prime}$. The chronometer reads 08 h 48 m 51 s , and is 01 m 22 s slow. What star did you observe?	Gienah	Kochab	Gacrux	Eltanin	
224	On 14 January your 0550 DR position is LAT $25^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $38^{\circ} 16.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $212^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $41^{\circ} 42.3^{\prime}$. The chronometer reads 08 h 48 m 51 s , and is 01 m 22 s slow. What star did you observe?	Gienah	Kochab	Gacrux	Eltanin	
225	On 14 January your 0550 DR position is LAT $25^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $38^{\circ} 16.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $192^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $06^{\circ} 15.2^{\prime}$. The chronometer reads 08 h 48 m 51 s , and is 01 m 22 s slow. What star did you observe?	Gienah	Kochab	Gacrux	Eltanin	
226	On 14 January your 0550 ZT DR position is LAT $25^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $38^{\circ} 16.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $004.5^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $40^{\circ} 10.0^{\prime}$. The chronometer reads 08 h 48 m 51 s and is 01 m 22 s slow. What star did you observe?	Gienah	Kochab	Gacrux	Eltanin	
227	On 14 January your 1922 DR position is LAT $27^{\circ} 18.5^{\prime} \mathrm{S}$, LONG $67^{\circ} 18.0^{\prime} \mathrm{E}$. You observe an unidentified star bearing $250^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $31^{\circ} 01.2^{\prime}$. The chronometer reads 03 h 25 m 43 s , and is 03 m 15 s fast. Which star did you observe?	Elnath	Fomalhaut	Pollux	Markab	
228	On 14 January your 1922 DR position is LAT $27^{\circ} 18.5^{\prime} \mathrm{S}$, LONG $67^{\circ} 18.0^{\prime} \mathrm{E}$. You observe an unidentified star bearing $295^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $13^{\circ} 50.7^{\prime}$. The chronometer reads 03 h 25 m 43 s , and is 03 m 15 s fast. What star did you observe?	Elnath	Fomalhaut	Pollux	Markab	
229	On 14 January your 1922 DR position is LAT $27^{\circ} 18.5^{\prime} \mathrm{S}$, LONG $67^{\circ} 18.0^{\prime} \mathrm{E}$. You observe an unidentified star bearing $054^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $07^{\circ} 52.1^{\prime}$. The chronometer reads 03 h 25 m 43 s , and is 03 m 15 s fast. What star did you observe?	Elnath	Fomalhaut	Pollux	Markab	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
230	On 14 January your 1922 ZT DR position is LAT $27^{\circ} 18.5^{\prime}$ S, LONG $67^{\circ} 18.0^{\prime} \mathrm{E}$. You observe an unidentified star bearing $029^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $29^{\circ} 35.0^{\prime}$. The chronometer reads 03 h 25 m 43 s and is 03 m 15 s fast. What star did you observe?	Elnath	Fomalhaut	Pollux	Markab	
231	On 14 March at 1845 ZT, you take a sextant observation of Polaris. Your DR position is LAT $29^{\circ} 10^{\prime} \mathrm{N}$, LONG $154^{\circ} 30^{\prime} \mathrm{W}$, and your sextant reads $29^{\circ} 53.5^{\prime}$. Your chronometer reads 04 h 42 m 36 s , and the chronometer error is 02 m 24 s slow. Your height of eye is 24 feet, and the index error is 1.3^{\prime} off the arc. Determine the latitude by Polaris.	29¹1.7'N	$29^{\circ} 15.5^{\prime} \mathrm{N}$	29 ${ }^{\circ} 18.0$ ' N	29²1.3'N	
232	On 14 March your 1846 ZT DR position is LAT $21^{\circ} 57.6^{\prime}$ N, LONG $132^{\circ} 16.2^{\prime}$ W. At that time you observe Polaris with a sextant altitude (hs) of $22^{\circ} 16.8^{\prime}$. The chronometer time of the sight is 03 h 45 m 10 s , and the chronometer error is 01 m 32 s slow. The index error is 3.2 ' off the arc, and the height of eye is 44.9 feet. What is your latitude by Polaris?	$21^{\circ} 32.4{ }^{\prime} \mathrm{N}$	21${ }^{\circ} 49.8{ }^{\prime}$	$21^{\circ} 51.0^{\prime} \mathrm{N}$	$21^{\circ} 53.1^{\prime} \mathrm{N}$	
233	On 14 October your 0800 zone time (ZT) dead reckoning position is LAT $28^{\circ} 22.0^{\prime} \mathrm{N}$, LONG $161^{\circ} 17.0^{\prime} \mathrm{E}$. Your vessel is on course $116^{\circ} \mathrm{T}$ at a speed of 17.5 knots. What is the ZT of local apparent noon (LAN)?	1148	1151	1156	1202	
234	On 14 October your 0800 ZT DR position is LAT $28^{\circ} 22.0^{\prime} \mathrm{N}$, LONG $161^{\circ} 17.0^{\prime} \mathrm{E}$. Your vessel is on course $116^{\circ} \mathrm{T}$ at a speed of 17.5 knots. What is the ZT of local apparent noon (LAN)?	1142	1148	1152	1156	
235	On 14 September your 1810 ZT DR position is LAT $27^{\circ} 12.0^{\prime}$ S, LONG $71^{\circ} 10.0^{\prime} \mathrm{E}$. You are on course $060^{\circ} \mathrm{T}$ at a speed of 15.0 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1822 running fix.	$\begin{aligned} & \text { LAT } 27^{\circ} 04.5^{\prime} \mathrm{S}, \text { LONG } \\ & 71^{\circ} 22.4^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 07.5^{\prime} \mathrm{S}, \text { LONG } \\ & 71^{\circ} 18.6^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 09.2^{\prime} \mathrm{S}, \text { LONG } \\ & 71^{\circ} 11.3^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 11.0^{\prime} \mathrm{S}, \text { LONG } \\ & 71^{\circ} 14.5^{\prime} \mathrm{E} \end{aligned}$	NP-0011

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
236	On 15 August an ex-meridian altitude of the Sun's lower limb at upper transit was observed at 1130 ZT . Your DR position is LAT $26^{\circ} 24.0^{\prime} \mathrm{S}$, LONG $155^{\circ} 02.0^{\prime} \mathrm{E}$, and your sextant altitude (hs) is $48^{\circ} 45.9^{\prime}$. The index error is 2.6^{\prime} on the arc, and your height of eye is 51.5 feet. The chronometer time of the observation is 01 h 27 m 38 s , and the chronometer error is 02 m 14 s slow. Find the latitude at meridian transit from the ex-meridian observation.	LAT $26^{\circ} 32.6$ 'S	LAT $26^{\circ} 51.6^{\prime} \mathrm{S}$	LAT $26{ }^{\circ} 57.0$ S	LAT $27^{\circ} 09.9$ S	
237	On 15 August your 0512 zone time position was LAT $29^{\circ} 18.0^{\prime} \mathrm{N}$, LONG $57^{\circ} 24.0^{\prime} \mathrm{W}$. Your vessel was steaming on course $262^{\circ} \mathrm{T}$ at a speed of 20.0 knots. An observation of the Sun's lower limb was made at 0824 ZT . The chronometer read 00h 22 m 24 s and was slow 01m 34s. The observed altitude (Ho) was $38^{\circ} 16.7^{\prime}$. LAN occurred at 1204 zone time. The observed altitude (Ho) was $74^{\circ} 58.0^{\prime}$. What was the longitude of your 1204 zone time running fix?	LONG 5952.0'W	LONG 5954.0'W	LONG 5958.5'W	LONG 6002.0'W	
238	On 15 August your vessel is enroute from Bombay, India, to San Francisco, CA. You are steering course $020^{\circ} \mathrm{T}$ and making a speed of 20.0 knots. Your 1830 zone time DR is LAT $26^{\circ} 13.0^{\prime} \mathrm{N}$, LONG $135^{\circ} 18.0^{\prime} \mathrm{W}$. You observed 3 celestial bodies. Determine the latitude and longitude of your 1935 running fix.	$\begin{aligned} & \text { LAT } 26^{\circ} 15.9^{\prime} \mathrm{N}, \text { LONG } \\ & 135^{\circ} 03.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 35.3^{\prime} \mathrm{N}, \text { LONG } \\ & 135^{\circ} 24.8^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 40.5^{\prime} \mathrm{N}, \text { LONG } \\ & 135^{\circ} 21.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \hline \text { LAT } 26^{\circ} 48.1^{\prime} \mathrm{N}, \text { LONG } \\ & 135^{\circ} 20.7^{\prime} \mathrm{W} \end{aligned}$	NP-0017
239	On 15 December in DR position LAT $23^{\circ} 24.0^{\prime} \mathrm{N}$, LONG $55^{\circ} 36.0^{\prime} \mathrm{W}$, you take an ex-meridian observation of the Sun's lower limb. The chronometer time of the sight is 03 h 45 m 19 s , and the chronometer error is 00 m 00 s . The sextant altitude (hs) is $43^{\circ} 02.3^{\prime}$. The index error is 2.6^{\prime} on the arc, and your height of eye is 65.0 feet. What is the latitude at meridian transit?	LAT $23^{\circ} 33.5^{\prime} \mathrm{N}$	LAT $23^{\circ} 35.8^{\prime} \mathrm{N}$	LAT $23{ }^{\circ} 38.1^{\prime} \mathrm{N}$	LAT $23^{\circ} 40.6^{\prime} \mathrm{N}$	
240	On 15 February at 0610 ZT , in DR position LAT $56^{\circ} 53.0^{\prime}$ N, LONG $157^{\circ} 02.9^{\prime}$ E, you observe Polaris at a sextant altitude (hs) of $56^{\circ} 10.4^{\prime}$. The index error is 2.5^{\prime} on the arc, and the height of eye is 18 meters. What is the latitude?	$56^{\circ} 41.8^{\prime} \mathrm{N}$	560 $47.9^{\prime} \mathrm{N}$	5648.1'N	$57^{\circ} 10.6$ N	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
241	On 15 July at 0447 ZT, your vessel's DR position is LAT $22^{\circ} 42^{\prime} \mathrm{N}$, LONG $126^{\circ} 36^{\prime}$ E. At approximately this time, you obtain a sextant altitude (hs) of Polaris reading $23^{\circ} 46.2^{\prime}$ with an index error of 1.6^{\prime} off the arc. Your chronometer reads 08 h 48 m 28 s , and is 1 m 16 s fast. What is your latitude by Polaris, given a height of eye of 33 feet?	22044.1'N	22²46.2'N	$22^{\circ} 50.2^{\prime} \mathrm{N}$	22º 54.1 ' N	
242	On 15 July in DR position LAT $22^{\circ} 19.0^{\prime} \mathrm{N}$, LONG $154^{\circ} 37.0^{\prime} \mathrm{W}$, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears $298^{\circ} \mathrm{psc}$. The chronometer reads 04 h 45 m 19s and is 01m 56s slow. Variation in the area is $7.5^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$2.7^{\circ} \mathrm{W}$	$3.0^{\circ} \mathrm{E}$	$3.6{ }^{\circ} \mathrm{W}$	$3.9^{\circ} \mathrm{E}$	
243	On 15 July your vessel is enroute from Portland, OR, to Singapore, Malaysia. You are steering course $243^{\circ} \mathrm{T}$ and making a speed of 16 knots. Your 1845 zone time DR is LAT $27^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $167^{\circ} 02.0^{\prime} \mathrm{E}$. You observed 3 celestial bodies. Determine the latitude and longitude of your 1945 running fix.	$\begin{aligned} & \text { LAT } 27^{\circ} 31.1^{\prime} \mathrm{N}, \text { LONG } \\ & 166^{\circ} 43.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 38.5^{\prime} \mathrm{N}, \text { LONG } \\ & 166^{\circ} 45.1^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 45.3^{\prime} \mathrm{N}, \text { LONG } \\ & 166^{\circ} 32.2^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 18.1^{\prime} \mathrm{N}, \text { LONG } \\ & 166^{\circ} 39.8^{\prime} \mathrm{E} \end{aligned}$	NP-0016
244	On 15 March in DR position LAT $21^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $55^{\circ} 26.0^{\prime} \mathrm{W}$, you take an ex-meridian observation of the Sun's lower limb. The chronometer time of the sight is 04 h 02 m 40 s , and the chronometer error is 02 m 24 s fast. The sextant altitude (hs) is $66^{\circ} 15.6^{\prime}$. The index error is 2.8 on the arc, and your height of eye is 56 feet. What is the latitude at meridian transit?	$21^{\circ} 12.0$ ' N	21¹8.0'N	$21^{\circ} 24.4{ }^{\prime} \mathrm{N}$	21³2.0'N	
245	On 15 November your 0813 zone time (ZT) fix gives you a position of LAT $22^{\circ} 30.0^{\prime} \mathrm{N}$, LONG $67^{\circ} 28.0^{\prime} \mathrm{W}$. Your vessel is on course $164^{\circ} \mathrm{T}$, and your speed is 13.5 knots. Local apparent noon (LAN) occurs at 1215 ZT, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $49^{\circ} 46.0^{\prime}$. What is the latitude at 1200 ZT?	$21^{\circ} 42.5^{\prime} \mathrm{N}$	21³9.3'N	$21^{\circ} 36.0^{\prime} \mathrm{N}$	$21^{\circ} 32.8{ }^{\prime} \mathrm{N}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
246	On 15 November your 0913 zone time fix gives you a position of LAT $22^{\circ} 30.0^{\prime} \mathrm{N}$, LONG $68^{\circ} 28.0^{\prime} \mathrm{W}$. Your vessel is on course $164^{\circ} \mathrm{T}$, and your speed is 13.5 knots. Local apparent noon (LAN) occurs at 1118 zone time at which time meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $49^{\circ} 46.0^{\prime}$. What is the calculated latitude at LAN?	$21^{\circ} 36.1^{\prime} \mathrm{N}$	21³7.7'N	21³9.3'N	$21^{\circ} 40.9^{\prime} \mathrm{N}$	
247	On 15 November your 1030 ZT DR position is LAT $17^{\circ} 25^{\prime} \mathrm{S}$, LONG $42^{\circ} 12^{\prime} \mathrm{W}$. You are on course $059^{\circ} \mathrm{T}$, speed 22 knots. Determine your 1200 position using the following observations of the Sun.	$\begin{aligned} & \text { LAT } 17^{\circ} 00.0^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 45.8^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 02.1^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 48.4^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 06.8^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 44.3^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 08.9^{\prime} \mathrm{S}, \text { LONG } \\ & 41^{\circ} 40.4^{\prime} \mathrm{W} \end{aligned}$	
248	On 15 November your 1030 ZT DR position is LAT $19^{\circ} 41$ 'S, LONG $41^{\circ} 37^{\prime} \mathrm{W}$. You are on course $239^{\circ} \mathrm{T}$, speed 22 knots. Determine your 1200 position using the following observations of the Sun.	$\begin{aligned} & \hline \text { LAT } 20^{\circ} 01.0^{\prime} \mathrm{S} \text {, LONG } \\ & 42^{\circ} 05.9^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 04.3^{\prime} \mathrm{S}, \text { LONG } \\ & 42^{\circ} 09.8^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 06.7^{\prime} \mathrm{S}, \text { LONG } \\ & 42^{\circ} 06.1^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 08.1^{\prime} \mathrm{S}, \text { LONG } \\ & 42^{\circ} 00.7^{\prime} \mathrm{W} \end{aligned}$	
249	On 15 October an ex-meridian altitude of the Sun's lower limb at upper transit was observed at 1146 ZT . Your DR position is LAT $22^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $139^{\circ} 52.0^{\prime} \mathrm{E}$, and your sextant altitude (hs) is $58^{\circ} 30.4^{\prime}$. The index error is 3.4^{\prime} on the arc, and your height of eye is 56.7 feet. The chronometer time of the observation is 02 h 45 m 06 s , and the chronometer error is 01 m 06 s slow. Find the latitude at meridian transit from the ex-meridian observation.	LAT $22^{\circ} 29.1^{\prime} \mathrm{N}$	LAT $22^{\circ} 35.2^{\prime} \mathrm{N}$	LAT $22^{\circ} 58.1^{\prime} \mathrm{N}$	LAT $23^{\circ} 20.6$ N	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
250	On 15 October your 0300 zone time DR position is LAT $27^{\circ} 14^{\prime}$ S, LONG $99^{\circ} 46^{\prime} \mathrm{E}$. You are on course $128^{\circ} \mathrm{T}$ at a speed of 19 knots. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Jupiter, Alphard, Betelgeuse	Mars, Regulus, Canopus	Achernar, Suhail, Alphard	Achernar, Procyon, Aldebaran	
251	On 15 October your 0325 zone time DR position is LAT $26^{\circ} 51.0^{\prime} \mathrm{N}$, LONG $138^{\circ} 17.0^{\prime} \mathrm{W}$. At that time, you observe Canopus bearing $167^{\circ} \mathrm{pgc}$. The chronometer reads 00 h 25 m 36 s , and the chronometer error is 00 m 20s slow. The variation is $2^{\circ} \mathrm{E}$. What is the gyro error?	$1.3^{\circ} \mathrm{W}$	$3.2{ }^{\circ} \mathrm{W}$	$3.2^{\circ} \mathrm{E}$	$4.1^{\circ} \mathrm{W}$	
252	On 16 April in DR position LAT $28^{\circ} 07.0^{\prime} \mathrm{N}$, LONG $81^{\circ} 47.0^{\prime} \mathrm{W}$, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears $073.5^{\circ} \mathrm{psc}$. The chronometer reads 10 h 53 m 41 s and is 02 m 23s slow. Variation in the area is $11^{\circ} \mathrm{E}$. What is the deviation of the magnetic compass?	$4.5^{\circ} \mathrm{E}$	$4.9{ }^{\circ} \mathrm{W}$	$6.1^{\circ} \mathrm{E}$	$6.5^{\circ} \mathrm{W}$	
253	On 16 April your 0200 zone time DR position is LAT $17^{\circ} 18^{\prime}$ S, LONG $168^{\circ} 46^{\prime}$ E. You are on course 236° T at a speed of 16 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 17^{\circ} 54.9^{\prime} \mathrm{S}, \text { LONG } \\ & 167^{\circ} 48.7^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 55.6^{\prime} \mathrm{S}, \text { LONG } \\ & 167^{\circ} 45.1^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 56.8^{\prime} \mathrm{S}, \text { LONG } \\ & 167^{\circ} 52.4^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 18^{\circ} 00.4^{\prime} \mathrm{S}, \text { LONG } \\ & 167^{\circ} 49.2^{\prime} \mathrm{E} \end{aligned}$	NP-0036
254	On 16 August , your 1600 ZT DR position is LAT $26^{\circ} 17.0^{\prime} \mathrm{N}$, LONG $165^{\circ} 17.0^{\prime} \mathrm{E}$. You are on course $301^{\circ} \mathrm{T}$ at a speed of 15 knots. What will be the zone time of sunset at your vessel?	1827	1832	1838	1845	
255	On 16 December your 1810 zone time DR position is LONG $129^{\circ} 46.5^{\prime}$ W. At that time you observe Polaris with a sextant altitude (hs) of $23^{\circ} 56.8^{\prime}$. The chronometer time of the sight is 03 h 12 m 31 s , and the chronometer error is 02 m 16 s fast. The index error is 2.5 off the arc, and the height of eye is 52.6 feet. What is your latitude by Polaris?	2307.8'N	$23^{\circ} 12.3^{\prime} \mathrm{N}$	$24^{\circ} 11.9^{\prime} \mathrm{N}$	$24^{\circ} 18.6^{\prime} \mathrm{N}$	
256	On 16 February , your 0300 ZT DR position is LAT $28^{\circ} 32.0^{\prime} \mathrm{S}$, LONG $176^{\circ} 49.0^{\prime} \mathrm{E}$. You are on course $082^{\circ} \mathrm{T}$ at a speed of 21 knots. What will be the zone time of sunrise at your vessel?	0534	0552	0631	0645	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
257	On 16 February your 0640 zone time (ZT) position was LAT $23^{\circ} 46.0^{\prime} \mathrm{N}$, LONG $156^{\circ} 24.0^{\prime} \mathrm{W}$. Your vessel was steaming on course $222^{\circ} \mathrm{T}$ at a speed of 18.0 knots. An observation of the Sun's lower limb was made at 0910 ZT . The chronometer read 07h 08m 06 s and was slow 01 m 56 s . The observed altitude (Ho) was $27^{\circ} 15.8^{\prime}$. LAN occurred at 1245 ZT (ZD +10). The observed altitude (Ho) was $55^{\circ} 25.3^{\prime}$. What was the longitude of your 1245 ZT running fix?	157³7.2'W	157042.0'W	157 $45.7^{\prime} \mathrm{W}$	15747.2'W	
258	On 16 February your 1845 ZT DR position is LAT $25^{\circ} 50.5^{\prime}$ N, LONG $46^{\circ} 24.0^{\prime} \mathrm{W}$. At that time you observe Polaris with a sextant altitude (hs) of $26^{\circ} 25.5^{\prime}$. The chronometer time of the sight is 09 h $47 \mathrm{~m} \mathrm{30s}$ and the chronometer error is 02 m 16 s fast. The index error is 2.5 ' off the arc, and the height of eye is 55.0 feet. What is your latitude by Polaris?	$25^{\circ} 38.0$ ' N	$25^{\circ} 44.2^{\prime} \mathrm{N}$	$26^{\circ} 00.1^{\prime} \mathrm{N}$	26³7.5'N	
259	On 16 January at 1804 zone time, you take a sextant observation of Polaris. Your vessel's DR position is LAT $36^{\circ} 12^{\prime}$ N, LONG $124^{\circ} 36^{\prime} \mathrm{W}$, and your sextant reads (hs) $37^{\circ} 16.4^{\prime}$. Your chronometer reads 02 h 02 m 12 s , and is 01 m 36 s slow. Your height of eye is 60 feet, and the index error is 1.5 on the arc. From your observation of Polaris, what is the latitude of your vessel?	$36^{\circ} 12.6^{\prime} \mathrm{N}$	$36^{\circ} 14.4{ }^{\prime} \mathrm{N}$	36¹7.9'N	$36^{\circ} 20.2^{\prime} \mathrm{N}$	
260	On 16 January your 0930 ZT DR position is LAT $26^{\circ} 07.0^{\prime} \mathrm{S}$, LONG $51^{\circ} 43.0^{\prime} \mathrm{E}$. Your vessel is on course $238^{\circ} \mathrm{T}$ at a speed of 17.0 knots. What is the ZT of local apparent noon (LAN)?	1145	1148	1152	1156	
261	On 16 July at 2000 zone time, you take a sextant observation of Polaris. Your vessel's DR position is LAT $27^{\circ} 22.0^{\prime} \mathrm{N}$, LONG $148^{\circ} 35.0^{\prime} \mathrm{W}$, and your sextant reads $26^{\circ} 57.5^{\prime}$. Your chronometer reads 05h 59m 16 s , and your chronometer error is 01 m 28 s slow. Your height of eye is 48 feet, and the index error for your sextant is 1.3' off the arc. What is the latitude of your vessel from your observation of Polaris?	$26^{\circ} 52.1^{\prime} \mathrm{N}$	$26^{\circ} 58.8^{\prime} \mathrm{N}$	27³6.1'N	$27^{\circ} 43.4{ }^{\prime} \mathrm{N}$	
262	On 16 July your 1810 zone time DR position is LAT $24^{\circ} 16.5^{\prime}$ S, LONG $162^{\circ} 52.0^{\prime} \mathrm{E}$. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Arcturus, Spica, Antares	Jupiter, Alphard, Alphecca	Pollux, Mars, Deneb	Vega, Hadar, Venus	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
263	On 16 July your 1920 ZT DR position is LAT $25^{\circ} 36.0^{\prime}$ N, LONG $172^{\circ} 18.9^{\prime} \mathrm{W}$. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Rasalhague, Spica, Arcturus	Venus, Antares, Vega	Vega, Mars, Antares	Saturn, Acrux, Spica	
264	On 16 June , in DR position LAT $50^{\circ} 57.0^{\prime} \mathrm{S}$, LONG $53^{\circ} 03.9^{\prime} \mathrm{W}(Z D+4)$, you take an ex-meridian observation of Acrux at lower transit. The chronometer time of the sight is 10 h 08 m 18 s , and the chronometer error is 02 m 12 s fast. The sextant altitude (hs) is $23^{\circ} 49.0^{\prime}$. The index error is 1.1^{\prime} off the arc, and your height of eye is 26 feet. What is the latitude at meridian transit?	5041.2'S	5102.2'S	51³3.0'S	5141.2'S	
265	On 16 June 0612 zone time, morning stars were observed. The vessel's position was LAT $27^{\circ} 23.0^{\prime} \mathrm{S}$, LONG $56^{\circ} 22.0^{\prime} \mathrm{W}$. The vessel is steaming at 16.0 knots on a course of $212^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0850 zone time. The chronometer reads 00 h 53 m 19 s , and the sextant altitude is $22^{\circ} 58.6^{\prime}$. The index error is 2.0^{\prime} off the arc, and the chronometer error is 02 m 43 s fast. Your height of eye is 61.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	044.3 ${ }^{\circ}$	052.6°	136.1°	148.4°	
266	On 16 June your 0430 zone time DR position is LAT $29^{\circ} 24.0^{\prime} \mathrm{S}$, LONG $36^{\circ} 16.0^{\prime} \mathrm{E}$. At that time, you observe Vega bearing 341.0° psc. The chronometer reads 02 h 32 m 06 s , and the chronometer error is 01 m 54 s fast. The variation is $20.5^{\circ} \mathrm{W}$. What is the deviation?	$3.2^{\circ} \mathrm{E}$	$3.2{ }^{\circ} \mathrm{W}$	$2.4{ }^{\circ} \mathrm{W}$	$2.8^{\circ} \mathrm{E}$	
267	On 16 March , your 0330 ZT DR position is LAT $22^{\circ} 36.0^{\prime} \mathrm{S}$, LONG $76^{\circ} 16.0^{\prime} \mathrm{E}$. You are on course $098^{\circ} \mathrm{T}$ at a speed of 16 knots. What will be the ZT of sunrise at your vessel?	0545	0553	0600	0608	
268	On 16 November your 0800 zone time DR position is LAT $25^{\circ} 11.0^{\prime} \mathrm{N}$, LONG $117^{\circ} 41.0^{\prime} \mathrm{W}$. Your vessel is on course $252^{\circ} \mathrm{T}$ at a speed of 14.5 knots. What is the zone time of local apparent noon (LAN)?	1131	1135	1139	1144	
269	On 16 November your 0800 ZT DR position is LAT $25^{\circ} 11.0^{\prime} \mathrm{N}$, LONG $117^{\circ} 41.0^{\prime} \mathrm{W}$. Your vessel is on a course of $252^{\circ} \mathrm{T}$ at a speed of 14.5 knots. What is the ZT of local apparent noon (LAN)?	1135	1139	1143	1146	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
270	On 16 November your 1200 ZT DR position is LAT $26^{\circ} 48.0^{\prime} \mathrm{S}$, LONG $124^{\circ} 32.0^{\prime} \mathrm{W}$. Your vessel is on course $078^{\circ} \mathrm{T}$, speed 17.0 knots. You observe an exmeridian of the Sun's lower limb. The sextant (hs) reads $81^{\circ} 41.3^{\prime}$. The index error is 1.5^{\prime} off the arc, and your height of eye is 56 feet. The chronometer time of the observation is 08 h 15 m 32 s , and the chronometer is 03 m 06 s fast. What is your latitude at meridian transit?	2642.6'S	26047.1'S	2649.5'S	2652.3'S	
271	On 16 October evening twilight will occur at 1746 ZT, and your DR position will be LAT $28^{\circ} 43.2^{\prime} \mathrm{N}$, LONG $60^{\circ} 29.8^{\prime}$ W. Considering their magnitude and location, which of the following are the three best stars to select for a fix at star time?	Antares, Arcturus, Polaris	Deneb, Polaris, Vega	Antares, Deneb, Vega	Vega, Polaris, Enif	
272	On 16 September, your vessel's 0736 zone time DR position is LAT $27^{\circ} 34^{\prime} \mathrm{S}$, LONG $174^{\circ} 49^{\prime} \mathrm{E}$, when an azimuth of the Sun is observed. The chronometer time of the sight is 07 h 38 m 11 s , and the Sun is bearing 079.8° per gyrocompass. The chronometer error is 01 m 46 s fast, and the variation in the area is $11.0^{\circ} \mathrm{W}$. At the time of the sight, the helmsman reports that he was heading $252^{\circ} \mathrm{pgc}$ and 258° per magnetic compass. What is the deviation of the magnetic compass?	$2^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{W}$	
273	On 16 September your 0600 ZT fix gives you a position of LAT $29^{\circ} 47.2^{\prime} \mathrm{N}$, LONG $65^{\circ} 28.4^{\prime} \mathrm{W}$. Your vessel is on course $242^{\circ} \mathrm{T}$ and your speed is 13.5 knots. Local apparent noon (LAN) occurs at 1227 ZT, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $63^{\circ} 25.3^{\prime}$. What is the calculated latitude at LAN?	$29^{\circ} 07.9^{\prime} \mathrm{N}$	2906.1'N	2904.7'N	$29^{\circ} 01.6^{\prime} \mathrm{N}$	
274	On 17 April , your 1516 zone time DR position is LAT $27^{\circ} 24.0^{\prime} \mathrm{N}$, LONG $115^{\circ} 24.0^{\prime} \mathrm{E}$. At that time, you observe the Sun bearing 247° psc. The chronometer reads 07 h 16 m 26 s , and the chronometer error is 00 m 32 s slow. The variation is $4.5^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$4.5^{\circ} \mathrm{W}$	$5.4^{\circ} \mathrm{E}$	$6.2^{\circ} \mathrm{E}$	$6.2^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
275	On 17 April , your vessel is enroute from the Panama Canal to Kobe, Japan. Your 0400 zone time DR position is LAT $26^{\circ} 12.0^{\prime} \mathrm{N}$, LONG $126^{\circ} 12.0^{\prime} \mathrm{W}$. Your vessel is on course $285^{\circ} \mathrm{T}$ at a speed of 18 knots. What will be the zone time of sunrise at your vessel?	0535	0541	0552	0602	
276	On 17 April your 1610 ZT DR position is LAT $22^{\circ} 07.0^{\prime} \mathrm{N}$, LONG $158^{\circ} 16.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing 271° psc. The chronometer reads 03 h 08 m 52 s , and the chronometer error is $01 \mathrm{~m} \mathrm{16s}$ slow. The variation is $4^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$1.1^{\circ} \mathrm{W}$	$1.7{ }^{\circ} \mathrm{E}$	$2.3^{\circ} \mathrm{W}$	$2.9^{\circ} \mathrm{E}$	
277	On 17 April your vessel's 1856 zone time DR position is LAT $22^{\circ} 35.0^{\prime} \mathrm{N}$, LONG $63^{\circ} 15.0^{\prime} \mathrm{W}$. At that time, a sextant observation of the star Sirius is made. The sextant altitude is $42^{\circ} 45.0^{\prime}$ and the chronometer reads 10 h 59 m 27 s . The index error is 2.6^{\prime} off the arc, and the chronometer error is 03 m 01 s fast. Your height of eye is determined to be 45 feet. What is the computed altitude (hc) and azimuth (Zn) for this sight using the assumed position?	$42^{\circ} 40.0{ }^{\prime}, 214.9^{\circ} \mathrm{T}$	$42^{\circ} 40.0{ }^{\prime}, 325.1^{\circ} \mathrm{T}$	$4^{\circ} 51.6^{\prime}, 214.9^{\circ} \mathrm{T}$	42 $51.6^{\prime}, 325.1^{\circ} \mathrm{T}$	
278	On 17 April your vessel's position is LAT $21^{\circ} 00^{\prime} \mathrm{S}$, LONG $78^{\circ} 30^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the celestial horizon and bears 082.7° per standard magnetic compass. Variation in the area is $2.0^{\circ} \mathrm{W}$. The chronometer reads 10 h 59 m 24 s and is 01 m 24 s fast. What is the deviation of the compass?	$2.0^{\circ} \mathrm{W}$	$3.0^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{E}$	$3.0^{\circ} \mathrm{E}$	
279	On 17 December your 0600 ZT fix gives you a position of LAT $27^{\circ} 16.7^{\prime} \mathrm{N}$, LONG $138^{\circ} 39.2^{\prime} \mathrm{W}$. Your vessel is on course $137^{\circ} \mathrm{T}$, and your speed is 14.8 knots. Local apparent noon (LAN) occurs at 1207 ZT, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $40^{\circ} 22.1^{\prime}$. What is the calculated latitude at LAN?	2609.9'N	26¹1.6'N	26¹3.0'N	26¹5.4'N	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
280	On 17 January your 0730 zone time fix gives you a position of LAT $22^{\circ} 26.0^{\prime} \mathrm{S}$, LONG $152^{\circ} 17.0^{\prime} \mathrm{E}$. Your vessel is steaming on a course of $116^{\circ} \mathrm{T}$ at a speed of 17 knots. An observation of the Sun's lower limb is made at 1015 zone time. The chronometer reads 00 h 13 m 23 s , and the chronometer error is 01 m 49 s slow. The observed altitude (Ho) is $66^{\circ} 02.1^{\prime}$. LAN occurs at 1152 zone time and a meridian altitude of the Sun's lower limb is made. The observed altitude (Ho) is $87^{\circ} 54.2^{\prime}$. Determine the vessel's 1200 zone time position.	$\begin{aligned} & \text { LAT } 22^{\circ} 53.8^{\prime} \mathrm{S}, \text { LONG } \\ & 153^{\circ} 25.6^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 53.8^{\prime} \mathrm{S}, \text { LONG } \\ & 153^{\circ} 28.8^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 56.3^{\prime} \mathrm{S}, \text { LONG } \\ & 153^{\circ} 25.6^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 56.3^{\prime} \mathrm{S}, \text { LONG } \\ & 153^{\circ} 28.8^{\prime} \mathrm{E} \end{aligned}$	
281	On 17 January your 0730 zone time position was LAT $22^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $152^{\circ} 17.0^{\prime} \mathrm{E}$. Your vessel was steaming on course $136^{\circ} \mathrm{T}$ at a speed of 17.0 knots. An observation of the Sun's lower limb was made at 1015 ZT. The chronometer read 00h 13m 23s and was slow 01m 49s. The observed altitude (Ho) was $40^{\circ} 25.7^{\prime}$. LAN occurred at 1222 zone time. The observed altitude (Ho) was $47^{\circ} 48.1^{\prime}$. What was the longitude of your 1200 zone time running fix?	LONG 15304.2'E	LONG 15308.3'E	LONG 153¹3.1'E	LONG 153¹8.6'E	
282	On 17 July your 1951 zone time DR position is LAT $24^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $51^{\circ} 16.0^{\prime} \mathrm{W}$. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Hadar, Deneb, Alphard	Regulus, Venus, Antares	Mars, Vega, Dubhe	Kochab, Jupiter, Rasalhague	
283	On 17 June, your 0815 zone time DR position is LAT $25^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $47^{\circ} 16.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing $079.5^{\circ} \mathrm{psc}$. The chronometer reads 11 h 15 m 03 s , and the chronometer error is 01 m 15 s fast. The variation is $3^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$0.7^{\circ} \mathrm{W}$	$3.5{ }^{\circ} \mathrm{W}$	$3.7^{\circ} \mathrm{E}$	$2.3^{\circ} \mathrm{E}$	
284	On 17 March your 0520 DR position is LAT $27^{\circ} 23.0^{\prime} \mathrm{N}$, LONG $39^{\circ} 42.0^{\prime} \mathrm{W}$. At this time you observe an unidentified star bearing $270^{\circ} \mathrm{T}$ with an observed altitude of $46^{\circ} 30.2^{\prime}$. The chronometer reads 08 h 22 m 15 s , and is 01 m 45 s fast. What star did you observe?	Altair	Alkaid	Arcturus	Deneb	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	\|llustrations
285	On 17 March your 0520 DR position is LAT $27^{\circ} 23.0^{\prime} \mathrm{N}$, LONG $39^{\circ} 42.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $110^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $50^{\circ} 47.2^{\prime}$. The chronometer reads 08 h 22 m 15 s , and is 01 m 45 s fast. What star did you observe?	Altair	Alkaid	Arcturus	Deneb	
286	On 17 March your 0520 Dr position is LAT $27^{\circ} 23.0^{\prime} \mathrm{N}$, LONG $39^{\circ} 42.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $313^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $43^{\circ} 03.8^{\prime}$. The chronometer reads 08 h 22 m 15 s and is 01 m 45 s fast. What star did you observe?	Altair	Alkaid	Arcturus	Deneb	
287	On 17 March your 0800 zone time DR position is LAT $21^{\circ} 27.0^{\prime} \mathrm{N}$, LONG $65^{\circ} 25.0^{\prime} \mathrm{W}$. Your vessel is on course $105^{\circ} \mathrm{T}$ at a speed of 17.5 knots. What is the zone time of local apparent noon (LAN)?	1210	1218	1225	1231	
288	On 17 March your 1845 DR position is LAT $25^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $66^{\circ} 48.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $077^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $67^{\circ} 04.4^{\prime}$. The chronometer reads 10 h 47 m 49 s , and is 1 m 54 s fast. What star did you observe?	Capella	Mirfak	Pollux	Rigel	
289	On 17 March your 1845 DR position is LAT $25^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $66^{\circ} 48.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $320^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $50^{\circ} 02.9^{\prime}$. The chronometer reads 10 h 47 m 49 s , and is 1 m 54 s fast. What star did you observe?	Capella	Mirfak	Pollux	Rigel	
290	On 17 March your 1845 DR position is LAT $25^{\circ} 10.0^{\prime} \mathrm{N}$, LONG $66^{\circ} 48.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $340^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $66^{\circ} 25.1^{\prime}$. The chronometer reads 10 h 47 m 49 s , and is 1 m 54 s fast. What star did you observe?	Capella	Mirfak	Pollux	Rigel	
291	On 17 May , your 0300 ZT DR position is LAT 27º21.0'N, LONG $146^{\circ} 14.0^{\prime} \mathrm{E}$. You are on course $107^{\circ} \mathrm{T}$ at a speed of 18 knots. What will be the zone time of sunrise at your vessel?	0457	0511	0519	0522	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
292	On 17 May, your 1554 zone time DR position is LAT $26^{\circ} 33.0^{\prime} \mathrm{N}$, LONG $65^{\circ} 46.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing $269^{\circ} \mathrm{psc}$. The chronometer reads 07 h 55 m 47 s , and the chronometer error is $01 \mathrm{~m} \mathrm{14s}$ fast. The variation is $3^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$0.6{ }^{\circ} \mathrm{E}$	$1.6{ }^{\circ} \mathrm{W}$	$4.6{ }^{\circ} \mathrm{W}$	$7.6^{\circ} \mathrm{E}$	
293	On 17 May at 0501 zone time, morning stars were observed, and the vessel's position was determined to be LAT $22^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $103^{\circ} 46.0^{\prime} \mathrm{W}$. Your vessel is steaming at 24.0 knots on a course of $301^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0845 zone time. The chronometer reads 03 h 43 m 32 s , and the sextant altitude is $28^{\circ} 24.7^{\prime}$. The index error is 1.5^{\prime} off the arc, and the chronometer error is 02 m 02 s slow. Your height of eye on the bridge is 85.5 feet. What is the azimuth (Zn) of this sight using the assumed position?	${ }^{051.0}{ }^{\circ} \mathrm{T}$	${ }^{052.5}{ }^{\circ} \mathrm{T}$	${ }^{054.2}{ }^{\circ} \mathrm{T}$	${ }^{055.7}{ }^{\circ} \mathrm{T}$	
294	On 17 November, your 1530 ZT DR position is LAT $27^{\circ} 13.0^{\prime} \mathrm{S}$, LONG $153^{\circ} 21.0^{\prime} \mathrm{W}$. You are on course $261^{\circ} \mathrm{T}$ at a speed of 14 knots. What will be the ZT of sunset at your vessel?	1813	1828	1834	1845	
295	On 17 November in DR position LAT $01^{\circ} 14.4^{\prime} \mathrm{S}$, LONG $148^{\circ} 45.5^{\prime} \mathrm{E}$, you take an ex-meridian observation of the planet Venus at upper transit. The chronometer time of the sight is 05 h 31 m 42 s , and the chronometer error is 01 m 50 s fast. The sextant altitude (hs) is $64^{\circ} 41.1^{\prime}$. The index error is 1.8^{\prime} off the arc, and your height of eye is 50 feet. What is the latitude at meridian transit?	LAT 01¹4.4'S	LAT 01¹6.3'S	LAT 01¹8.0'S	LAT 01²0.2'S	
296	On 18 August at 0600 ZT , morning stars were observed, and the vessel's position was determined to be LAT $19^{\circ} 48^{\prime} \mathrm{N}$, LONG $108^{\circ} 34^{\prime} \mathrm{W}$. Your vessel is steaming on course $166^{\circ} \mathrm{T}$ at a speed of 16 knots. An observation of the Sun's lower limb is made at 1036 ZT. The chronometer reads 05 h 34 m 48 s and is slow 01m 24s. What is the computed altitude (Hc) and azimuth (Zn) for this 1036 ZT observation using the assumed position method?	Hc 65 ${ }^{\circ} 18.5$, $\mathrm{Zn} 102.1^{\circ}$	Hc 65¹4.8', Zn 100.4 ${ }^{\circ}$	Hc 65º $11.3^{\prime}, \mathrm{Zn} 099.4^{\circ}$	Hc 65 07.2 , $\mathrm{Zn} 101.2^{\circ}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
297	On 18 May your 1030 ZT DR position is LAT $18^{\circ} 30^{\prime} \mathrm{N}$, LONG $62^{\circ} 31^{\prime} \mathrm{W}$. You are on course $286^{\circ} \mathrm{T}$, speed 24 knots. Determine your 1200 position using the following observations of the Sun.	$\begin{aligned} & \text { LAT } 18^{\circ} 33.6^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 54.3^{\prime} \mathrm{W} \end{aligned}$	LAT $18^{\circ} 35.2^{\prime} \mathrm{N}$, LONG 62ํㄴ․ $7^{\prime} \mathrm{W}$	$\begin{aligned} & \text { LAT } 18^{\circ} 38.7^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 59.2^{\prime} \mathrm{W} \end{aligned}$	LAT $18^{\circ} 41.1^{\prime} \mathrm{N}$, LONG $62^{\circ} 53.9^{\prime} \mathrm{W}$	
298	On 18 May your 1030 ZT DR position is LAT $20^{\circ} 41^{\prime} \mathrm{N}$, LONG $63^{\circ} 32^{\prime} \mathrm{W}$. You are on course $106^{\circ} \mathrm{T}$, speed 24 knots. Determine your 1200 position using the following observations of the Sun.	$\begin{aligned} & \text { LAT } 20^{\circ} 32.6^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 57.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \hline \text { LAT } 20^{\circ} 30.1^{\prime} \mathrm{N}, \text { LONG } \\ & 63^{\circ} 01.9^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 27.6^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 52.4^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 25.2^{\prime} \mathrm{N}, \text { LONG } \\ & 62^{\circ} 56.9^{\prime} \mathrm{W} \end{aligned}$	
299	On 18 November your 1750 zone time DR position is LONG $110^{\circ} 16.0^{\prime}$ W. At that time you observe Polaris with a sextant altitude (hs) of $21^{\circ} 29.8^{\prime}$. The chronometer time of the sight is 00 h 52 m 43 s , and the chronometer error is 02 m 18 s fast. The index error is 3.2 ' on the arc, and the height of eye is 49.5 feet. What is your latitude by Polaris?	$21^{\circ} 03.4{ }^{\prime} \mathrm{N}$	$21^{\circ} 13.4{ }^{\prime} \mathrm{N}$	$21^{\circ} 28.1^{\prime} \mathrm{N}$	$21^{\circ} 35.1^{\prime} \mathrm{N}$	
300	On 18 October, your 1330 ZT DR position is LAT $27^{\circ} 32.0^{\prime} \mathrm{N}$, LONG $154^{\circ} 47.0^{\prime} \mathrm{W}$. You are on course $115^{\circ} \mathrm{T}$ at a speed of 20 knots. What will be the zone time of sunset at your vessel?	1715	1729	1742	1751	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
301	On 18 October at 0518 ZT, morning stars were observed and the vessel's position was determined to be LAT $25^{\circ} 31.0^{\prime} \mathrm{N}$, LONG $146^{\circ} 29.2^{\prime} \mathrm{E}$. Your vessel is steaming at 19.0 knots on a course of $308^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0915 ZT . The chronometer reads 11 h 17 m 11 s , and the sextant altitude (hs) is $34^{\circ} 51.4^{\prime}$. The index error is 2.0 off the arc, and the chronometer error is 01 m 57 s fast. Your height of eye on the bridge is 54.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	$120.6^{\circ} \mathrm{T}$	$121.9^{\circ} \mathrm{T}$	$125.5^{\circ} \mathrm{T}$	$127.3^{\circ} \mathrm{T}$	
302	On 19 January your 0300 zone time DR position is LAT $22^{\circ} 133^{\prime} \mathrm{N}$, LONG $40^{\circ} 19^{\prime} \mathrm{W}$. You are on course $297^{\circ} \mathrm{T}$ at a speed of 17 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0545 running fix?	$\begin{aligned} & \text { LAT } 22^{\circ} 29.0^{\prime} \mathrm{N}, \text { LONG } \\ & 41^{\circ} 06.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 30.3^{\prime} \mathrm{N}, \text { LONG } \\ & 41^{\circ} 00.2^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 31.1^{\prime} \mathrm{N}, \text { LONG } \\ & 42^{\circ} 58.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 22^{\circ} 33.0^{\prime} \mathrm{N}, \text { LONG } \\ & 42^{\circ} 55.9^{\prime} \mathrm{W} \end{aligned}$	
303	On 19 July your 1500 ZT DR position is LAT $28^{\circ} 25.0^{\prime} \mathrm{N}$, LONG $120^{\circ} 28.0^{\prime} \mathrm{W}$. You are on course $233^{\circ} \mathrm{T}$ at a speed of 10 knots. What will be the zone time of sunset at your vessel?	1842	1853	1901	1909	
304	On 19 June your vessel's 0523 ZT DR position is LAT $25^{\circ} 12.0^{\prime} \mathrm{N}$, LONG $123^{\circ} 14.0^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the visible horizon and bears 052.0° per standard compass. Variation in the area is $15^{\circ} \mathrm{E}$. The chronometer reads 01 h 21 m 58 s and is 01 m 18 s slow. What is the deviation of the standard compass?	$1.4{ }^{\circ} \mathrm{E}$	$1.4{ }^{\circ} \mathrm{W}$	$1.7^{\circ} \mathrm{W}$	$3.3{ }^{\circ} \mathrm{W}$	
305	On 19 November in DR position LAT $20^{\circ} 03.5^{\prime} \mathrm{N}$, LONG $129^{\circ} 48.0^{\prime} \mathrm{W}$, you take an ex-meridian observation of the planet Venus at upper transit. The chronometer time of the sight is 11 h 29 m 44 s , and the chronometer error is 01 m 23 s slow. The sextant altitude (hs) is $43^{\circ} 54.3^{\prime}$. The index error is 2.0^{\prime} off the arc, and your height of eye is 48 feet. What is the latitude at meridian transit?	$20^{\circ} 08.2^{\prime} \mathrm{N}$	$19^{\circ} 58.0$ ' N	$19^{\circ} 53.2^{\prime} \mathrm{N}$	$19^{\circ} 50.6{ }^{\prime} \mathrm{N}$	
306	On 19 November your 0146 ZT position is LAT $33^{\circ} 48^{\prime} \mathrm{N}$, LONG $25^{\circ} 22^{\prime} \mathrm{E}$. You observe Polaris bearing $359.8^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $224^{\circ} \mathrm{pgc}$ and $222.5^{\circ} \mathrm{psc}$. The variation is $2^{\circ} \mathrm{E}$. What is the deviation for that heading?	$2.0^{\circ} \mathrm{E}$	$0.5^{\circ} \mathrm{E}$	$1.0^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
307	On 19 November your 0200 zone time DR position is LAT $18^{\circ} 41^{\prime}$ N, LONG $150^{\circ} 37^{\prime} \mathrm{E}$. You are on course $014^{\circ} \mathrm{T}$ at a speed of 18 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 19^{\circ} 45.4^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 52.6^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 42.8^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 56.9^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 41.2^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 46.3^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 39.3^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 51.8^{\prime} \mathrm{E} \end{aligned}$	NP-0031
308	On 19 November your 0200 zone time DR position is LAT $20^{\circ} 29.0^{\prime} \mathrm{N}$, LONG $150^{\circ} 21.3^{\prime} \mathrm{E}$. You are on course $136^{\circ} \mathrm{T}$ at a speed of 18 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 19^{\circ} 30.1^{\prime} \mathrm{N}, \text { LONG } \\ & 151^{\circ} 06.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 31.7^{\prime} \mathrm{N}, \text { LONG } \\ & 151^{\circ} 04.9^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 33.0^{\prime} \mathrm{N}, \text { LONG } \\ & 151^{\circ} 10.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 35.8^{\prime} \mathrm{N}, \text { LONG } \\ & 151^{\circ} 13.6^{\prime} \mathrm{E} \end{aligned}$	NP-0033
309	On 19 November your 0300 zone time DR position is LAT $19^{\circ} 23^{\prime} \mathrm{N}$, LONG $151^{\circ} 377^{\prime} \mathrm{E}$. You are on course $293^{\circ} \mathrm{T}$ at a speed of 17 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 19^{\circ} 38.5^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 41.6^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 34.8^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 48.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 32.9^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 52.3^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 30.5^{\prime} \mathrm{N}, \text { LONG } \\ & 150^{\circ} 48.5^{\prime} \mathrm{E} \end{aligned}$	NP-0039
310	On 19 September your 0300 zone time DR position is LAT $24^{\circ} 35$ ' N , LONG $88^{\circ} 40^{\prime} \mathrm{W}$. You are on course $288^{\circ} \mathrm{T}$ at a speed of 14 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	LAT $24^{\circ} 47.4^{\prime} \mathrm{N}$, LONG 89̊ㅗ.0'W	$\begin{aligned} & \text { LAT } 24^{\circ} 52.5^{\prime} \mathrm{N}, \text { LONG } \\ & 89^{\circ} 22.4^{\prime} \mathrm{W} \end{aligned}$	LAT $24^{\circ} 59.5^{\prime} \mathrm{N}$, LONG 89ํ.28.6'W	$\begin{aligned} & \text { LAT } 25^{\circ} 06.0^{\prime} \mathrm{N}, \text { LONG } \\ & 90^{\circ} 37.0^{\prime} \mathrm{W} \end{aligned}$	NP-0028
311	On 2 April your 0830 zone time fix gives you a position of LAT $20^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $004^{\circ} 12.0^{\prime} \mathrm{E}$. Your vessel is steaming a course of $143^{\circ} \mathrm{T}$ at a speed of 18.0 knots. An observation of the Sun's upper limb is made at 0903 zone time, and the observed altitude (Ho) is $42^{\circ} 39.6^{\prime}$. The chronometer reads 09h 05m 40 s , and the chronometer error is 02 m 15 s fast. Local apparent noon occurs at 1145 zone time, and a meridian altitude of the Sun's lower limb is made. The observed altitude (Ho) for this sight is $63^{\circ} 46.2^{\prime}$. Determine the vessel's 1200 zone time position.	$\begin{aligned} & \text { LAT } 21^{\circ} 10.1^{\prime} \mathrm{S}, \text { LONG } \\ & 004^{\circ} 53.9^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 21^{\circ} 14.0^{\prime} \mathrm{S}, \text { LONG } \\ & 004^{\circ} 55.0^{\prime} \mathrm{E} \end{aligned}$	LAT $21^{\circ} 18.0^{\prime} \mathrm{S}$, LONG 00500.5'E	$\begin{aligned} & \text { LAT } 22^{\circ} 42.0^{\prime} \mathrm{S}, \text { LONG } \\ & 004^{\circ} 57.0^{\prime} \mathrm{E} \end{aligned}$	
312	On 2 April your 0900 zone time DR position is LAT 2804.0'S, LONG $94^{\circ} 14.0^{\prime} \mathrm{E}$. Your vessel is on course $316^{\circ} \mathrm{T}$ at a speed of 18.5 knots. What is the zone time of local apparent noon (LAN)?	1138	1143	1146	1149	
313	On 2 February your 0400 zone time DR position is LAT $24^{\circ} 14.0^{\prime} \mathrm{N}$, LONG $163^{\circ} 28.0^{\prime} \mathrm{W}$. You are on course $322^{\circ} \mathrm{T}$ at a speed of 22 knots. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Saturn, Antares, Rasalhague	Jupiter, Saturn, Polaris	Saturn, Polaris, Zubenelgenubi	Jupiter, Spica, Denebola	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
314	On 2 January, you are on a course of $094^{\circ} \mathrm{T}$ at a speed of 20 knots. At 0430 ZT , your DR position is LAT $24^{\circ} 12^{\prime} \mathrm{N}$, LONG $71^{\circ} 24^{\prime} \mathrm{W}$. Determine the zone time of sunrise.	0627	0636	0644	0701	
315	On 2 January you observe the lower limb of the Sun at a sextant altitude (hs) of $35^{\circ} 50.4^{\prime}$. The index error is 0.8 ' on the arc. The height of eye is 24 feet (7.3 meters). What is the observed altitude (Ho)?	$35^{\circ} 50.3{ }^{\prime}$	$35^{\circ} 54.7{ }^{\prime}$	$35^{\circ} 59.7{ }^{\prime}$	$36^{\circ} 05.6^{\prime}$	
316	On 2 January your 1759 zone time DR position is LONG $45^{\circ} 17.6^{\prime} \mathrm{W}$. At that time you observe Polaris with a sextant altitude (hs) of $24^{\circ} 16.5^{\prime}$. The chronometer time of the sight is 08 h 57 m 10 s , and the chronometer error is 02 m 16 s slow. The index error is 3.5 ' on the arc, and the height of eye is 42.5 feet. What is your latitude by Polaris?	$22^{\circ} 50.2^{\prime} \mathrm{N}$	$23^{\circ} 18.8 \mathrm{~N}$	$23^{\circ} 30.2 \mathrm{~N}$	2407.3'N	
317	On 2 January your 1759 zone time DR position is LONG $45^{\circ} 17.6^{\prime}$ W. At that time you observe Polaris with a sextant altitude (hs) of $24^{\circ} 16.5^{\prime}$. The chronometer time of the sight is 08 h 57 m 10 s , and the chronometer error is 02 m 16 s slow. The index error is 3.5 ' on the arc, and the height of eye is 42.5 feet. What is your latitude by Polaris?	$22^{\circ} 50.2^{\prime} \mathrm{N}$	23¹8.8'N	$23^{\circ} 30.8^{\prime} \mathrm{N}$	$23^{\circ} 48.8^{\prime} \mathrm{N}$	
318	On 2 January your vessel's 1948 zone time position is LAT $21^{\circ} 42^{\prime} \mathrm{S}$, LONG $39^{\circ} 12^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the celestial horizon and bears 260° per standard magnetic compass. Variation in the area is $19^{\circ} \mathrm{W}$. The chronometer reads 10 h 44 m 36 s and is 03 m 24 s slow. What is the deviation of the standard magnetic compass?	$4.3^{\circ} \mathrm{E}$	$4.3{ }^{\circ} \mathrm{W}$	$5.1^{\circ} \mathrm{E}$	$5.1^{\circ} \mathrm{W}$	
319	On 2 March your 2216 ZT DR position is LAT $21^{\circ} 20.0^{\prime} \mathrm{S}$, LONG $17^{\circ} 10.0^{\prime} \mathrm{W}$. At that time, you observe Saturn bearing $078^{\circ} \mathrm{psc}$. The chronometer reads 11 h 14 m 04 s , and the chronometer error is 02 m 20 s slow. The variation is $4.5^{\circ} \mathrm{W}$. What is the deviation of the standard compass?	$1.5^{\circ} \mathrm{W}$	$1.6{ }^{\circ} \mathrm{E}$	$2.9^{\circ} \mathrm{W}$	$3.6{ }^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
320	On 2 October , your 1845 DR position is LAT $28^{\circ} 09.2^{\prime} \mathrm{S}$, LONG $167^{\circ} 48.1^{\prime} \mathrm{E}$. You observe a faint star through a hole in the clouds at a sextant altitude (hs) of $11^{\circ} 37.6^{\prime}$ bearing $066^{\circ} \mathrm{T}$. The index error is 1.3^{\prime} off the arc, and the height of eye is 42 feet. The chronometer reads 07 h 46 m 19s and is 0 m 51 s fast. What star did you observe?	Scheat	Ruckbah	Caph	Algenib	
321	On 2 October , your 1845 DR position is LAT $28^{\circ} 09.2^{\prime} \mathrm{S}$, LONG $167^{\circ} 48.1^{\prime} \mathrm{E}$. You observe a faint star through a hole in the clouds at a sextant altitude (hs) of $25^{\circ} 19.4^{\prime}$ bearing $273^{\circ} \mathrm{T}$. The index error is 1.3^{\prime} off the arc, and the height of eye is 42 feet. The chronometer reads 07 h 46 m 19 s and is 0 m 51 s fast. What star did you observe?	Alpha Serpentis	Beta Librae	Beta Lupi	Epsilon Bootis	
322	On 2 October , your 1845 DR position is LAT $28^{\circ} 09.2^{\prime} \mathrm{S}$, LONG $167^{\circ} 48.1^{\prime} \mathrm{E}$. You observe a faint star through a hole in the clouds at a sextant altitude (hs) of $63^{\circ} 29.1^{\prime}$ bearing $237.5^{\circ} \mathrm{T}$. The index error is 1.3^{\prime} off the arc, and the height of eye is 42 feet. The chronometer reads 07 h 46 m 19 s and is 0 m 51 s fast. What star did you observe?	Kappa Scorpii	Beta Ophiuchi	Alpha Arae	Beta Draconis	
323	On 2 October , your 1845 DR position is LAT $28^{\circ} 09.2^{\prime} \mathrm{S}$, LONG $167^{\circ} 48.1^{\prime} \mathrm{E}$. You observe a faint star through a hole in the clouds at a sextant altitude (hs) of $68^{\circ} 03.6^{\prime}$ bearing $154^{\circ} \mathrm{T}$. The index error is 1.3^{\prime} off the arc, and the height of eye is 42 feet. The chronometer reads 07 h 46 m 19s and is 0 m 51 s fast. What star did you observe?	Alpha Indi	Epsilon Cygni	Gamma Aquilae	Albireo	
324	On 2 October , your 1845 DR position was LAT $28^{\circ} 09.2^{\prime} \mathrm{S}$, LONG $167^{\circ} 48.1^{\prime} \mathrm{E}$. You observe a faint star through a hole in the clouds at a sextant altitude (hs) of $20^{\circ} 45.6^{\prime} \mathrm{T}$, bearing $201.5^{\circ} \mathrm{T}$. The index error is 1.3^{\prime} off the arc, and the height of eye is 42 feet. The chronometer reads 07 h 46 m 19s and is 00 m 51 s fast. What star did you observe?	Cor Caroli	Muhlifain	Alpha Muscae	Beta Corvi	
325	On 20 February your 0530 ZT DR position is LAT $24^{\circ} 15.0^{\prime} \mathrm{N}$, LONG $137^{\circ} 33.0^{\prime} \mathrm{W}$. You are on course 033° T at a speed of 18 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 24^{\circ} 23.3^{\prime} \mathrm{N}, \text { LONG } \\ & 137^{\circ} 35.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 26.0^{\prime} \mathrm{N}, \text { LONG } \\ & 137^{\circ} 25.8^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 27.5^{\prime} \mathrm{N}, \text { LONG } \\ & 137^{\circ} 31.8^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 30.1^{\prime} \mathrm{N}, \text { LONG } \\ & 137^{\circ} 24.5^{\prime} \mathrm{W} \end{aligned}$	NP-0010

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
326	On 20 July, your vessel's 1626 zone time DR position is LAT $27^{\circ} 13.0^{\prime} \mathrm{N}$, LONG $63^{\circ} 42.0^{\prime} \mathrm{W}$, when you take an azimuth of the Sun. Determine the gyro error using the azimuth information. Chronometer time: 08h 24 m 18s Chronometer error: slow 02 m 12 s Gyro bearing: 279.3° Variation: $15^{\circ} \mathrm{W}$	$1.9^{\circ} \mathrm{W}$	$2.6^{\circ} \mathrm{W}$	$1.4^{\circ} \mathrm{E}$	$2.6^{\circ} \mathrm{E}$	
327	On 20 June your 0800 zone time DR position is LAT $21^{\circ} 02.0^{\prime} \mathrm{N}$, LONG $152^{\circ} 50.0^{\prime} \mathrm{E}$. Your vessel is on course $265^{\circ} \mathrm{T}$ at a speed of 15.0 knots. What is the zone time of local apparent noon (LAN)?	1149	1154	1159	1203	
328	On 20 June your 1742 zone time DR position is LAT $24^{\circ} 55.0^{\prime} \mathrm{S}$, LONG $8^{\circ} 19.6^{\prime} \mathrm{E}$. Considering their magnitude, azimuth, and altitude, which three stars are best suited for a fix at star time?	Regulus, Canopus, Antares	Spica, Arcturus, Alioth	Arcturus, Achernar, Pollux	Avior, Sabik, Fomalhaut	
329	On 20 June your vessel's 1955 ZT DR position is LAT $52^{\circ} 38.9^{\prime} \mathrm{N}$, LONG $03^{\circ} 42.7^{\prime} \mathrm{E}$, when an amplitude of the Sun is observed. The Sun's center is on the visible horizon and bears 311° per gyrocompass. Variation in the area is $6^{\circ} \mathrm{W}$. At the time of the observation, the helmsman noted that he was heading 352° per gyrocompass and 358° per steering compass. What is the gyro error and deviation for that heading?	$1.3^{\circ} \mathrm{W}$ GE, $1.3^{\circ} \mathrm{E}$ DEV	$0.0^{\circ} \mathrm{GE}, 0.0^{\circ} \mathrm{DEV}$	$1.3^{\circ} \mathrm{W}$ GE, $1.3^{\circ} \mathrm{W}$ DEV	$1.3^{\circ} \mathrm{E}$ GE, $1.3^{\circ} \mathrm{E}$ DEV	
330	On 20 November your 0612 zone time (ZT) position was LAT $25^{\circ} 38.0^{\prime} \mathrm{N}$, LONG $166^{\circ} 54.0^{\prime} \mathrm{W}$. Your vessel was steaming on course $126^{\circ} \mathrm{T}$ at a speed of 20.0 knots. An observation of the Sun's lower limb was made at 0854 ZT . The chronometer read 07 h 51 m 14 s and was slow 02 m 52 s . The observed altitude (Ho) was $27^{\circ} 58.3^{\prime}$. LAN occurred at 1147 ZT. The observed altitude (Ho) was $45^{\circ} 35.0^{\prime}$. What was the longitude of your 1147 ZT running fix?	$165^{\circ} 20.2^{\prime} \mathrm{W}$	$165^{\circ} 18.4^{\prime} \mathrm{W}$	$165^{\circ} 15.8^{\prime} \mathrm{W}$	165¹2.5'W	
331	On 20 November your 1030 ZT DR position is LAT $27^{\circ} 16.0^{\prime}$ N, LONG $157^{\circ} 18.6^{\prime} \mathrm{E}$. You are on course $060^{\circ} \mathrm{T}$ at a speed of 20 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1200 running fix.	$\begin{aligned} & \text { LAT } 27^{\circ} 16.8^{\prime} \mathrm{N}, \text { LONG } \\ & 157^{\circ} 30.5^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 22.6^{\prime} \mathrm{N}, \text { LONG } \\ & 157^{\circ} 37.8^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 29.7^{\prime} \mathrm{N}, \text { LONG } \\ & 157^{\circ} 43.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 33.4^{\prime} \mathrm{N}, \text { LONG } \\ & 157^{\circ} 48.2^{\prime} \mathrm{E} \end{aligned}$	NP-0012

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
332	On 20 September your 0730 zone time position was LAT $28^{\circ} 58.0^{\prime} \mathrm{N}$, LONG $152^{\circ} 26.0^{\prime} \mathrm{W}$. Your vessel was steaming on course $225^{\circ} \mathrm{T}$ at a speed of 19.0 knots. An observation of the Sun's lower limb was made at 0931 ZT. The chronometer read 07h 29m 20s and was slow 02 m 22 s . The observed altitude (Ho) was $44^{\circ} 14.4^{\prime}$. LAN occurred at 1206 zone time. The observed altitude (Ho) was $62^{\circ} 49.5^{\prime}$. What was the longitude of your 1200 zone time running fix?	LONG $153{ }^{\circ} 32.5^{\prime} \mathrm{W}$	LONG 153²7.2'W	LONG 153²3.5'W	LONG 153²0.0'W	
333	On 21 April , your 1542 zone time DR position is LAT $28^{\circ} 54.0^{\prime} \mathrm{S}$, LONG $19^{\circ} 07.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing $299^{\circ} \mathrm{psc}$. The chronometer reads 04 h 44 m 11 s , and the chronometer error is 01 m 54 s fast. The variation is $3^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$0.3{ }^{\circ} \mathrm{W}$	$0.4{ }^{\circ} \mathrm{E}$	$2.7^{\circ} \mathrm{W}$	$2.7^{\circ} \mathrm{E}$	
334	On 21 February, your 0823 zone time DR position is LAT $21^{\circ} 44.0^{\prime} \mathrm{S}$, LONG $80^{\circ} 14.0^{\prime} \mathrm{E}$. At that time, you observe the Sun bearing $096^{\circ} \mathrm{psc}$. The chronometer reads 03 h 25 m 19 s , and the chronometer error is 01 m 52 s fast. The variation is $5^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$2.2^{\circ} \mathrm{E}$	$4.7^{\circ} \mathrm{W}$	5.7 ${ }^{\circ} \mathrm{E}$	$6.3^{\circ} \mathrm{W}$	
335	On 21 May , at 0630 PDT (ZD +7), your vessel takes departure at the San Francisco Sea Buoy, LAT $37^{\circ} 45.0^{\prime} \mathrm{N}$, LONG $122^{\circ} 41.5^{\prime} \mathrm{W}$, enroute to Kobe, LAT $33^{\circ} 52.0^{\prime} \mathrm{N}$, LONG $135^{\circ} 00.0^{\prime} \mathrm{E}$ via great circle. The distance is 4,245 miles, and you estimate that you will average 14.0 knots. What will be your estimated zone time of arrival?	0442, 2 June	1342, 2 June	0442, 3 June	1342, 3 June	
336	On 21 November at 0430 ZT, morning stars were observed, and the vessel's position was LAT $22^{\circ} 14.0^{\prime} \mathrm{S}$, LONG $79^{\circ} 23.0^{\prime} \mathrm{E}$. Your vessel is steaming at 14.5 knots on a course of $246^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0816 ZT . The chronometer reads 03 h 14 m 16 s , and the sextant altitude (hs) is $44^{\circ} 29.2^{\prime}$. The index error is 1.0 on the arc, and the chronometer error is 01 m 47 s slow. Your height of eye is 61.0 feet (18.6 meters). What is the azimuth (Zn) and intercept (a) of this sight using the assumed position method?	Zn 084.2 ${ }^{\circ}$, a 6.6' A	Zn 084.2, a 6.6' T	Zn 095.6, a 6.6'A	Zn 095.6, a 6.6' T	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
337	On 21 November, at 2100 zone time, you depart LAT $32^{\circ} 12.0^{\prime} \mathrm{N}$, LONG $69^{\circ} 26.0^{\prime} \mathrm{W}$ enroute to LAT $12^{\circ} 05.0^{\prime} \mathrm{N}$, LONG $7^{\circ} 32.0^{\prime} \mathrm{W}$. The distance is 3,519 miles, and the average speed will be 12.5 knots. What is the zone time of arrival?	1330, 3 December	1530, 3 December	1830, 3 December	1530, 4 December	
338	On 22 April your 0344 zone time DR position is LAT $21^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $107^{\circ} 32.0^{\prime} \mathrm{W}$. At that time, you observe Spica bearing 236° psc. The chronometer reads 10 h 45 m 16 s , and the chronometer error is 00 m 25 s fast. The variation is $7.5^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$1.1^{\circ} \mathrm{W}$	$5.2^{\circ} \mathrm{E}$	$5.2^{\circ} \mathrm{W}$	$6.1^{\circ} \mathrm{W}$	
339	On 22 April your 1852 DR position is LAT $23^{\circ} 54.5^{\prime} \mathrm{N}$, LONG $117^{\circ} 36.8^{\prime} \mathrm{W}$. You observe an unidentified star bearing $077^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $18^{\circ} 58.7^{\prime}$. The chronometer reads 02 h 54 m 53 s , and is 02 m 51 s fast. What star did you observe?	Diphda	Betelgeuse	Gienah	Arcturus	
340	On 22 April your 1852 DR position is LAT $23^{\circ} 54.5^{\prime} \mathrm{N}$, LONG $117^{\circ} 36.8^{\prime} \mathrm{W}$. You observe an unidentified star bearing $248^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $25^{\circ} 00.9^{\prime}$. The chronometer reads 02 h 54 m 53 s , and is 02 m 51 s fast. What star did you observe?	Rigel	Betelgeuse	Gienah	Arcturus	
341	On 22 April your 1852 DR position is LAT $23^{\circ} 54.5^{\prime} \mathrm{N}$, LONG $117^{\circ} 36.8^{\prime} \mathrm{W}$. You observe an unidentified star bearing $259^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $41^{\circ} 15.2^{\prime}$. The chronometer reads 02 h 54 m 53 s , and is 02 m 51 s fast. What star did you observe?	Diphda	Betelgeuse	Gienah	Arcturus	
342	On 22 April your 1852 ZT DR position is LAT $23^{\circ} 54.5^{\prime}$ N, LONG $117^{\circ} 36.8^{\prime} \mathrm{W}$. You observe an unidentified star bearing $129^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $27^{\circ} 10.0^{\prime}$. The chronometer reads 02 h 54 m 53 s and is 02m 51s fast. What star did you observe?	Diphda	Betelgeuse	Gienah	Arcturus	
343	On 22 August in DR position LAT $29^{\circ} 41.8^{\prime} \mathrm{N}$, LONG $33^{\circ} 15.5^{\prime} \mathrm{W}$, you take an ex-meridian observation of the Moon's upper limb at upper transit. The chronometer time of the sight is 08 h 00 m 02 s , and the chronometer error is 02 m 20 s slow. The sextant altitude (hs) is $74^{\circ} 32.4^{\prime}$. The index error is 1.5^{\prime} off the arc, and your height of eye is 48 feet. What is the latitude at meridian transit?	LAT $29^{\circ} 39.3^{\prime} \mathrm{N}$	LAT $29{ }^{\circ} 41.3{ }^{\prime} \mathrm{N}$	LAT $29^{\circ} 47.8^{\prime} \mathrm{N}$	LAT $29{ }^{\circ} 49.7^{\prime} \mathrm{N}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
344	On 22 August your 1852 zone time DR position is LONG $155^{\circ} 54.0^{\prime} \mathrm{E}$. At that time you observe Polaris with a sextant altitude (hs) of $27^{\circ} 36.9^{\prime}$. The chronometer time of the sight is 08 h 54 m 06 s , and the chronometer error is 02 m 20 s fast. The index error is 3.6^{\prime} off the arc, and the height of eye is 61.5 feet. What is your latitude by Polaris?	$27^{\circ} 05.5^{\prime} \mathrm{N}$	27 $31.0{ }^{\prime} \mathrm{N}$	2805.9'N	2809.5'N	
345	On 22 February, your 2045 ZT position is LAT $33^{\circ} 19^{\prime} \mathrm{N}$, LONG $52^{\circ} 06^{\prime} \mathrm{W}$. You observe Polaris bearing $358.1^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $048^{\circ} \mathrm{pgc}$ and $065^{\circ} \mathrm{psc}$. The variation is $19^{\circ} \mathrm{W}$. What is the deviation for that heading?	$1^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{W}$	
346	On 22 February your 0612 zone time fix gives you a position of LAT $27^{\circ} 16.2^{\prime} \mathrm{S}$, LONG $37^{\circ} 41.6^{\prime} \mathrm{W}$. Your vessel is on course $298^{\circ} \mathrm{T}$, and your speed is 14.2 knots. Local apparent noon (LAN) occurs at 1147 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $73^{\circ} 33.3^{\prime}$. What is the calculated latitude at LAN?	26³1.4'S	26²9.5'S	26²7.1'S	$26^{\circ} 24.8$ S	
347	On 22 February your 0800 zone time position is LAT $24^{\circ} 16^{\prime}$ S, LONG $95^{\circ} 37^{\prime} \mathrm{E}$. Your vessel is on course $126^{\circ} \mathrm{T}$ at a speed of 14 knots. An observation of the Sun's lower limb is made at 0945 zone time. The chronometer reads 03 h 47 m 22 s , and the chronometer error is 02 m 37 s fast. The observed altitude (Ho) is $57^{\circ} 02.1^{\prime}$. LAN occurs at 1148 zone time, and a meridian altitude of the Sun's lower limb is made. The observed meridian altitude (Ho) is $75^{\circ} 22.3^{\prime}$. Determine the vessel's 1200 zone time position.	$\begin{aligned} & \text { LAT } 24^{\circ} 49.3^{\prime} \mathrm{S}, \text { LONG } \\ & 96^{\circ} 24.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 49.3^{\prime} \mathrm{S}, \text { LONG } \\ & 96^{\circ} 27.2^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 52.2^{\prime} \mathrm{S}, \text { LONG } \\ & 96^{\circ} 24.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 24^{\circ} 52.2^{\prime} \mathrm{S}, \text { LONG } \\ & 96^{\circ} 27.2^{\prime} \mathrm{E} \end{aligned}$	
348	On 22 February your 1857 DR position is LAT $23^{\circ} 46.0^{\prime} \mathrm{S}$, LONG $93^{\circ} 16.5^{\prime} \mathrm{E}$. You observe an unidentified star bearing $108^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $67^{\circ} 53.9^{\prime}$. The chronometer reads 01 h 00 m 35 s , and is 03 m 25 s fast. What star did you observe?	Adhara	Miaplacidus	Avior	Suhail	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
349	On 22 February your 1857 DR position is LAT $23^{\circ} 46.0^{\prime} \mathrm{S}$, LONG $93^{\circ} 16.5^{\prime} \mathrm{E}$. You observe an unidentified star bearing $126^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $40^{\circ} 21.5^{\prime}$. The chronometer reads 01 h 00 m 35 s and is 03 m 25 s fast. What star did you observe?	Adhara	Miaplacidus	Avior	Suhail	
350	On 22 February your 1857 DR position is LAT $23^{\circ} 46.0^{\prime} \mathrm{S}$, LONG $93^{\circ} 16.5^{\prime} \mathrm{E}$. You observe an unidentified star bearing $150^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $42^{\circ} 15.0^{\prime}$. The chronometer reads 01 h 00 m 35 s , and is 03 m 25 s fast. What star did you observe?	Adhara	Miaplacidus	Avior	Suhail	
351	On 22 February your 1857 ZT DR position is LAT $23^{\circ} 46.0^{\prime}$ S, LONG $93^{\circ} 16.5^{\prime}$ E. You observe an unidentified star bearing $159^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $34^{\circ} 30.0^{\prime}$. The chronometer reads 01 h 00 m 35 s and is 03 m 25 s fast. What star did you observe?	Adhara	Miaplacidus	Avior	Suhail	
352	On 22 July at 0448 ZT, morning stars were observed, and the vessel's position was determined to be LAT $21^{\circ} 43.0^{\prime} \mathrm{N}$, LONG $158^{\circ} 39.0^{\prime} \mathrm{E}$. Your vessel is steaming at 21.0 knots on a course of $028^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0956 ZT . The chronometer reads 10 h 54 m 27 s , and the sextant altitude is $54^{\circ} 28.2^{\prime}$. The index error is 1.5^{\prime} off the arc, and the chronometer error is 01 m 38 s slow. Your height of eye on the bridge is 56 feet. What is the azimuth (Zn) of this sight using the assumed position?	$080.9^{\circ} \mathrm{T}$	$082.2^{\circ} \mathrm{T}$	084.2T	${ }^{086.9}{ }^{\circ} \mathrm{T}$	
353	On 22 July at 0720 ZT , in DR position LAT $20^{\circ} 38.2^{\prime} \mathrm{N}$, LONG $87^{\circ} 16.0^{\prime} \mathrm{W}$, you observe the Moon's lower limb. The sextant altitude (hs) is $38^{\circ} 32.6$, and the chronometer reads 01h 18m 14s. The chronometer is 01 m 28 s slow. The index error is 3.1 ' off the arc, and the height of eye is 68 feet. What is the azimuth (Zn) and intercept (a) of this sight from the assumed position?	Zn 291.4, a 5.2' A	Zn 111.4º a 8.7' A	Zn 248.6, a 5.0' T	Zn 068.6º a 6.5' T	
354	On 22 July your 0442 DR position is LAT $26^{\circ} 35.6^{\prime} \mathrm{N}$, LONG $22^{\circ} 16.7^{\prime} \mathrm{W}$. You observe an unidentified star bearing $091^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $64^{\circ} 35.2^{\prime}$. The chronometer reads 05h 39m 03s, and is 03 m 14 s slow. What star did you observe?	Hamal	Rigel	Menkar	Acamar	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
355	On 22 July your 0442 DR position is LAT $26^{\circ} 35.6^{\prime} \mathrm{N}$, LONG $22^{\circ} 16.7^{\prime} \mathrm{W}$. You observe an unidentified star bearing $104^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $9^{\circ} 55.7^{\prime}$. The chronometer reads 05 h 39 m 03 s , and is 03 m 14 s slow. What star did you observe?	Hamal	Rigel	Menkar	Acamar	
356	On 22 July your 0442 DR position is LAT $26^{\circ} 35.6^{\prime} \mathrm{N}$, LONG $22^{\circ} 16.7^{\prime} \mathrm{W}$. You observe an unidentified star bearing $149^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $12^{\circ} 55.0^{\prime}$. The chronometer reads 05 h 39 m 03 s , and is 03 m 14 s slow. What star did you observe?	Hamal	Rigel	Menkar	Acamar	
357	On 22 July your 0442 ZT DR position is LAT $26^{\circ} 35.6^{\prime}$ N, LONG $22^{\circ} 16.7^{\prime} \mathrm{W}$. You observe an unidentified star bearing $112^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $44^{\circ} 16.0^{\prime}$. The chronometer reads 05 h 39 m 03 s and is 03 m 14 s slow. What star did you observe?	Hamal	Rigel	Menkar	Acamar	
358	On 22 July your 1759 DR position is LAT $24^{\circ} 50.2^{\prime} \mathrm{S}$, LONG $005^{\circ} 16.0^{\prime} \mathrm{E}$. You observe an unidentified star bearing $203^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $28^{\circ} 12.2^{\prime}$. The chronometer reads 06h 01m 31s, and is 02 m 15 s fast. What star did you observe?	Regulus	Antares	Miaplacidus	Suhail	
359	On 22 July your 1759 DR position is LAT $24^{\circ} 50.2^{\prime} \mathrm{S}$, LONG $05^{\circ} 16.0^{\prime} \mathrm{E}$. You observe an unidentified star bearing $100^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $61^{\circ} 48.2^{\prime}$. The chronometer reads 06 h 01 m 31 s , and is 02 m 15 s fast. What star did you observe?	Regulus	Antares	Miaplacidus	Suhail	
360	On 22 July your 1759 DR position is LAT $24^{\circ} 50.2^{\prime} \mathrm{S}$, LONG 05¹6.0' E. You observe an unidentified star bearing $293^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $17^{\circ} 52.8^{\prime}$. The chronometer reads 06 h 01 m 31 s , and is $02 \mathrm{~m} \mathrm{15s}$ fast. What star did you observe?	Regulus	Antares	Miaplacidus	Suhail	
361	On 22 July your 1759 ZT DR position is LAT $24^{\circ} 50.2^{\prime}$ S, LONG $05^{\circ} 16.0^{\prime} \mathrm{E}$. You observe an unidentified star bearing $231^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $26^{\circ} 10.0^{\prime}$. The chronometer reads 06 h 01 m 31 s and is 02 m 15 s fast. What star did you observe?	Acamar	Capella	Miaplacidus	Suhail	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
362	On 22 June , your 0400 zone time DR position is LAT $23^{\circ} 00^{\prime} \mathrm{N}$, LONG $81^{\circ} 45^{\prime} \mathrm{W}$. You are steaming on course $110^{\circ} \mathrm{T}$ at a speed of 8.6 knots. What will be the zone time of sunrise at your vessel?	0537	0541	0545	0547	
363	On 22 June at 0906 EDT (ZD +4), your position is LAT $24^{\circ} 36^{\prime} \mathrm{N}$, LONG $69^{\circ} 30^{\prime} \mathrm{W}$. You are on course $165^{\circ} \mathrm{pgc}$ at a speed of 14.8 knots. A sextant observation of the Sun's lower limb is made, and the sextant altitude (hs) is $42^{\circ} 44.0^{\prime}$ with an index error of 0.8 ' off the arc. At this time the chronometer reads 01 h 10 m 12 s , and is 2 m 42 s slow. If your height of eye is 70 feet, what is the azimuth (Zn) of the sight using the assumed position?	Zn 080.4°	Zn 081.6º	Zn 129.0 ${ }^{\circ}$	Zn 130.5 ${ }^{\circ}$	
364	On 22 June your 0424 DR position is LAT $26^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $124^{\circ} 18.2^{\prime} \mathrm{W}$. You observe an unidentified star bearing $154^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $15^{\circ} 01.2^{\prime}$. The chronometer reads 12 h 23 m 24 s , and is 01 m 32 s slow. What star did you observe?	Peacock	Schedar	Ankaa	Alioth	
365	On 22 June your 0424 DR position is LAT $26^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $124^{\circ} 18.2^{\prime} \mathrm{W}$. You observe an unidentified star bearing $249^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $52^{\circ} 50.7^{\prime}$. The chronometer reads 00h 23 m 24 s , and is 01 m 32 s slow. What star did you observe?	Peacock	Schedar	Ankaa	Altair	
366	On 22 June your 0424 DR position is LAT $26^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $124^{\circ} 18.2^{\prime} \mathrm{W}$. You observe an unidentified star bearing $195^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $03^{\circ} 30.7^{\prime}$. The chronometer reads 00 h 23 m 24 s , and is 01 m 32 s slow. What star did you observe?	Peacock	Schedar	Ankaa	Alioth	
367	On 22 June your 0424 ZT DR position is LAT $26^{\circ} 18.5^{\prime}$ N, LONG $124^{\circ} 18.2^{\prime} \mathrm{W}$. You observe an unidentified star bearing $031^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $49^{\circ} 26.0^{\prime}$. The chronometer reads 00 h 23 m 24 s and is 01 m 32 s slow. What star did you observe?	Peacock	Schedar	Ankaa	Alioth	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
368	On 22 March your 0519 DR position is LAT $27^{\circ} 20.6^{\prime} \mathrm{N}$, LONG $69^{\circ} 25.6^{\prime} \mathrm{W}$. You observe an unidentified star bearing $115^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $54^{\circ} 52.8^{\prime}$. The chronometer reads 10 h 16 m 47 s , and is 02 m 15 s slow. What star did you observe?	Altair	Enif	Menkar	Rigel	
369	On 22 March your 0519 DR position is LAT $27^{\circ} 20.6^{\prime} \mathrm{N}$, LONG $69^{\circ} 25.6^{\prime} \mathrm{W}$. You observe an unidentified star bearing $200^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $33^{\circ} 05.5^{\prime}$. The chronometer reads 10 h 16 m 47 s , and is 02 m 15 s slow. What star did you observe?	Acamar	Enif	Antares	Rigel	
370	On 22 March your 0519 DR position is LAT $27^{\circ} 20.6^{\prime} \mathrm{N}$, LONG $69^{\circ} 25.6^{\prime} \mathrm{W}$. You observe an unidentified star bearing $051^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $50^{\circ} 03.7^{\prime}$. The chronometer reads 10 h 16 m 47 s , and is 02 m 15 s slow. What star did you observe?	Acamar	Enif	Menkar	Deneb	
371	On 22 March your 0519 ZT DR position is LAT $27^{\circ} 20.6^{\prime}$ N, LONG 69²5.6' W. You observe an unidentified star bearing $094^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $30^{\circ} 15.0^{\prime}$. The chronometer reads 10 h 16 m 47 s and is 02 m 15 s slow. What star did you observe?	Acamar	Enif	Menkar	Rigel	
372	On 22 March your 1834 DR position is LAT $26^{\circ} 13.5^{\prime} \mathrm{S}$, LONG $108^{\circ} 36.5^{\prime} \mathrm{W}$. You observe an unidentified star bearing $062^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $23^{\circ} 22.0^{\prime}$. The chronometer reads 01 h 32 m 37 s , and is 01 m 50 s slow. Which star did you observe?	Regulus	Menkar	Rigel	Alphard	
373	On 22 March your 1834 DR position is LAT $26^{\circ} 13.5^{\prime} \mathrm{S}$, LONG $108^{\circ} 36.5^{\prime} \mathrm{W}$. You observe an unidentified star bearing $294^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $33^{\circ} 02.7^{\prime}$. The chronometer reads 01 h 32 m 37 s , and is 01 m 50 s slow. What star did you observe?	Regulus	Menkar	Rigel	Alphard	
374	On 22 March your 1834 DR position is LAT $26^{\circ} 13.5^{\prime} \mathrm{S}$, LONG $108^{\circ} 36.5^{\prime} \mathrm{W}$. You observe an unidentified star bearing $315^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $66^{\circ} 01.2^{\prime}$. The chronometer reads 01 h 32 m 37 s , and is 01 m 50 s slow. What star did you observe?	Regulus	Menkar	Rigel	Alphard	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
375	On 22 March your 1834 ZT DR position is LAT $26^{\circ} 13.5^{\prime}$ S, LONG $108^{\circ} 36.5^{\prime} \mathrm{W}$. You observe an unidentified star bearing $077^{\circ} \mathrm{T}$, at an observed altitude (Ho) of $43^{\circ} 10.5^{\prime}$. The chronometer reads 01 h 32 m 37 s and is 01 m 50 s slow. What star did you observe?	Regulus	Menkar	Rigel	Alphard	
376	On 22 May at 0440 ZT , your vessel's DR position is LAT $23^{\circ} 24^{\prime} \mathrm{N}$, LONG $110^{\circ} 24^{\prime} \mathrm{W}$. At approximately this time, you obtain a sextant altitude (hs) of Polaris reading $23^{\circ} 40.9^{\prime}$ with an index error of 1.6^{\prime} on the arc. Your chronometer reads 11 h 42 m 14 s , and is 2 m 36 s fast. What is your latitude by Polaris, given a height of eye of 24 feet?	$23^{\circ} 28.6^{\prime} \mathrm{N}$	$23^{\circ} 30.0^{\prime} \mathrm{N}$	$23^{\circ} 31.2^{\prime} \mathrm{N}$	$23^{\circ} 32.8{ }^{\prime} \mathrm{N}$	
377	On 22 May your 0437 DR position is LAT $25^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $51^{\circ} 18.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $142^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $23^{\circ} 10.2^{\prime}$. The chronometer reads 07h 40 m 40 s , and is 03 m 24 s fast. What star did you observe?	Markab	Diphda	Sabik	Fomalhaut	
378	On 22 May your 0437 DR position is LAT $25^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $51^{\circ} 18.0^{\prime} \mathrm{W}$. You observe an unidentified star bearing $116^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $11^{\circ} 27.8^{\prime}$. The chronometer reads 07h 40 m 40 s , and is 03 m 24 s fast. What star did you observe?	Markab	Diphda	Sabik	Hamal	
379	On 22 May your 0437 DR position is LAT $25^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $51^{\circ} 18.0^{\prime} \mathrm{W}$. You observed an unidentified star bearing $233^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $29^{\circ} 42.3^{\prime}$. The chronometer reads 07 h 40 m 40 s , and is 03 m 24 s fast. What star did you observe?	Markab	Diphda	Sabik	Hamal	
380	On 22 May your 0437 ZT DR position is LAT $25^{\circ} 18.5^{\prime}$ N, LONG $51^{\circ} 18.0^{\prime}$ W. You observe an unidentified star bearing $097^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $48^{\circ} 20.0^{\prime}$. The chronometer reads 07 h 40 m 40 s and is 03 m 24 s fast. What star did you observe?	Markab	Diphda	Sabik	Hamal	
381	On 22 November your 1400 ZT DR position is LAT $22^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $136^{\circ} 37.0^{\prime} \mathrm{E}$. You are on course $038^{\circ} \mathrm{T}$ at a speed of 22 knots. What will be the zone time of sunset at your vessel?	1705	1710	1714	1718	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
382	On 22 November your vessel is enroute from Accra, Ghana to Montevideo, Uruguay. You are on course $240^{\circ} \mathrm{T}$ and making a speed of 15.0 knots. Your 1129 DR position is LAT $28^{\circ} 25.0^{\prime} \mathrm{S}$, LONG $42^{\circ} 40.0^{\prime} \mathrm{W}$. You observed 3 celestial bodies. Determine the latitude and longitude of your 1137 running fix.	$\begin{aligned} & \text { LAT } 28^{\circ} 27.0^{\prime} \mathrm{S}, \text { LONG } \\ & 42^{\circ} 38.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 25.2^{\prime} \mathrm{S}, \text { LONG } \\ & 42^{\circ} 40.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 25.0^{\prime} \mathrm{S}, \text { LONG } \\ & 42^{\circ} 36.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 23.4^{\prime} \mathrm{S}, \text { LONG } \\ & 42^{\circ} 42.0^{\prime} \mathrm{W} \end{aligned}$	NP-0023
383	On 22 October in DR position LAT $21^{\circ} 51.0^{\prime}$ S, LONG $76^{\circ} 24.0^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears $256^{\circ} \mathrm{psc}$. The chronometer reads 01 h 01 m 25 s and is 01 m 15 s fast. Variation for the area is $2^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$0.3^{\circ} \mathrm{E}$	$0.3^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{E}$	$2.0^{\circ} \mathrm{W}$	
384	On 23 August at 0604 ZT, in DR position LAT $16^{\circ} 42.3^{\prime}$ S, LONG $28^{\circ} 19.3^{\prime} \mathrm{W}$, you observed an amplitude of the Sun. The lower limb was a little above the horizon, and the Sun bore $076.0^{\circ} \mathrm{pgc}$. At the time of the observation, the helmsman reported that he was heading $143^{\circ} \mathrm{pgc}$ and 167° per standard magnetic compass. The variation in the area was $23^{\circ} \mathrm{W}$. What were the gyro error and deviation for that heading?	$1^{\circ} \mathrm{W}$ GE, $2^{\circ} \mathrm{W}$ DEV	$1^{\circ} \mathrm{E}$ GE, $1^{\circ} \mathrm{E}$ DEV	$2^{\circ} \mathrm{W}$ GE, 1 ${ }^{\circ} \mathrm{E}$ DEV	$2^{\circ} \mathrm{E}$ GE, $1^{\circ} \mathrm{E}$ DEV	
385	On 23 August in DR position LAT $24^{\circ} 07.0^{\prime} N$, LONG $136^{\circ} 16.0^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears $074.5^{\circ} \mathrm{psc}$. The chronometer reads 08 h 56 m 19 s and is 02 m 34 s fast. Variation in the area is $2^{\circ} \mathrm{W}$. What is the deviation of the magnetic compass?	$2.5^{\circ} \mathrm{E}$	$2.8{ }^{\circ} \mathrm{W}$	$4.5^{\circ} \mathrm{E}$	$4.8{ }^{\circ} \mathrm{W}$	
386	On 23 August in DR position LAT $24^{\circ} 22.0^{\prime} \mathrm{S}$, LONG $64^{\circ} 55.3^{\prime} \mathrm{E}$, you take an ex-meridian observation of the Moon's upper limb at upper transit. The chronometer time of the sight is 02 h 15 m 04 s , and the chronometer error is 01 m 06s fast. The sextant altitude (hs) is $48^{\circ} 03.6^{\prime}$. The index error is 2.0^{\prime} on the arc, and your height of eye is 60 feet (21.0 meters). What is the latitude at meridian transit?	24²0.5'S	24²2.8'S	24 $24.8^{\prime} \mathrm{S}$	24049.5'S	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
387	On 23 July, your 2100 ZT position is LAT $36^{\circ} 43.0^{\prime} \mathrm{N}$, LONG $16^{\circ} 09.8^{\prime} \mathrm{W}$, when you observed an azimuth of Polaris to determine the compass error. Polaris bears 359.0° per gyrocompass. At the time of the observation, the helmsman noted that he was heading 319.0° per gyrocompass and 331.0° per standard compass. Variation is $12.0^{\circ} \mathrm{W}$. Which of the following statements is TRUE?	The gyro error is $0.7^{\circ} \mathrm{E}$.	The gyro error is $1.7^{\circ} \mathrm{W}$.	The deviation is $1.7^{\circ} \mathrm{E}$.	The compass error is $13.7^{\circ} \mathrm{W}$	
388	On 23 July your 1700 zone time DR position is LAT $27^{\circ} 29^{\prime}$ N, LONG $129^{\circ} 26^{\prime}$ W. You are on course $079^{\circ} \mathrm{T}$ at a speed of 20 knots. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Arcturus, Jupiter, Denebola	Spica, Sabik, Vega	Antares, Polaris, Altair	Jupiter, Saturn, Polaris	
389	On 23 July, you take a time tick using the 0900 GMT Cape Town broadcast. You hear a repeating series of 59 dots followed by a dash. At the beginning of the fifth dash you start your stopwatch. The chronometer reads 08h 39 m 16 s at the time the stopwatch reads 01 m 42 s . The chronometer error at 0900 GMT, 22 July, was 22 m 24 s slow. What is the chronometer rate?	00m 02s losing	01m 02s gaining	22m 24s losing	22m 26s slow	
390	On 23 June your 0900 zone time DR position is LAT $21^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $137^{\circ} 46.0^{\prime} \mathrm{W}$. Your vessel is on course $059^{\circ} \mathrm{T}$ at a speed of 19.0 knots. What is the zone time of local apparent noon (LAN)?	1159	1205	1210	1214	
391	On 23 June in DR position LAT $21^{\circ} 39.0^{\prime} \mathrm{S}$, LONG $106^{\circ} 28.0^{\prime} \mathrm{W}$, you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears $078^{\circ} \mathrm{psc}$. The chronometer reads 02h 14 m 39 s and is 01 m 43 s slow. Variation in the area is $9^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$2.8{ }^{\circ} \mathrm{E}$	$3.9{ }^{\circ} \mathrm{W}$	$4.3^{\circ} \mathrm{W}$	$4.6^{\circ} \mathrm{E}$	
392	On 23 March your 1600 ZT DR position is LAT $27^{\circ} 16.3^{\prime}$ N, LONG $156^{\circ} 48.2^{\prime} \mathrm{W}$. You are on course $063^{\circ} \mathrm{T}$ at a speed of 18.0 knots. Considering their magnitude, azimuth, and altitude, which group includes the three stars best suited for a fix at star time?	Arcturus, Regulus, Sirius	Procyon, Sirius, Capella	Hamal, Rigel, Alphard	Betelgeuse, Dubhe, Regulus	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
393	On 23 May your 0628 zone time position was LAT $28^{\circ} 18.0^{\prime} \mathrm{S}$, LONG $102^{\circ} 42.0^{\prime} \mathrm{E}$. Your vessel was steaming on course $040^{\circ} \mathrm{T}$ at a speed of 20.0 knots. An observation of the Sun's lower limb was made at 0758 ZT . The chronometer read 01h 02m 06s and was fast 04 m 04s. The observed altitude (Ho) was $13^{\circ} 16.7^{\prime}$. LAN occurred at 1201 zone time. The observed altitude (Ho) was $42^{\circ} 32.0^{\prime}$. What was the longitude of your 1201 zone time running fix?	10357.9'E	10400.4'E	10403.5'E	10406.3'E	
394	On 23 October in DR position LAT $21^{\circ} 13.0^{\prime} \mathrm{N}$, LONG $152^{\circ} 18.0^{\prime}$ E, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears $259^{\circ} \mathrm{psc}$. The chronometer reads 07 h 21 m 46 s and is 01 m 32 s slow. Variation in the area is $5^{\circ} \mathrm{E}$. What is the deviation of the magnetic compass?	$0.9^{\circ} \mathrm{E}$	$1.5^{\circ} \mathrm{W}$	$5.9^{\circ} \mathrm{W}$	$6.5^{\circ} \mathrm{E}$	
395	On 23 October your vessel's 1722 zone time DR position is LAT $27^{\circ} 36^{\prime} \mathrm{S}$, LONG $96^{\circ} 16^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's lower limb is about 20 minutes of arc above the visible horizon and bears 246° per standard compass. Variation in the area is $14.0^{\circ} \mathrm{E}$. The chronometer reads 11 h 24 m 19 s and is 01 m 43 s fast. What is the deviation of the standard compass?	$2.3^{\circ} \mathrm{E}$	$2.7^{\circ} \mathrm{E}$	$2.7^{\circ} \mathrm{W}$	$3.1^{\circ} \mathrm{W}$	
396	On 23 September while taking stars for an evening fix, an unidentified star is observed bearing $261^{\circ} \mathrm{T}$ at an observed altitude of $61^{\circ} 35^{\prime}$. Your 1836 zone time DR position is LAT $25^{\circ} 18^{\prime} \mathrm{S}$, LONG $162^{\circ} 36^{\prime} \mathrm{E}$. The chronometer reads 07 h 34 m 12 s , and the chronometer error is 01 m 54 s slow. Your vessel is steaming on a course of $230^{\circ} \mathrm{T}$ at a speed of 18 knots. What star did you observe?	Antares	Canopus	Achernar	Sirius	
397	On 23 September your 1836 DR position is LAT $25^{\circ} 18^{\prime} \mathrm{S}$, LONG $162^{\circ} 23^{\prime} \mathrm{E}$. You observe an unidentified star bearing $000^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $26^{\circ} 18^{\prime}$. The chronometer reads 07 h 34 m 12 s , and is 01 m 54 s slow. What star did you observe?	Antares	Canopus	Achernar	Vega	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
398	On 23 September your 1836 DR position is LAT $25^{\circ} 18^{\prime}$ S, LONG $162^{\circ} 36^{\prime} \mathrm{E}$. You observe an unidentified star bearing $022^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $13^{\circ} 16^{\prime}$. The chronometer reads 07 h $34 \mathrm{~m} \mathrm{12s}$, and is 01 m 54 s slow. What star did you observe?	Antares	Deneb	Achernar	Sirius	
399	On 23 September your 1836 DR position is LAT $25^{\circ} 18^{\prime}$ S, LONG $162^{\circ} 36^{\prime} \mathrm{E}$. You observe an unidentified star bearing $148^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $13^{\circ} 32^{\prime}$. The chronometer reads 07 h 34 m 12 s , and is 01 m 54 s slow. Which star did you observe?	Antares	Canopus	Achernar	Sirius	
400	On 24 August in DR position LAT $26^{\circ} 49.4^{\prime} \mathrm{N}$, LONG $146^{\circ} 19.4^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears 084° psc. The chronometer reads 07 h 55 m 06s and is 01 m 11 s fast. Variation in the area is $15^{\circ} \mathrm{W}$. What is the deviation of the magnetic compass?	$8.0^{\circ} \mathrm{E}$	$8.3^{\circ} \mathrm{E}$	$8.5^{\circ} \mathrm{E}$	$8.7^{\circ} \mathrm{E}$	
401	On 24 August your vessel is enroute from Perth, Australia, to Bombay, India. Evening twilight will occur at 1807 zone time, and your vessel's DR position for this time will be LAT $27^{\circ} 17.0^{\prime}$ S, LONG $83^{\circ} 17.0^{\prime} \mathrm{E}$. Considering their magnitude and location, what are the three stars best suited to observe for a fix at star time?	Arcturus, Antares, Atria	Spica, Altair, Acrux	Pollux, Canopus, Hamal	Rasalhague, Spica, Kochab	
402	On 24 January your 0700 zone time DR position is LAT $22^{\circ} 25.0^{\prime} \mathrm{N}$, LONG $46^{\circ} 10.0^{\prime} \mathrm{W}$. Your vessel is on course $110^{\circ} \mathrm{T}$ at a speed of 12.0 knots. What is the zone time of local apparent noon (LAN)?	1203	1208	1212	1215	
403	On 24 July your 1912 zone time DR position is LAT $24^{\circ} 28.0^{\prime} \mathrm{N}$, LONG $73^{\circ} 46.5^{\prime} \mathrm{W}$. Considering their magnitude, azimuth, and altitude, which group includes the three stars best suited for a fix at star time?	Fomalhaut, Rigel, Pollux	Arcturus, Acrux, Hadar	Spica, Altair, Alioth	Vega, Deneb, Regulus	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
404	On 24 March your 0800 zone time fix gives you a position of LAT $22^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $31^{\circ} 45.0^{\prime} \mathrm{W}$. Your vessel is steaming a course of $285^{\circ} \mathrm{T}$ at a speed of 16.5 knots. An observation of the Sun's upper limb is made at 0938 zone time, and the observed altitude (Ho) is $46^{\circ} 32.2^{\prime}$. The chronometer reads 11 h 41 m 01 s , and the chronometer error is 02 m 50 s fast. Local apparent noon occurs at 1214 zone time, and a meridian altitude of the Sun's lower limb is made. The observed altitude (Ho) for this sight is $68^{\circ} 55.8^{\prime}$. Determine the vessel's 1200 zone time position.	$\begin{aligned} & \text { LAT } 22^{\circ} 35.0^{\prime} \mathrm{N}, \text { LONG } \\ & 30^{\circ} 29.0^{\prime} \mathrm{W} \end{aligned}$	LAT $22^{\circ} 35.0^{\prime} \mathrm{N}$, LONG $32^{\circ} 51.0^{\prime} \mathrm{W}$	$\begin{aligned} & \text { LAT } 22^{\circ} 36.0^{\prime} \mathrm{N}, \text { LONG } \\ & 32^{\circ} 10.5^{\prime} \mathrm{W} \end{aligned}$	LAT $22^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $32^{\circ} 55.2^{\prime} \mathrm{W}$	
405	On 24 March your vessel is enroute from Cadiz to Norfolk. Evening twilight will occur at 1830 zone time, and your vessel's DR position will be LAT $35^{\circ} 06^{\prime} \mathrm{N}$, LONG $60^{\circ} 48^{\prime} \mathrm{W}$. Considering their azimuth, altitude, and magnitude, which group of stars is best suited for plotting a star fix at star time?	Adhara, Rigel, Suhail	Regulus, Denebola, Alkaid	Adhara, Procyon, Alphard	Sirius, Dubhe, Mirfak	
406	On 24 May, your vessel's 1000 ZT position is LAT $25^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $118^{\circ} 39.5^{\prime} \mathrm{W}$, when you take an azimuth of the Sun. Determine the gyro error using the azimuth information. Chronometer time: 06h 21m 48s Chronometer error: fast 01m 36s Gyro bearing: 099.4 ${ }^{\circ}$ Variation: $11.1^{\circ} \mathrm{E}$	$0.3^{\circ} \mathrm{W}$	$1.3^{\circ} \mathrm{W}$	$1.8^{\circ} \mathrm{E}$	$2.4{ }^{\circ} \mathrm{E}$	
407	On 24 October your 0100 DR position is LAT $27^{\circ} 42^{\prime}$ $\mathrm{N}, \mathrm{LONG} 158^{\circ} 35^{\prime} \mathrm{E}$. You are on course $085^{\circ} \mathrm{T}$ at a speed of 12 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0700 running fix.	$\begin{aligned} & \text { LAT } 27^{\circ} 48.8^{\prime} \mathrm{N}, \text { LONG } \\ & 160^{\circ} 12.5^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 52.5^{\prime} \mathrm{N}, \text { LONG } \\ & 160^{\circ} 18.2^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 56.0^{\prime} \mathrm{N}, \text { LONG } \\ & 159^{\circ} 47.3^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 58.4^{\prime} \mathrm{N}, \text { LONG } \\ & 159^{\circ} 43.5^{\prime} \mathrm{E} \end{aligned}$	NP-0026
408	On 24 September your 1841 zone time DR position is LAT $25^{\circ} 15.0^{\prime} \mathrm{N}$, LONG $129^{\circ} 34.5^{\prime} \mathrm{E}$. At that time you observe Polaris with a sextant altitude (hs) of $25^{\circ} 20.8^{\prime}$. The chronometer time of the sight is 09 h 38 m 12 s , and the chronometer error is 03 m 12 s slow. The index error is 4.3' off the arc, and the height of eye is 52.0 feet. What is your latitude by Polaris?	$24^{\circ} 28.4{ }^{\prime} \mathrm{N}$	25¹6.0'N	25 ${ }^{\circ} 37.6^{\prime} \mathrm{N}$	$25^{\circ} 42.3$ N	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
409	On 24 September your 1841 zone time DR position is LONG $129^{\circ} 34.5^{\prime}$ E. At that time you observe Polaris with a sextant altitude (hs) of $25^{\circ} 20.8^{\prime}$. The chronometer time of the sight is 09 h 38 m 12 s , and the chronometer error is 03 m 12 s slow. The index error is 4.3^{\prime} off the arc, and the height of eye is 52 feet (15.9 meters). What is your latitude by Polaris?	$24^{\circ} 28.1{ }^{\prime} \mathrm{N}$	$25^{\circ} 16.0$ '	$25^{\circ} 37.6^{\prime} \mathrm{N}$	$25^{\circ} 42.3$ N	
410	On 25 April your 0930 zone time position is LAT $28^{\circ} 35^{\prime} \mathrm{S}$, LONG $82^{\circ} 30^{\prime} \mathrm{W}$. Your vessel is on course $300^{\circ} \mathrm{T}$ at a speed of 20.0 knots. Determine the zone time of LAN.	1131	1158	1211	1225	
411	On 25 April your 1130 DR position is LAT $24^{\circ} 50.0^{\prime} \mathrm{N}$, LONG $61^{\circ} 25.0^{\prime} \mathrm{W}$. Your vessel is on a course of $300^{\circ} \mathrm{T}$ at a speed of 16.0 knots. Determine the zone time of (LAN) for your vessel.	1154	1156	1202	1204	
412	On 25 August your 0300 zone time DR position is LAT $21^{\circ} 28.0^{\prime} \mathrm{N}$, LONG $167^{\circ} 48.0^{\prime} \mathrm{E}$. You are on course $248^{\circ} \mathrm{T}$ at a speed of 12 knots. You observed 3 celestial bodies. Determine the latitude and Iongitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 20^{\circ} 52.4^{\prime} \mathrm{N}, \text { LONG } \\ & 167^{\circ} 32.1^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 57.1^{\prime} \mathrm{N}, \text { LONG } \\ & 167^{\circ} 01.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 59.5^{\prime} \mathrm{N}, \text { LONG } \\ & 166^{\circ} 54.8^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 21^{\circ} 06.0^{\prime} \mathrm{N}, \text { LONG } \\ & 167^{\circ} 10.9^{\prime} \mathrm{E} \end{aligned}$	NP-0032
413	On 25 August your 1926 zone time DR position is LAT $24^{\circ} 17.0^{\prime} \mathrm{S}$, LONG $05^{\circ} 47.0^{\prime} \mathrm{W}$. At that time, you observe Fomalhaut bearing $117^{\circ} \mathrm{psc}$. The chronometer reads 07 h 26 m 52 s , and the chronometer error is 00 m 15 s fast. The variation is $1.5^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$0.2^{\circ} \mathrm{W}$	$0.4{ }^{\circ} \mathrm{E}$	$1.3^{\circ} \mathrm{W}$	$2.8{ }^{\circ} \mathrm{W}$	
414	On 25 December, your 0330 ZT DR position is LAT $25^{\circ} 15.0^{\prime} \mathrm{N}$, LONG $32^{\circ} 16.0^{\prime} \mathrm{W}$. You are on course $145^{\circ} \mathrm{T}$ at a speed of 20 knots. What will be the zone time of sunrise at your vessel?	0623	0635	0641	0647	
415	On 25 February at 0622 ZT, you observe the upper limb of the Moon with a sextant altitude of $59^{\circ} 58.6^{\prime}$. Your DR position is LAT $30^{\circ} 28.3^{\prime} \mathrm{S}$, LONG $102^{\circ} 39.3$ E. The chronometer reading at the time of the sight is 11 h 21 m 18 s and the chronometer is 48 s slow. The height of eye is 59 feet and the index error is 2.5^{\prime} on the arc. What are the azimuth (Zn) and intercept (a) of this sight using the assumed position?	Zn 305.4 ${ }^{\circ}$, a $4.2^{\circ} \mathrm{T}$	Zn 234.6 ${ }^{\circ}$ a $4.2^{\circ} \mathrm{A}$	Zn 305.4 , a $1.5^{\circ} \mathrm{T}$	Zn 305.4*, a 9.2 ${ }^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
416	On 25 June at 0612 zone time, morning stars were observed, and the vessel's position was determined to be LAT $28^{\circ} 13.0^{\prime} \mathrm{S}$, LONG $49^{\circ} 34.0^{\prime} \mathrm{E}$. Your vessel is steaming at 17.0 knots on a course of $066^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 1022 zone time. The chronometer reads 07 h 19 m 17 s , and the sextant altitude is $35^{\circ} 26.3^{\prime}$. The index error is 1.5^{\prime} on the arc, and the chronometer error is 02 m 51 s slow. Your height of eye on the bridge is 58.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	${ }^{021.5}{ }^{\circ} \mathrm{T}$	$157.5^{\circ} \mathrm{T}$	${ }^{201.5}{ }^{\circ} \mathrm{T}$	$338.5^{\circ} \mathrm{T}$	
417	On 25 June your 0900 zone time DR position is LAT $24^{\circ} 10.0^{\prime} \mathrm{S}$, LONG $148^{\circ} 30.0^{\prime} \mathrm{W}$. Your vessel is on a course of $230^{\circ} \mathrm{T}$ at a speed of 18.0 knots. What is the zone time of local apparent noon (LAN)?	1154	1156	1200	1204	
418	On 25 March your 0500 ZT DR position is LAT $28^{\circ} 14.0^{\prime}$ S, LONG $93^{\circ} 17.0^{\prime} \mathrm{E}$. You are on course $291^{\circ} \mathrm{T}$ at a speed of 16.0 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0550 running fix.	$\begin{aligned} & \text { LAT } 28^{\circ} 15.9^{\prime} \mathrm{S}, \text { LONG } \\ & 92^{\circ} 56.9^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 19.3^{\prime} \mathrm{S}, \text { LONG } \\ & 92^{\circ} 59.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 06.4^{\prime} \mathrm{S}, \text { LONG } \\ & 93^{\circ} 02.5^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 53.2^{\prime} \mathrm{S}, \text { LONG } \\ & 93^{\circ} 17.6^{\prime} \mathrm{E} \end{aligned}$	NP-0006
419	On 25 May your vessel's 1858 zone time position is LAT $21^{\circ} 05.0^{\prime} \mathrm{N}$, LONG $143^{\circ} 27.0^{\prime} \mathrm{E}$. At that time a sextant observation of the planet Venus was made. The sextant altitude is $12^{\circ} 53.4^{\prime}$ and the chronometer reads 08 h 59 m 15 s . The index error is 4.5^{\prime} off the arc, and the chronometer error is 01 m 25 s fast. Your height of eye is determined to be 55.0 feet. What is the azimuth (Zn) of the sight using the assumed position?	069.6T	$110.4^{\circ} \mathrm{T}$	$249.6^{\circ} \mathrm{T}$	$290 .{ }^{\circ} \mathrm{T}$	
420	On 25 May your vessel's 1917 zone time position is LAT $24^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $017^{\circ} 26.0^{\prime} \mathrm{W}$. At that time a sextant observation of the planet Saturn was made. The sextant altitude is $63^{\circ} 05.1^{\prime}$, and the chronometer reads 08 h 18 m 24 s . The index error is 4.5^{\prime} off the arc, and the chronometer error is 01 m 05 s fast. Your height of eye is determined to be 62.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	143.8°	147.3°	148.7°	149.9°	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
421	On 25 October your 0430 ZT DR position is LAT $24^{\circ} 48^{\prime} \mathrm{N}$, LONG $65^{\circ} 31^{\prime} \mathrm{W}$. Your vessel is on course $030^{\circ} \mathrm{T}$ at a speed of 18 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0455 running fix.	LAT $24^{\circ} 53^{\prime} \mathrm{N}$, LONG $65^{\circ} 28^{\prime} \mathrm{W}$	LAT $24^{\circ} 53^{\prime} \mathrm{N}$, LONG $65^{\circ} 12^{\prime} \mathrm{W}$	$\begin{aligned} & \hline \text { LAT } 24^{\circ} 54^{\prime} \mathrm{N}, \text { LONG } \\ & 65^{\circ} 17^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \hline \text { LAT } 25^{\circ} 03^{\prime} \mathrm{N}, \text { LONG } \\ & 65^{\circ} 18^{\prime} \mathrm{W} \end{aligned}$	NP-0025
422	On 26 February , your vessel's 1615 ZT DR position is LAT $25^{\circ} 14^{\prime} \mathrm{S}$, LONG $57^{\circ} 22^{\prime} \mathrm{W}$, when an azimuth of the Sun is observed. The chronometer time of the sight is 8 h 13 m 19 s , and the Sun is bearing 266.0° per standard magnetic compass. The chronometer error is 01 m 46 s slow, and the variation in the area is $6^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$1.7^{\circ} \mathrm{E}$	$3.4{ }^{\circ} \mathrm{W}$	$7.7^{\circ} \mathrm{E}$	$13.7^{\circ} \mathrm{E}$	
423	On 26 January your 1615 ZT DR position is LAT $27^{\circ} 14.0^{\prime} \mathrm{S}$, LONG $57^{\circ} 22.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing 266° psc. The chronometer reads 08 h 13 m 19s, and the chronometer error is 01 m 46 s slow. The variation is $4^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$4.8^{\circ} \mathrm{E}$	$4.9{ }^{\circ} \mathrm{W}$	$5.9^{\circ} \mathrm{W}$	$7.8^{\circ} \mathrm{E}$	
424	On 26 July your 1030 ZT DR position is LAT $18^{\circ} 25^{\prime} \mathrm{N}$, LONG $51^{\circ} 15^{\prime} \mathrm{W}$. You are on course $231^{\circ} \mathrm{T}$, speed 15 knots. Determine your 1200 position using the following observations of the Sun.	$\begin{aligned} & \text { LAT } 18^{\circ} 00.9^{\prime} \mathrm{N}, \text { LONG } \\ & 51^{\circ} 31.9^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 18^{\circ} 03.5^{\prime} \mathrm{N}, \text { LONG } \\ & 51^{\circ} 36.2^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 18^{\circ} 07.2^{\prime} \mathrm{N}, \text { LONG } \\ & 51^{\circ} 30.4^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 18^{\circ} 10.6^{\prime} \mathrm{N}, \text { LONG } \\ & 51^{\circ} 25.1^{\prime} \mathrm{W} \end{aligned}$	
425	On 26 July your 1901 ZT position is LAT $28^{\circ} 28^{\prime} \mathrm{N}$, LONG $157^{\circ} 16^{\prime} \mathrm{E}$ when you take an observation of Jupiter. The chronometer at the time of the sight reads 08 h 54 m 34 s and is 06 m 24 s slow. The sextant altitude (hs) is $33^{\circ} 51.5^{\prime}$. The index error is 2.8'off the arc, and the height of eye is 48 feet. What are the azimuth (Zn) and intercept (a) for this sight using the assumed position?	Zn 110.8º a 32.0' T	Zn 249.2 ${ }^{\circ}$, a 32.0' A	Zn 248.2 ${ }^{\circ}$, a 34.2' T	Zn 290.80, a 44.2' A	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
426	On 26 May , your 0723 zone time DR position is LAT $24^{\circ} 50.0^{\prime} \mathrm{N}$, LONG $38^{\circ} 11.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing $076.5^{\circ} \mathrm{psc}$. The chronometer reads 10 h 25 m 43 s , and the chronometer error is 02 m 57 s fast. The variation is $7^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$3.3^{\circ} \mathrm{E}$	$3.7^{\circ} \mathrm{W}$	$8.3^{\circ} \mathrm{W}$	$10.7^{\circ} \mathrm{E}$	
427	On 26 May your vessel's 1906 zone time position is LAT $27^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $24^{\circ} 37.0^{\prime} \mathrm{W}$. At that time, a sextant observation of the planet Jupiter was made. The sextant altitude is $63^{\circ} 27.6^{\prime}$, and the chronometer reads 09 h 05 m 16 s . The index error is 5.2^{\prime} on the arc, and the chronometer error is 01 m 25 s slow. Your height of eye is determined to be 52.6 feet. What is the (Zn) of this sight using the assumed position?	$011.3^{\circ} \mathrm{T}$	${ }^{168.7}{ }^{\circ} \mathrm{T}$	$191.3^{\circ} \mathrm{T}$	$348.7^{\circ} \mathrm{T}$	
428	On 26 November at 0535 ZT, while taking sights for a morning fix, you observe an unidentified planet bearing $074^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $38^{\circ} 29.8^{\prime}$. Your DR position is LAT $27^{\circ} 18.9^{\prime}$ S, LONG $30^{\circ} 18.4^{\prime} \mathrm{E}$. The chronometer time of the sight is 03 h 33 m 16 s , and the chronometer is 01 m 48 s slow. What planet did you observe?	Saturn	Jupiter	Mars	Venus	
429	On 26 November your 0535 DR position is LAT $27^{\circ} 18.9^{\prime}$ S, LONG $30^{\circ} 18.4^{\prime} \mathrm{E}$. You observe an unidentified planet bearing $037^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $50^{\circ} 06.4^{\prime}$. The chronometer reads 03 h 33 m 16 s and is 01 m 48 s slow. What planet did you observe?	Saturn	Jupiter	Mars	Venus	
430	On 26 November your 0535 DR position is LAT $27^{\circ} 18.9^{\prime}$ S, LONG $30^{\circ} 18.4^{\prime} \mathrm{E}$. You observe an unidentified planet bearing $085^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $32^{\circ} 15.2^{\prime}$. The chronometer reads 03 h 33 m 16 s , and is 01 m 48 s slow. What planet did you observe?	Saturn	Jupiter	Mars	Venus	
431	On 26 September your 0830 DR position is LAT $26^{\circ} 04.0^{\prime} \mathrm{N}$, LONG $129^{\circ} 16.0^{\prime} \mathrm{W}$. Your vessel is on a course of $119^{\circ} \mathrm{T}$ at a speed of 20.0 knots. What is the zone time of local apparent noon (LAN)?	1124	1128	1142	1146	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
432	On 26 September your 0830 zone time DR position is LAT $23^{\circ} 04.0^{\prime} \mathrm{N}$, LONG $129^{\circ} 16.0^{\prime} \mathrm{E}$. Your vessel is on course $119^{\circ} \mathrm{T}$ at a speed of 20.0 knots. What is the zone time of local apparent noon (LAN)?	1158	1205	1210	1214	
433	On 26 September your 0830 zone time DR position is LAT $26^{\circ} 04.0^{\prime} \mathrm{N}$, LONG $129^{\circ} 16.0^{\prime} \mathrm{W}$. Your vessel is on course $119^{\circ} \mathrm{T}$ at a speed of 20.0 knots. What is the zone time of local apparent noon (LAN)?	1124	1127	1130	1133	
434	On 27 August your 0900 zone time DR position is LAT $24^{\circ} 25.0^{\prime} \mathrm{N}$, LONG $94^{\circ} 20.0^{\prime} \mathrm{W}$. Your vessel is on course $071^{\circ} \mathrm{T}$ at a speed of 20.0 knots. What is the zone time of local apparent noon (LAN)?	1214	1208	1206	1158	
435	On 27 June, your 0734 zone time DR position is LAT $22^{\circ} 14.0^{\prime} \mathrm{N}$, LONG $53^{\circ} 52.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing 069.5° psc. The chronometer reads 11 h 32 m 51 s and the chronometer error is 01 m 26 s slow. The variation is $5^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$1.6^{\circ} \mathrm{E}$	2.9 W	$2.9^{\circ} \mathrm{E}$	$3.2^{\circ} \mathrm{E}$	
436	On 27 June , your vessel's 0816 ZT DR position is LAT $22^{\circ} 14^{\prime}$ S, LONG $53^{\circ} 52^{\prime} \mathrm{W}$, when an azimuth of the Sun is observed. The chronometer time of the sight is 12 h 15 m 02 s , and the Sun is bearing 047.5° per standard magnetic compass. The chronometer error is 00 m 46 s slow, and the variation in the area is $6.0^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$1.5^{\circ} \mathrm{E}$	$1.9^{\circ} \mathrm{W}$	$3.0{ }^{\circ} \mathrm{W}$	$3.0^{\circ} \mathrm{E}$	
437	On 27 June your 1905 ZT DR position is LAT $24^{\circ} 35.0^{\prime} \mathrm{N}$, LONG $50^{\circ} 15.0^{\prime} \mathrm{W}$. At that time, you observe Saturn bearing $211^{\circ} \mathrm{pgc}$. The chronometer reads 10 h 04 m 26 s and the chronometer error is 01 m 20s slow. The variation is $4.5^{\circ} \mathrm{E}$. What is the gyro error?	$1.1^{\circ} \mathrm{W}$	$3.4{ }^{\circ} \mathrm{E}$	$3.4{ }^{\circ} \mathrm{W}$	$5.6^{\circ} \mathrm{W}$	
438	On 27 March , your 0330 zone time DR position is LAT $23^{\circ} 32^{\prime} \mathrm{N}$, LONG $154^{\circ} 47^{\prime} \mathrm{E}$. Your vessel is on a course of $105^{\circ} \mathrm{T}$ at a speed of 20 knots. What will be the zone time of sunrise at your vessel?	0534	0557	0612	0624	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
439	On 27 March in DR position LAT $32^{\circ} 31.0^{\prime} N$, LONG $76^{\circ} 25.0^{\prime} \mathrm{W}$, you take an ex-meridian observation of the Sun's lower limb. The chronometer time of the sight is 05 h 23 m 32 s , and the chronometer error is 01 m 30 s fast. The sextant altitude (hs) is $59^{\circ} 59.0^{\prime}$. The index error is 1.8 off the arc, and your height of eye is 52 feet. What is the latitude at meridian transit?	LAT $32^{\circ} 21.6^{\prime} \mathrm{N}$	LAT 32²9.5'N	LAT 32³7.6'N	LAT 3246.2'N	
440	On 27 March your 0730 zone time position is LAT $28^{\circ} 16^{\prime} \mathrm{N}$, LONG $56^{\circ} 37^{\prime} \mathrm{W}$. Your vessel is on course $158^{\circ} \mathrm{T}$ at a speed of 15.0 knots. An observation of the Sun's lower limb is made at 0915 zone time. The chronometer reads 01 h 14 m 11 s , and the chronometer error is 00 m 53 s slow. The observed altitude (Ho) is $45^{\circ} 10.7^{\prime}$. LAN occurs at 1150 zone time, and a meridian altitude of the Sun's lower limb is made. The observed altitude (Ho) is $65^{\circ} 32.8^{\prime}$. Determine the vessel's 1200 zone time position.	LAT $27^{\circ} 08.8^{\prime} \mathrm{N}$, LONG 5604.2'W	LAT $27^{\circ} 08.8^{\prime} \mathrm{N}$, LONG $5^{\circ} 10.3^{\prime} \mathrm{W}$	LAT $27^{\circ} 11.6^{\prime} \mathrm{N}$, LONG 56으․ $2^{\prime} \mathrm{W}$	$\begin{aligned} & \text { LAT } 27^{\circ} 11.6^{\prime} \mathrm{N}, \text { LONG } \\ & 56^{\circ} 10.3^{\prime} \mathrm{W} \end{aligned}$	
441	On 27 September, your 0345 ZT DR position is LAT $26^{\circ} 18.0^{\prime} \mathrm{S}$, LONG $4^{\circ} 18.0^{\prime} \mathrm{W}$. You are on course $271^{\circ} \mathrm{T}$ at a speed of 15 knots. What will be the zone time of sunrise at your vessel?	0525	0545	0555	0605	
442	On 28 April your vessel's 0515 zone time position is LAT $23^{\circ} 26^{\prime} \mathrm{S}$, LONG $95^{\circ} 30^{\prime} \mathrm{E}$. At this time, the observed altitude (Ho) of the star Rigil Kentaurus is $24^{\circ} 51.4^{\prime}$. Your chronometer reads 11 h 16 m 36 s and is 01 m 18 s fast. What is the intercept (a) based on the assumed position method?	30.9 miles	32.3 miles	33.1 miles	34.4 miles	
443	On 28 February your 1850 zone time DR position is LAT $27^{\circ} 49.0^{\prime} \mathrm{N}$, LONG $159^{\circ} 24.0^{\prime} \mathrm{W}$. Considering their magnitude, azimuth, and altitude, which group includes the three stars best suited for a fix at star time?	Rigel, Schedar, Regulus	Sirius, Mirfak, Elnath	Hamal, Alkaid, Canopus	Bellatrix, Vega, Regulus	
444	On 28 July your 0800 zone time (ZT) fix gives you a position of LAT $25^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $71^{\circ} 19.0^{\prime} \mathrm{W}$. Your vessel is on course $026^{\circ} \mathrm{T}$, and your speed is 17.5 knots. Local apparent noon (LAN) occurs at 1150 ZT, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $82^{\circ} 28.7^{\prime}$. What is the latitude at 1200 ZT?	26²5.0'N	26²7.6'N	$26^{\circ} 29.8^{\prime} \mathrm{N}$	$26^{\circ} 32.0^{\prime} \mathrm{N}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
445	On 28 July your 0800 zone time fix gives you a position of LAT $25^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $71^{\circ} 19.0^{\prime} \mathrm{W}$. Your vessel is on course $026^{\circ} \mathrm{T}$, and your speed is 17.5 knots. Local apparent noon (LAN) occurs at 1149 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $82^{\circ} 28.7^{\prime}$. What is the calculated latitude at LAN?	$26^{\circ} 21.9^{\prime} \mathrm{N}$	$26^{\circ} 23.4{ }^{\prime} \mathrm{N}$	26²5.0'N	26²7.7'N	
446	On 28 July your 1937 zone time DR position is LAT 26¹3.0' N, LONG 78²7.0' E. At that time, you observe Deneb bearing $048.7^{\circ} \mathrm{pgc}$. The chronometer reads 02 h 37 m 42 s , and the chronometer error is 00 m 15 s fast. The variation is $4^{\circ} \mathrm{W}$. What is the gyro error?	$2.4{ }^{\circ} \mathrm{W}$	$2.8^{\circ} \mathrm{E}$	$3.6{ }^{\circ} \mathrm{W}$	$3.6{ }^{\circ} \mathrm{E}$	
447	On 28 June , your 1820 ZT DR position is LAT $16^{\circ} 00.0^{\prime} \mathrm{N}$, LONG $31^{\circ} 00.0^{\prime} \mathrm{W}$. You are on course $310^{\circ} \mathrm{T}$ at a speed of 18 knots. What will be the zone time of sunset at your vessel?	1828	1832	1836	1840	
448	On 28 May your 0200 DR position is LAT $19^{\circ} 16.5^{\prime} \mathrm{S}$, LONG $119^{\circ} 24.0^{\prime} \mathrm{W}$. You are on course $107^{\circ} \mathrm{T}$ at a speed of 18 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 19^{\circ} 43.0^{\prime} \mathrm{S}, \text { LONG } \\ & 117^{\circ} 54.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 48.2^{\prime} \mathrm{S}, \text { LONG } \\ & 118^{\circ} 04.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 07.5^{\prime} \mathrm{S}, \text { LONG } \\ & 117^{\circ} 32.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 20^{\circ} 17.1^{\prime} \mathrm{S}, \text { LONG } \\ & 118^{\circ} 06.0^{\prime} \mathrm{W} \end{aligned}$	NP-0034
449	On 28 November your vessel's 0652 DR position is LAT $37^{\circ} 30^{\prime} \mathrm{N}$, LONG $124^{\circ} 12^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the visible horizon and bears 103° per standard magnetic compass. Variation in the area is $16.3^{\circ} \mathrm{E}$. The chronometer reads 02 h 54 m 18s and is 02 m 06s fast. What is the deviation of the compass?	$2.5^{\circ} \mathrm{W}$	$3.0^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{E}$	$3.0^{\circ} \mathrm{E}$	
450	On 28 November your vessel's 0712 zone time DR position is LAT $26^{\circ} 54^{\prime} \mathrm{S}$, LONG $45^{\circ} 18^{\prime} \mathrm{W}$, when you take an azimuth of the Sun. Determine the gyro error using the azimuth information. Chronometer time: 10h 09m 18s Chronometer error: slow 02m 54s Gyro bearing: 102°	$1.7^{\circ} \mathrm{W}$	$0.6{ }^{\circ} \mathrm{W}$	$1.1{ }^{\circ} \mathrm{E}$	$0.8^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
451	On 28 October at 1754 ZT , your vessel's DR position is LAT $28^{\circ} 30^{\prime} \mathrm{N}$, LONG $63^{\circ} 24^{\prime} \mathrm{W}$. At this time, you obtain a sextant altitude (hs) of Polaris reading $28^{\circ} 42.6^{\prime}$, with an index error of 2.4^{\prime} on the arc. Your chronometer reads 09 h 50 m 00 s , and is 4 m 14 s slow. What is your latitude by Polaris, given a height of eye of 28 feet (8.5 meters)?	28²5.2'N	28³0.6'N	28³4.9'N	28041.3'N	
452	On 28 October morning twilight will occur around 0524 ZT in LAT $25^{\circ} 25.0^{\prime} \mathrm{N}$, LONG $32^{\circ} 33.3^{\prime} \mathrm{W}$. Considering their magnitude and location, which group will be the three stars best suited to observe for a star fix at star time?	Sirius, Hamal, Denebola	Sirius, Denebola, Dubhe	Sirius, Capella, Denebola	Sirius, Mirfak, Hamal	
453	On 28 September in DR position LAT $24^{\circ} 12.0^{\prime}$ S, LONG $85^{\circ} 25.0^{\prime}$ E, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears 094° psc. The chronometer reads 11 h 29 m 42 s and is 03 m 30 s slow. Variation in the area is $4^{\circ} \mathrm{W}$. What is the deviation of the magnetic compass?	$1.5^{\circ} \mathrm{W}$	$2.1^{\circ} \mathrm{W}$	$1.8^{\circ} \mathrm{E}$	$2.4{ }^{\circ} \mathrm{E}$	
454	On 28 September in DR position LAT $27^{\circ} 16.7^{\prime} \mathrm{S}$, LONG $113^{\circ} 27.2^{\prime} \mathrm{W}$, you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears $273^{\circ} \mathrm{psc}$. The chronometer reads 01 h 17 m 26 s and is 01 m 49 s slow. Variation in the area is $6^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$0.2^{\circ} \mathrm{W}$	$0.4{ }^{\circ} \mathrm{E}$	$0.6{ }^{\circ} \mathrm{W}$	$0.8^{\circ} \mathrm{E}$	
455	On 29 April your 0300 ZT DR position is LAT $28^{\circ}{ }^{\circ} 9^{\prime}$ $\mathrm{N}, \mathrm{LONG} 168^{\circ} 03^{\prime} \mathrm{E}$. You are on course $108^{\circ} \mathrm{T}$ at a speed of 22 knots. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Moon, Alpheratz, Polaris	Deneb, Dubhe, Zubenelgenubi	Venus, Polaris, Arcturus	Moon, Altair, Sabik	
456	On 29 April your 0530 zone time position was LAT $23^{\circ} 04.0^{\prime} \mathrm{S}$, LONG $162^{\circ} 12.0^{\prime} \mathrm{E}$. Your vessel was steaming on course $120^{\circ} \mathrm{T}$ at a speed of 9.0 knots. An observation of the Sun's upper limb was made at 0830 ZT. The chronometer read 09h 27 m 32 s and was slow 02 m 24 s . The observed altitude (Ho) was $24^{\circ} 58.0^{\prime}$. LAN occurred at 1205 zone time. The observed altitude (Ho) was $52^{\circ} 04.0^{\prime}$. What was the longitude of your 1200 zone time running fix?	LONG 16302.1'E	LONG 16306.0'E	LONG 16309.5'E	LONG 163¹1.3'E	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
457	On 29 April your 1913 zone time DR position is LAT $22^{\circ} 09.0^{\prime} \mathrm{N}$, LONG $56^{\circ} 16.0^{\prime} \mathrm{W}$. At that time you observe Polaris with a sextant altitude (hs) of $22^{\circ} 25.8^{\prime}$. The chronometer time of the sight is 11 h 11 m 14 s , and the chronometer error is 02 m 18 s slow. The index error is 1.5 ' off the arc, and the height of eye is 61.5 feet. What is your latitude by Polaris?	$21^{\circ} 39.9^{\prime} \mathrm{N}$	2155.7'N	22³9.9'N	$22^{\circ} 48.8^{\prime} \mathrm{N}$	
458	On 29 July your 1930 zone time DR position is LONG $164^{\circ} 26.0^{\prime}$ E. At that time you observe Polaris with a sextant altitude (hs) of $23^{\circ} 46.8^{\prime}$. The chronometer time of the sight is 08 h 32 m 18 s , and the chronometer error is 02 m 26 s fast. The index error is 2.7' on the arc, and the height of eye is 56.0 feet. What is your latitude by Polaris?	$24^{\circ} 01.9^{\prime} \mathrm{N}$	$24^{\circ} 19.5^{\prime} \mathrm{N}$	$24^{\circ} 31.7^{\prime} \mathrm{N}$	$25^{\circ} 19.6$ ' N	
459	On 29 June you observe the star Achernar at a sextant altitude (Hs) of $54^{\circ} 18.9^{\prime}$. The index error is 4.7 ' off the arc. The height of eye is 58 feet. What is the observed altitude (Ho)?	5406.1'	$54^{\circ} 15.5{ }^{\prime}$	$54^{\circ} 31.5^{\prime}$	54043.7'	
460	On 29 June your 0800 zone time fix gives you a position of LAT $26^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $61^{\circ} 04.0^{\prime} \mathrm{E}$. Your vessel is steaming a course of $079^{\circ} \mathrm{T}$ at a speed of 15.5 knots. An observation of the Sun's upper limb is made at 0905 zone time, and the observed altitude (Ho) is $25^{\circ} 20.1$. The chronometer reads 05 h 08 m 12 s , and the chronometer error is 02 m 27 s fast. Local apparent noon occurs at 1154 zone time, and a meridian altitude of the Sun's lower limb is made. The observed altitude (Ho) for this sight is $40^{\circ} 44.2^{\prime}$. Determine the vessel's 1200 zone time position.	$\begin{aligned} & \text { LAT } 26^{\circ} 02.0^{\prime} \mathrm{S}, \text { LONG } \\ & 62^{\circ} 05.0^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 02.0^{\prime} \mathrm{S}, \text { LONG } \\ & 62^{\circ} 23.2^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 05.1^{\prime} \mathrm{S}, \text { LONG } \\ & 62^{\circ} 06.3^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 25^{\circ} 56.0^{\prime} \mathrm{S}, \text { LONG } \\ & 62^{\circ} 03.0^{\prime} \mathrm{E} \end{aligned}$	
461	On 29 October in DR position LAT $41^{\circ} 12.0^{\prime} \mathrm{N}$, LONG $50^{\circ} 18.9^{\prime} \mathrm{W}$, you take an ex-meridian observation of the Sun's lower limb, near upper transit. The chronometer time of the sight is 03 h 21 m 12 s , and the chronometer error is 01 m 50 s slow. The sextant altitude (hs) is $34^{\circ} 54.2^{\prime}$. The index error is 2.0^{\prime} on the arc, and your height of eye is 45 feet. What is the latitude at meridian transit?	$41^{\circ} 12.0{ }^{\prime} \mathrm{N}$	$41^{\circ} 16.0{ }^{\prime} \mathrm{N}$	41²0.2'N	$41^{\circ} 23.6$ N	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
462	On 3 April your vessel's 1400 ZT DR position is LAT $20^{\circ} 08.0^{\prime} \mathrm{N}$, LONG $147^{\circ} 45.0^{\prime} \mathrm{W}$. You are steering course $023^{\circ} \mathrm{T}$ at 18.0 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1900 running fix.	$\begin{aligned} & \text { LAT } 21^{\circ} 39.8^{\prime} \mathrm{N}, \text { LONG } \\ & 146^{\circ} 59.7^{\prime} \mathrm{W} \end{aligned}$	LAT $21^{\circ} 40.0^{\prime} \mathrm{N}$, LONG $147^{\circ} 03.2^{\prime} \mathrm{W}$	$\begin{aligned} & \text { LAT } 21^{\circ} 41.8^{\prime} \mathrm{N}, \text { LONG } \\ & 147^{\circ} 05.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 21^{\circ} 41.8^{\prime} \mathrm{N}, \text { LONG } \\ & 147^{\circ} 01.5^{\prime} \mathrm{W} \end{aligned}$	NP-0022
463	On 3 December evening twilight for your vessel will occur at 1901 zone time. Your vessel's DR position for this time will be LAT $24^{\circ} 18.5^{\prime} \mathrm{S}$, LONG $110^{\circ} 30.6^{\prime}$ W. Considering their magnitude and location, what are the three stars best suited to observe for a fix at star time?	Canopus, Hamal, Deneb	Alpheratz, Achernar, Nunki	Antares, Fomalhaut, Mirfak	Rigel, Canopus, Regulus	
464	On 3 February your 0451 zone time DR position is LAT $24^{\circ} 15.0^{\prime} \mathrm{S}$, LONG $124^{\circ} 24.0^{\prime} \mathrm{W}$. Considering their magnitude, azimuth and altitude, which group includes the three bodies best suited for a fix at star time?	Alphard, Denebola, Acrux	Spica, Venus, Procyon	Jupiter, Dubhe, Antares	Mars, Arcturus, Spica	
465	On 3 February your 0547 zone time DR position is LAT $24^{\circ} 18.5^{\prime} \mathrm{N}$, LONG $167^{\circ} 25.0^{\prime} \mathrm{E}$. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Regulus, Deneb, Antares	Altair, Saturn, Regulus	Arcturus, Kochab, Venus	Jupiter, Denebola, Regulus	
466	On 3 February your 0550 zone time DR position is LAT $26^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $112^{\circ} 05.0^{\prime} \mathrm{W}$. Considering their magnitude, azimuth, and altitude, which group includes the three bodies best suited for a fix at star time?	Spica, Antares, Saturn	Vega, Antares, Dubhe	Venus, Regulus, Vega	Spica, Kochab, Rasalhague	
467	On 3 January your 1759 zone time DR position is LONG $60^{\circ} 53.2^{\prime} \mathrm{W}$. At that time you observe Polaris with a sextant altitude (hs) of $22^{\circ} 55.8^{\prime}$. The chronometer time of the sight is 09 h 57 m 10 s , and the chronometer error is 02 m 26 s slow. The index error is 2.9 off the arc, and the height of eye is 52.5 feet. What is your latitude by Polaris?	21³5.2'N	$21^{\circ} 52.5$ N	22º3.6'N	22²2.6'N	
468	On 3 May your 1009 zone time DR position is LAT $30^{\circ} 01.0^{\prime} \mathrm{N}$, LONG $123^{\circ} 15.0^{\prime} \mathrm{W}$. Your vessel is on course $330^{\circ} \mathrm{T}$ at a speed of 8.6 knots. What is the zone time of local apparent noon (LAN)?	1206	1208	1211	1214	
469	On 3 October , your 2122 ZT position is LAT $26^{\circ} 32^{\prime} \mathrm{N}$, LONG $84^{\circ} 26^{\prime} \mathrm{W}$. You observe Polaris bearing $359.8^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $106^{\circ} \mathrm{pgc}$ and $107^{\circ} \mathrm{psc}$. The variation is 0°. What is the deviation for that heading?	$1^{\circ} \mathrm{E}$	0°	$1^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
470	On 3 October your 0330 zone time (ZD + 5) DR position is LAT $47^{\circ} 41^{\prime} \mathrm{N}$, LONG $86^{\circ} 49^{\prime} \mathrm{W}$. At that time, you observe Polaris bearing $357.5^{\circ} \mathrm{pgc}$. The chronometer time of the observation is 08 h 32 m 04 s , and the chronometer is 0 m 27 s slow. The variation is $5.5^{\circ} \mathrm{W}$. What is the gyro error?	$7.5^{\circ} \mathrm{E}$	$5.0^{\circ} \mathrm{E}$	$3.5^{\circ} \mathrm{E}$	$2.0^{\circ} \mathrm{E}$	
471	On 3 October your 0830 zone time DR position is LAT $26^{\circ} 15.0^{\prime} \mathrm{S}$, LONG $73^{\circ} 16.0^{\prime} \mathrm{E}$. Your vessel is on course $280^{\circ} \mathrm{T}$ at a speed of 19.0 knots. What is the zone time of local apparent noon (LAN)?	1201	1158	1155	1152	
472	On 3 October your 0830 ZT position is LAT $26^{\circ} 15.0^{\prime} \mathrm{S}$, LONG $73^{\circ} 16.0^{\prime} \mathrm{E}$. Your vessel is on course $280^{\circ} \mathrm{T}$ at a speed of 19.0 knots. What is the ZT of local apparent noon (LAN)?	1151	1154	1158	1201	
473	On 30 August in DR position LAT $26^{\circ} 34.0^{\prime} \mathrm{N}$, LONG $141^{\circ} 36.0^{\prime} \mathrm{W}$, you take an ex-meridian observation of the Sun's lower limb. The chronometer time of the sight is 09 h 15 m 26 s , and the chronometer error is 00 m 00 s . The sextant altitude (hs) is $71^{\circ} 41.7^{\prime}$. The index error is 3.2^{\prime} off the arc, and your height of eye is 49.6 feet. What is the latitude at meridian transit?	LAT $26^{\circ} 41.9^{\prime} \mathrm{N}$	LAT $26{ }^{\circ} 44.6^{\prime} \mathrm{N}$	LAT $26{ }^{\circ} 48.2^{\prime} \mathrm{N}$	LAT $26^{\circ} 52.3^{\prime} \mathrm{N}$	
474	On 30 August your 0554 zone time (ZT) position was LAT $25^{\circ} 39.0^{\prime} \mathrm{S}$, LONG $31^{\circ} 51.0^{\prime} \mathrm{E}$. Your vessel was steaming on course $325^{\circ} \mathrm{T}$ at a speed of 15.0 knots. An observation of the Sun's lower limb was made at 0836 ZT . The chronometer read 06 h 38 m 36 s and was fast 02 m 24s. The observed altitude (Ho) was $30^{\circ} 49.2^{\prime}$. LAN occurred at 1157 ZT . The observed altitude (Ho) was $56^{\circ} 40.0^{\prime}$. What was the longitude of your 1157 ZT running fix?	$30^{\circ} 59.8^{\prime \prime} \mathrm{E}$	$30^{\circ} 57.6^{\prime} \mathrm{E}$	$30^{\circ} 55.9^{\prime} \mathrm{E}$	3052.5'E	
475	On 30 December in DR position LAT $28^{\circ} 24.0^{\prime} \mathrm{S}$, LONG $32^{\circ} 15.0^{\prime} \mathrm{W}$, you take an ex-meridian observation of the Sun's lower limb. The chronometer time of the sight is 02h 09m 16s, and the chronometer error is 00 m 00 s . The sextant altitude (hs) is $84^{\circ} 03.3^{\prime}$. The index error is 3.5^{\prime} off the arc, and your height of eye is 62.0 feet. What is the latitude at meridian transit?	LAT $28^{\circ} 50.6$ S	LAT 2851.9'S	LAT $28{ }^{\circ} 54.2$ S	LAT 2856.6'S	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
476	On 30 July , your 0200 zone time (ZD +4) DR position is LAT $43^{\circ} 48^{\prime} \mathrm{N}$, LONG $78^{\circ} 00 \mathrm{~W}$. At that time, you observe Polaris bearing 008.7° psc. The chronometer time of the observation is 05 h 58 m 07 s , and the chronometer is 0 m 23 s slow. The variation is $10.5^{\circ} \mathrm{W}$. What is the deviation of the magnetic compass?	$0.5^{\circ} \mathrm{E}$	$3.0^{\circ} \mathrm{E}$	$7.5^{\circ} \mathrm{W}$	$18.0^{\circ} \mathrm{W}$	
477	On 30 July your 1030 ZT DR position is LAT $17^{\circ} 46^{\prime} \mathrm{N}$, LONG $139^{\circ} 30^{\prime}$ W. You are on course $129^{\circ} \mathrm{T}$, speed 24 knots. Determine your 1200 position using the following observations of the Sun.	$\begin{aligned} & \text { LAT } 17^{\circ} 24.0^{\prime} \mathrm{N}, \text { LONG } \\ & 138^{\circ} 59.8^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 21.6^{\prime} \mathrm{N}, \text { LONG } \\ & 138^{\circ} 56.2^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 18.7^{\prime} \mathrm{N}, \text { LONG } \\ & 139^{\circ} 07.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 15.1^{\prime} \mathrm{N}, \text { LONG } \\ & 139^{\circ} 00.0^{\prime} \mathrm{W} \end{aligned}$	
478	On 30 July your 1030 ZT DR position is LAT $19^{\circ} 02^{\prime} \mathrm{N}$, LONG $138^{\circ} 12^{\prime} \mathrm{W}$. You are on course $309^{\circ} \mathrm{T}$, speed 24 knots. Determine your 1200 position using the following observations of the Sun.	$\begin{aligned} & \text { LAT } 19^{\circ} 28.0^{\prime} \mathrm{N}, \text { LONG } \\ & 138^{\circ} 35.2^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 29.7^{\prime} \mathrm{N}, \text { LONG } \\ & 138^{\circ} 42.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 32.6^{\prime} \mathrm{N}, \text { LONG } \\ & 138^{\circ} 49.4^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 34.5^{\prime} \mathrm{N}, \text { LONG } \\ & 138^{\circ} 40.9^{\prime} \mathrm{W} \end{aligned}$	
479	On 30 June at 0630 zone time, morning stars were observed, and the vessel's position was determined to be LAT $25^{\circ} 15.0^{\prime}$ S, LONG $175^{\circ} 36.0^{\prime}$ E. Your vessel is steaming at 16.0 knots on a course of $302^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 1015 zone time. The chronometer reads 10 h 14 m 38 s , and the sextant altitude is $32^{\circ} 07.9^{\prime}$. The index error is 4.5 ' on the arc, and the chronometer error is 01 m 25 s slow. Your height of eye on the bridge is 58.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	${ }^{035.3}{ }^{\circ} \mathrm{T}$	$144.7^{\circ} \mathrm{T}$	$186.5^{\circ} \mathrm{T}$	$248.5^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
480	On 30 March in DR position LAT $20^{\circ} 26.2^{\prime} \mathrm{N}$, LONG $131^{\circ} 17.9^{\prime} \mathrm{E}$, you take an ex-meridian observation of the Moon's lower limb at upper transit. The chronometer time of the sight is 10 h 36 m 02s, and the chronometer error is 02 m 06 s slow. The sextant altitude (hs) is $48^{\circ} 21.4^{\prime}$. The index error is 2.0^{\prime} on the arc, and your height of eye is 40 feet. What is the latitude at meridian transit?	LAT $20^{\circ} 44.8^{\prime} \mathrm{N}$	LAT 20³1.9'N	LAT 20Z${ }^{\circ} 23.7{ }^{\prime} \mathrm{N}$	LAT $20^{\circ} 15.6^{\prime} \mathrm{N}$	
481	On 30 October an ex-meridian altitude of the Sun's lower limb at upper transit was observed at 1144 ZT . Your DR position is LAT $22^{\circ} 42.0^{\prime} \mathrm{S}$, LONG $137^{\circ} 16.0^{\prime} \mathrm{W}$, and your sextant altitude (hs) is $80^{\circ} 59.4^{\prime}$. The index error is 2.5^{\prime} off the arc, and your height of eye is 42.5 feet. The chronometer time of the observation is $08 \mathrm{~h} 46 \mathrm{~m} \mathrm{15s}$, and the chronometer error is 02 m 12s fast. Find the latitude at meridian transit from the ex-meridian observation.	LAT $22^{\circ} 31.4$ 'S	LAT $22^{\circ} 42.3$ S	LAT $22^{\circ} 46.2^{\prime} \mathrm{S}$	LAT $23^{\circ} 00.9$ S	
482	On 31 January your 0920 zone time DR position is LAT $24^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $151^{\circ} 33.0^{\prime} \mathrm{E}$. Your vessel is on course $258^{\circ} \mathrm{T}$ at a speed of 18.5 knots. What is the zone time of local apparent noon (LAN)?	1202	1207	1211	1215	
483	On 31 May , your vessel's 1420 zone time DR position is LAT $29^{\circ} 06^{\prime} \mathrm{N}$, LONG $120^{\circ} 06^{\prime} \mathrm{W}$, when an azimuth of the Sun is observed. The bearing of the Sun per standard magnetic compass was 255.3°. The chronometer time of the observation is 10 h 17 m 24 s . The chronometer error is 02 m 32 s slow. The variation for this area is $12.9^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$2.5{ }^{\circ} \mathrm{W}$	$2.9^{\circ} \mathrm{W}$	$2.9^{\circ} \mathrm{E}$	$3.2^{\circ} \mathrm{E}$	
484	On 31 October your 1700 zone time DR position is LAT $27^{\circ} 17.0^{\prime} \mathrm{N}$, LONG $116^{\circ} 10.0^{\prime} \mathrm{W}$, when an amplitude of the Sun is observed. The Sun's center is on the visible horizon and bears 246.5° per standard magnetic compass. Variation in the area is $8.5^{\circ} \mathrm{E}$. The chronometer reads 01 h 01 m 23 s and the chronometer error is 01 m 54 s slow. What is the deviation of the standard compass?	$0.8^{\circ} \mathrm{E}$	$0.8{ }^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{E}$	$2.5^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
485	On 4 December your 1500 ZT DR position is LAT $18^{\circ} 06.0^{\prime} \mathrm{N}$, LONG $75^{\circ} 42.0^{\prime} \mathrm{W}$. You are on course $020^{\circ} \mathrm{T}$ at a speed of 15.0 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1548 running fix.	$\begin{aligned} & \text { LAT } 18^{\circ} 10.3^{\prime} \mathrm{N}, \text { LONG } \\ & 75^{\circ} 34.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 18^{\circ} 12.6^{\prime} \mathrm{N}, \text { LONG } \\ & 75^{\circ} 42.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 18^{\circ} 14.0^{\prime} \mathrm{N}, \text { LONG } \\ & 75^{\circ} 40.0^{\prime} \mathrm{W} \end{aligned}$	LAT $18^{\circ} 17.3^{\prime} \mathrm{N}$, LONG $75^{\circ} 37.7^{\prime} \mathrm{W}$	
486	On 4 January your 0800 zone time DR position is LAT $25^{\circ} 25.0 \mathrm{~S}$, LONG $16^{\circ} 09.0^{\prime} \mathrm{W}$. Your vessel is on course $290^{\circ} \mathrm{T}$ at a speed of 13.5 knots. What is the zone time of local apparent noon (LAN)?	1157	1205	1209	1213	
487	On 4 July at 0630 ZT, morning stars were observed, and the vessel's position was determined to be LAT $21^{\circ} 15.0^{\prime} \mathrm{S}$, LONG $21^{\circ} 20.0^{\prime} \mathrm{W}$. Your vessel is steaming at 13.0 knots on a course of $146^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0915 ZT . The chronometer reads 10 h 14 m 27 s , and the sextant altitude is $25^{\circ} 29.8^{\prime}$. The index error is 3.1' off the arc, and the chronometer error is 0 m 53s slow. Your height of eye on the bridge is 48.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	049.5 ${ }^{\circ}$	${ }^{052.6}{ }^{\circ} \mathrm{T}$	$0^{054.3}{ }^{\circ} \mathrm{T}$	$0^{058.9}{ }^{\circ} \mathrm{T}$	
488	On 4 July you observe the lower limb of the Sun at a sextant altitude (hs) of $25^{\circ} 29.8^{\prime}$. The index error is 3.1' off the arc. The height of eye is 48 feet (14.6 meters). What is the observed altitude (Ho)?	$25^{\circ} 37.1^{\prime}$	$25^{\circ} 40.2{ }^{\prime}$	$25^{\circ} 42.8{ }^{\prime}$	$25^{\circ} 44.3$ '	
489	On 4 July your vessel's 1722 zone time DR position is LAT $34^{\circ} 30^{\prime} \mathrm{S}$, LONG $174^{\circ} 48^{\prime} \mathrm{E}$, when an amplitude of the Sun is observed. The sun's center is on the visible horizon and bears 282° per standard magnetic compass. Variation in the area is $17.2^{\circ} \mathrm{E}$. The chronometer reads 05 h 21 m 48 s and is 02 m 01 s fast. What is the deviation of the compass?	$1.5{ }^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{E}$	$2.0^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
490	On 4 June at 0630 ZT, morning stars were observed, and the vessel's position was determined to be LAT $26^{\circ} 15^{\prime} \mathrm{S}$, LONG $121^{\circ} 20^{\prime} \mathrm{W}$. Your vessel is steaming at 13.0 knots on a course of $246^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0915 ZT . The chronometer reads 05 h 14 m 27 s , and the sextant altitude is $25^{\circ} 57.8^{\prime}$. The index error is 2.1^{\prime} off the arc, and the chronometer error is 0 m 53 s slow. Your height of eye is 39.0 feet. What is the intercept (a) and azimuth (Zn) of this sight using the assumed position method?	Zn 044.6, a 1.7' A	Zn 044.6, a $2.5{ }^{\text {' T }}$		Zn 135.1, a 2.5^{\prime} T	
491	On 4 October , your 0734 zone time DR position is LAT $24^{\circ} 11.0^{\prime} \mathrm{N}$, LONG $162^{\circ} 34.0^{\prime} \mathrm{E}$. At that time, you observe the Sun bearing $105.5^{\circ} \mathrm{psc}$. The chronometer reads 08 h 36 m 11 s , and the chronometer error is 01 m 46 s fast. The variation is $7^{\circ} \mathrm{W}$. What is the deviation of the standard compass?	$1.2^{\circ} \mathrm{W}$	$1.9^{\circ} \mathrm{E}$	$5.3^{\circ} \mathrm{W}$	$5.8^{\circ} \mathrm{E}$	
492	On 4 October your 1907 zone time DR position is LAT $25^{\circ} 15.0^{\prime}$ S, LONG $105^{\circ} 44.0^{\prime} \mathrm{E}$. At that time, you observe Deneb bearing $011.5^{\circ} \mathrm{psc}$. The chronometer reads 00 h 07 m 42 s , and the chronometer error is 00 m 36 s fast. The variation is $7.5^{\circ} \mathrm{W}$. What is the deviation of the standard compass?	$3.2^{\circ} \mathrm{E}$	$4.3{ }^{\circ} \mathrm{W}$	$2.1^{\circ} \mathrm{E}$	$2.1^{\circ} \mathrm{W}$	
493	On 4 September your 1813 zone time DR position is LAT $24^{\circ} 18.0^{\prime} \mathrm{S}$, LONG $95^{\circ} 16.0^{\prime} \mathrm{E}$. Considering their magnitude, azimuth, and altitude, which group includes the three stars best suited for a fix at star time?	Enif, Miaplacidus, Alkaid	Betelgeuse, Acrux, Hamal	Rasalhague, Fomalhaut, Spica	Deneb, Altair, Vega	
494	On 5 April at 0509 zone time, morning stars were observed and the vessel's position was LAT $28^{\circ} 32^{\prime} \mathrm{N}$, LONG $177^{\circ} 13.0^{\prime} \mathrm{W}$. Your vessel is steaming at 19.0 knots on a course of $258^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 1021 zone time. The chronometer reads 10 h 20 m 09 s , and the sextant altitude (hs) is $58^{\circ} 06.6^{\prime}$. The index error is 1.0^{\prime} off the arc, and the chronometer error is 00 m 54 s slow. Your height of eye on the bridge is 55.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	$125.8^{\circ} \mathrm{T}$	$128.8^{\circ} \mathrm{T}$	$129.2^{\circ} \mathrm{T}$	$130.2^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
495	On 5 August your 0310 ZT position is LAT $09^{\circ} 02^{\prime} \mathrm{N}$, LONG $21^{\circ} 08^{\prime} \mathrm{W}$. You observe Polaris bearing $002^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $316^{\circ} \mathrm{pgc}$ and $329^{\circ} \mathrm{psc}$. The variation is $15^{\circ} \mathrm{W}$. What is the deviation for that heading?	0.0°	$1.5^{\circ} \mathrm{W}$	$3.0^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{E}$	
496	On 5 February , your 2320 ZT position is LAT $52^{\circ} 28^{\prime} \mathrm{N}$, LONG $23^{\circ} 48^{\prime} \mathrm{W}$. You observe Polaris bearing $000.2^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $224^{\circ} \mathrm{pgc}$ and $244^{\circ} \mathrm{psc}$. The variation is $20^{\circ} \mathrm{W}$. What is the deviation for that heading?	0.0°	$1.5^{\circ} \mathrm{W}$	$3.0^{\circ} \mathrm{W}$	$4.5^{\circ} \mathrm{W}$	
497	On 5 June your 0420 zone time DR position is LAT $26^{\circ} 47.0^{\prime}$ N, LONG $133^{\circ} 19.5^{\prime}$ W. At that time, you observe Vega bearing $298.1^{\circ} \mathrm{psc}$. The chronometer reads 01 h 21 m 17 s , and the chronometer error is 02 m 25 s fast. The variation is $3.5^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$1.8^{\circ} \mathrm{E}$	$5.2^{\circ} \mathrm{E}$	$1.8{ }^{\circ} \mathrm{W}$	$5.2^{\circ} \mathrm{W}$	
498	On 5 May , your 1300 ZT DR position is LAT $25^{\circ} 16.0^{\prime}$ S, LONG $12^{\circ} 30.0^{\prime} \mathrm{W}$. You are on course $012^{\circ} \mathrm{T}$ at a speed of 14 knots. What will be the zone time of sunset at your vessel?	1702	1719	1730	1741	
499	On 5 May, your 1800 ZT DR position is LAT $26^{\circ} 11.5^{\prime} \mathrm{N}$, LONG $65^{\circ} 35.0^{\prime} \mathrm{W}$. You are on course $270^{\circ} \mathrm{T}$ at a speed of 12 knots. What will be the ZT of sunset at your vessel?	1825	1840	1857	1901	
500	On 5 May at 1953 zone time, you take a sextant observation of Polaris. Your vessel's DR position is LAT $29^{\circ} 30.0^{\prime}$ N, LONG $66^{\circ} 25.7^{\prime} \mathrm{W}$, and your sextant reads $29^{\circ} 07.2^{\prime}$. Your chronometer reads 11 h 51 m 45 s , and your chronometer error is 01 m 36 s slow. Your height of eye is 56 feet, and the index error for your sextant is 1.5 ' on the arc. What is the latitude of your vessel from your observation of Polaris?	29 ${ }^{\circ} 14.3$ ' N	$29^{\circ} 23.6^{\prime} \mathrm{N}$	$29^{\circ} 32.3$ N	$29^{\circ} 38.8{ }^{\prime} \mathrm{N}$	
501	On 5 May in DR position LAT $38^{\circ} 34.5^{\prime} \mathrm{N}$, LONG $124^{\circ} 20.7^{\prime}$ W, you take an ex-meridian observation of the Sun's lower limb. The chronometer time of the sight is 07 h 59 m 10 s , and the chronometer error is 01 m 10 s slow. The sextant altitude (hs) is $67^{\circ} 27.0^{\prime}$. The index error is 1.4' on the arc, and your height of eye is 30 feet. What is the latitude at meridian transit?	LAT 38²6.4'N	LAT $38^{\circ} 30.2^{\prime} \mathrm{N}$	LAT 38³6.0'N	LAT 3841.2'N	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
502	On 5 May your 1600 zone time DR position is LAT $17^{\circ} 28^{\prime}$ S, LONG $143^{\circ} 39^{\prime} \mathrm{E}$. You are on course $316^{\circ} \mathrm{T}$ at a speed of 17 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1800 running fix.	$\begin{aligned} & \text { LAT } 17^{\circ} 05.2^{\prime} \mathrm{S}, \text { LONG } \\ & 143^{\circ} 11.4^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 07.8^{\prime} \mathrm{S}, \text { LONG } \\ & 143^{\circ} 17.5^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 08.2^{\prime} \mathrm{S}, \text { LONG } \\ & 143^{\circ} 07.9^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { LAT } 17^{\circ} 09.7^{\prime} \mathrm{S}, \text { LONG } \\ & 143^{\circ} 10.1^{\prime} \mathrm{E} \end{aligned}$	NP-0038
503	On 5 September in DR position LAT $23^{\circ} 17.0^{\prime} \mathrm{S}$, LONG $154^{\circ} 35.0^{\prime} \mathrm{E}$, you observe an amplitude of the Sun. The Sun's center is on the visible horizon and bears 275° per standard magnetic compass. The chronometer reads 07 h 49 m 26 s and is 01 m 52 s fast. Variation in the area is $3^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$2.1^{\circ} \mathrm{E}$	$2.4{ }^{\circ} \mathrm{W}$	5.1E	$5.4{ }^{\circ} \mathrm{W}$	
504	On 6 April your 0300 DR position is LAT $27^{\circ} 42^{\prime} \mathrm{S}$, LONG $128^{\circ} 58^{\prime} \mathrm{W}$. You are on course $097^{\circ} \mathrm{T}$ at a speed of 18 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 27^{\circ} 15.5^{\prime} \mathrm{S}, \text { LONG } \\ & 128^{\circ} 12.4^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 44.7^{\prime} \mathrm{S}, \text { LONG } \\ & 127^{\circ} 47.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 27^{\circ} 52.4^{\prime} \mathrm{S}, \text { LONG } \\ & 127^{\circ} 49.4^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 15.2^{\prime} \mathrm{S}, \text { LONG } \\ & 128^{\circ} 11.6^{\prime} \mathrm{W} \end{aligned}$	NP-0029
505	On 6 April your 1830 ZT DR position is LAT $26^{\circ} 33.0^{\prime}$ N , LONG $64^{\circ} 31.0^{\prime} \mathrm{W}$. You are on course $082^{\circ} \mathrm{T}$ at a speed of 16 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 1900 running fix.	$\begin{aligned} & \text { LAT } 26^{\circ} 49.5^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 06.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \hline \text { LAT } 26^{\circ} 32.5^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 27.1^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 31.2^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 32.1^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 26^{\circ} 28.7^{\prime} \mathrm{N}, \text { LONG } \\ & 64^{\circ} 32.1^{\prime} \mathrm{W} \end{aligned}$	NP-0008
506	On 6 August, your 1552 zone time DR position is LAT $24^{\circ} 26.0^{\prime}$ S, LONG $73^{\circ} 19.0^{\prime} \mathrm{E}$. At that time, you observe the Sun bearing $302^{\circ} \mathrm{psc}$. The chronometer reads 10 h 55 m 07 s , and the chronometer error is 02 m 38 s fast. The variation is $6^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$4.1^{\circ} \mathrm{W}$	$4.6^{\circ} \mathrm{E}$	$5.9^{\circ} \mathrm{E}$	$6.1^{\circ} \mathrm{W}$	
507	On 6 December your 0800 zone time DR position was LAT $21^{\circ} 48.0^{\prime} \mathrm{N}$, LONG $124^{\circ} 30.0^{\prime} \mathrm{E}$. Your vessel was steaming on course $045^{\circ} \mathrm{T}$ at a speed of 20.0 knots. An observation of the Sun's lower limb was made at 1012 ZT . The chronometer read 02 h 10 m 42 s and was slow 01m 02s. The observed altitude (Ho) was $41^{\circ} 17.1^{\prime}$. LAN occurred at 1129 zone time. The observed altitude (Ho) was $44^{\circ} 53.7^{\prime}$. What was the longitude of your 1200 zone time running fix?	LONG 125²5.0'E	LONG 125²8.9'E	LONG $125^{\circ} 32.5^{\prime} \mathrm{E}$	LONG 125³5.2'E	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
508	On 6 March at 0550 zone time, morning stars were observed, and the vessel's position was determined to be LAT $23^{\circ} 56.0^{\prime} \mathrm{N}$, LONG $27^{\circ} 19.0^{\prime} \mathrm{W}$. Your vessel is steaming at 25.0 knots on a course of $149.0^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0830 zone time. The chronometer reads 10 h 32 m 05 s , and the sextant altitude is $31^{\circ} 31.5^{\prime}$. The index error is 2.5 on the arc, and the chronometer error is 01 m 45 s fast. Your height of eye on the bridge is 76.0 feet. What is the azimuth (Zn) of this sight using the assumed position?	$109.8^{\circ} \mathrm{T}$	$111 .{ }^{\circ} \mathrm{T}$	$112.8^{\circ} \mathrm{T}$	$114.3^{\circ} \mathrm{T}$	
509	On 6 March your 1854 zone time DR position is LAT $23^{\circ} 51.5^{\prime} \mathrm{N}$, LONG $73^{\circ} 14.0^{\prime} \mathrm{W}$. At that time you observe Polaris with a sextant altitude (hs) of $24^{\circ} 16.5^{\prime}$. The chronometer time of the sight is 11 h 52 m 40 s , and the chronometer error is 01 m 56 s slow. The index error is 5.0 ' on the arc, and the height of eye is 43.5 feet (13.3 meters.) What is your latitude by Polaris?	$23^{\circ} 29.5^{\prime} \mathrm{N}$	23³6.3'N	$23^{\circ} 49.9^{\prime} \mathrm{N}$	$24^{\circ} 02.9^{\prime} \mathrm{N}$	
510	On 6 November, your 0752 zone time DR position is LAT $25^{\circ} 11.0^{\prime} \mathrm{N}$, LONG $76^{\circ} 07.0^{\prime} \mathrm{W}$. At that time, you observe the Sun bearing 119° psc. The chronometer reads 12 h 53 m 07 s , and the chronometer error is 01 m 19 s fast. The variation is $3^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$2.2{ }^{\circ} \mathrm{W}$	$3.8{ }^{\circ} \mathrm{W}$	$2.8{ }^{\circ} \mathrm{E}$	$3.2^{\circ} \mathrm{E}$	
511	On 6 November , your vessel's 0706 zone time DR position is LAT $25^{\circ} 30.0^{\prime} \mathrm{N}$, LONG $85^{\circ} 35.0^{\prime} \mathrm{W}$, when an azimuth of the Sun is observed. The chronometer time of the sight is 01 h 03 m 30 s , and the Sun is bearing $114.0^{\circ} \mathrm{pgc}$. The chronometer error is 02 m 30 s slow, and the variation in the area is $2^{\circ} \mathrm{W}$. What is the gyro error?	$0.8^{\circ} \mathrm{E}$	$0.8^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{W}$	$2.0^{\circ} \mathrm{E}$	
512	On 6 October your 0416 zone time DR position is LAT $25^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $130^{\circ} 25.0^{\prime} \mathrm{E}$. At that time, you observe Mars bearing $083^{\circ} \mathrm{psc}$. The chronometer reads 07 h 16 m 22 s , and the chronometer error is 00 m 10 s fast. The variation is $1.5^{\circ} \mathrm{E}$. What is the deviation of the standard compass?	$0.4{ }^{\circ} \mathrm{E}$	$1.2^{\circ} \mathrm{W}$	$3.5^{\circ} \mathrm{E}$	$19.0^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
513	On 7 April in DR position LAT $27^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $114^{\circ} 03.0^{\prime} \mathrm{W}$, you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears 076° psc. The chronometer reads 02 h 10 m 17 s and is 01 m 52 s slow. Variation in the area is $8^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$1.8{ }^{\circ} \mathrm{W}$	$2.3^{\circ} \mathrm{E}$	$6.2^{\circ} \mathrm{E}$	$7.8^{\circ} \mathrm{W}$	
514	On 7 December, your vessel's 0835 zone time DR position is LAT $28^{\circ} 30.0^{\prime} \mathrm{N}$, LONG $125^{\circ} 39.3^{\prime} \mathrm{W}$, when an azimuth of the Sun is observed. The chronometer time of the sight is 04 h 34 m 48 s , and the Sun is bearing 113° per standard magnetic compass. The chronometer error is 01 m 24 s slow, and the variation in the area is $13.0^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$0.7^{\circ} \mathrm{E}$	$1.0^{\circ} \mathrm{W}$	$2.3{ }^{\circ} \mathrm{E}$	$3.0^{\circ} \mathrm{W}$	
515	On 7 December your 0350 ZT position is LAT $35^{\circ} 42^{\prime} \mathrm{N}$, LONG $17^{\circ} 38^{\prime} \mathrm{E}$. You observe Polaris bearing $359.7^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $016^{\circ} \mathrm{pgc}$ and $014^{\circ} \mathrm{psc}$. The variation is $1^{\circ} \mathrm{E}$. What is the deviation for that heading?	$0.3^{\circ} \mathrm{E}$	$1.5^{\circ} \mathrm{E}$	$0.3^{\circ} \mathrm{W}$	$1.5{ }^{\circ} \mathrm{W}$	
516	On 7 February your 0800 zone time DR position is LAT $22^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $92^{\circ} 26.0^{\prime} \mathrm{W}$. Your vessel is on course $270^{\circ} \mathrm{T}$ at a speed of 20.0 knots. What is the zone time of local apparent noon (LAN)?	1218	1222	1226	1230	
517	On 7 March at 1838 ZT , in DR position LAT $34^{\circ} 26.9^{\prime}$ N, LONG $58^{\circ} 16.2^{\prime}$ W, you observe Polaris for latitude. The sextant altitude (hs) is $35^{\circ} 08.4^{\prime}$. The index error is 2.5^{\prime} off the arc. The height of eye is 54 feet. What is the latitude at the time of the sight?	$34^{\circ} 29.8^{\prime} \mathrm{N}$	$34^{\circ} 33.4{ }^{\prime} \mathrm{N}$	$34^{\circ} 34.8{ }^{\prime} \mathrm{N}$	$34^{\circ} 36.8^{\prime} \mathrm{N}$	
518	On 7 May you observe Polaris for latitude at 0303 ZT. Your DR position is LAT $56^{\circ} 35.4^{\prime} \mathrm{N}$, LONG $05^{\circ} 38.9^{\prime}$ W . The sextant altitude is $56^{\circ} 11.1^{\prime}$. The height of eye is 36 ', and the index error is 3.3^{\prime} off the arc. What is the latitude at the time of the sight?	$56^{\circ} 24.6^{\prime} \mathrm{N}$	56³2.6'N	56³5.0'N	56³8.7'N	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
519	On 7 November your 0830 zone time fix gives you a position of LAT $27^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $162^{\circ} 19.0^{\prime} \mathrm{W}$. Your vessel is on course $289^{\circ} \mathrm{T}$ and your speed is 19.0 knots. Local apparent noon (LAN) occurs at 1138 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $45^{\circ} 35.0^{\prime}$. What is the latitude at 1200 ZT?	$27^{\circ} 55.1^{\prime} \mathrm{N}$	27º $57.2^{\prime} \mathrm{N}$	$27^{\circ} 59.5^{\prime} \mathrm{N}$	2801.9'N	
520	On 7 November your 0830 zone time fix gives you a position of LAT $27^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $163^{\circ} 19.0^{\prime} \mathrm{W}$. Your vessel is on course $289^{\circ} \mathrm{T}$, and your speed is 19.0 knots. Local apparent noon (LAN) occurs at 1138 zone time, at which time a meridian altitude of the Sun's lower limb is observed. The observed altitude (Ho) for this sight is $45^{\circ} 35.0^{\prime}$. What is the calculated latitude at LAN?	$27^{\circ} 52.3^{\prime} \mathrm{N}$	$27^{\circ} 53.4{ }^{\prime} \mathrm{N}$	$27^{\circ} 55.1^{\prime} \mathrm{N}$	$27^{\circ} 57.2^{\prime} \mathrm{N}$	
521	On 7 November your 0830 zone time position was LAT $27^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $162^{\circ} 19.0^{\prime} \mathrm{W}$. Your vessel was steaming on course $289^{\circ} \mathrm{T}$ at a speed of 19.0 knots. An observation of the Sun's lower limb was made at 0945 ZT. The chronometer read 08h 43m 11s and was slow 01m 51s. The observed altitude (Ho) was $38^{\circ} 21.1^{\prime}$. Local Apparent Noon (LAN) occurred at 1138 zone time. The observed altitude (Ho) was $45^{\circ} 35.0^{\prime}$. What was the longitude of your 1200 zone time running fix?	163³8.8'W	163³4.0'W	$163^{\circ} 30.2^{\prime} \mathrm{W}$	$163^{\circ} 26.0^{\prime} \mathrm{W}$	
522	On 8 April while taking observations for an evening fix, you observe an unidentified star bearing $250.7^{\circ} \mathrm{T}$ at an observed altitude of $51^{\circ} 44.8^{\prime}$. Your DR position at the time of the sight was LAT $22^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $157^{\circ} 58.3^{\prime} \mathrm{W}$. The chronometer reads 05 h 09 m 57 s and is 01 m 23 s slow. What star did you observe?	Betelgeuse	Aldebaran	Alnilam	Bellatrix	
523	On 8 April your 0830 zone time DR position is LAT $22^{\circ} 49.0^{\prime} \mathrm{N}$, LONG $84^{\circ} 37.0^{\prime} \mathrm{W}$. Your vessel is on course $228^{\circ} \mathrm{T}$ at a speed of 19.0 knots. What is the zone time of local apparent noon (LAN)?	1144	1147	1150	1154	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
524	On 8 April your evening DR position is LAT $22^{\circ} 16^{\prime} \mathrm{N}$, LONG $157^{\circ} 58.3^{\prime} \mathrm{W}$. You observe an unidentified star bearing $246^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $58^{\circ} 45.5^{\prime}$. The chronometer reads 05 h 09 m 57 s , and is 01 m 23 s slow. What star did you observe?	Betelgeuse	Aldebaran	Alnilam	Bellatrix	
525	On 8 April your evening DR position is LAT $22^{\circ} 16.0^{\prime}$ N, LONG $157^{\circ} 58.3^{\prime} \mathrm{W}$. You observe an unidentified star bearing $238^{\circ} \mathrm{T}$ at an observed altitude (Ho) of $50^{\circ} 02.7^{\prime}$. The chronometer reads 05h 09m 57s, and is 01 m 23 s slow. What star did you observe?	Betelgeuse	Aldebaran	Alnilam	Bellatrix	
526	On 8 April your evening DR position is LAT $22^{\circ} 16.0^{\prime}$ N, LONG $157^{\circ} 58.3^{\prime} \mathrm{W}$. You observe an unidentified star bearing $271^{\circ} \mathrm{T}$ at an observed altitude (Ho) of 440.08.2'. The chronometer reads 05h 09m 57s, and is 01 m 23 s slow. What star did you observe?	Betelgeuse	Aldebaran	Alnilam	Bellatrix	
527	On 8 August at 0545 ZT, morning stars were observed, and the vessel's position was determined to be LAT $26^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $94^{\circ} 16.0^{\prime} \mathrm{E}$. Your vessel is steaming at 20.0 knots on a course of 346°. A sextant observation of the Sun's lower limb is made at 0905 ZT . The chronometer reads 03 h 02 m 52 s , and the sextant altitude (hs) is $38^{\circ} 07.5^{\prime}$. The index error is 5.2^{\prime} off the arc, and the chronometer error is 2 m 17 s slow. Your height of eye on the bridge is 72 feet (22.0 meters). What is the observed altitude (Ho) and azimuth (Zn) of this sight using the assumed position?	38${ }^{\circ} 19.4{ }^{\prime}, 048.4^{\circ} \mathrm{T}$	$38^{\circ} 19.4{ }^{\prime}, 131.6^{\circ} \mathrm{T}$	$38^{\circ} 54.9^{\prime}, 048.4^{\circ} \mathrm{T}$	$38^{\circ} 54.9^{\prime}, 131.6^{\circ} \mathrm{T}$	
528	On 8 August your 0400 ZT DR position is LAT $23^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $105^{\circ} 33.0^{\prime} \mathrm{W}$. You are on course $295^{\circ} \mathrm{T}$ at a speed of 25 knots. What will be the zone time of sunrise at your vessel?	0623	0629	0636	0654	
529	On 8 December in DR position LAT $21^{\circ} 56.1^{\prime} \mathrm{S}$, LONG $17^{\circ} 21.6^{\prime} \mathrm{E}$ you observe an amplitude of the Sun. The Sun's center is on the celestial horizon and bears $240.5^{\circ} \mathrm{psc}$. The chronometer reads 05 h 27 m 21 s and is 00 m 47 s fast. Variation in the area is $3.3^{\circ} \mathrm{E}$. What is the deviation of the standard magnetic compass?	$1.5^{\circ} \mathrm{W}$	$0.3{ }^{\circ} \mathrm{W}$	$0.6^{\circ} \mathrm{E}$	$1.5{ }^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
530	On 8 February your 0800 zone time (ZT) position was LAT $28^{\circ} 55.0^{\prime} \mathrm{S}$, LONG $52^{\circ} 27.0^{\prime} \mathrm{W}$. Your vessel was steaming on course $036^{\circ} \mathrm{T}$ at a speed of 19.0 knots. An observation of the Sun's lower limb was made at 0938 ZT. The chronometer read 12h 37 m 23 s and was slow 01m 24s. The observed altitude (Ho) was $45^{\circ} 29.2^{\prime}$. Local Apparent Noon (LAN) occurred at 1240 ZT . The observed altitude (Ho) was $77^{\circ} 10.5^{\prime}$. What was the longitude of your 1200 ZT running fix?	51²9.6'W	51³1.4'W	51³3.1'W	51³5.4'W	
531	On 8 February your 0800 zone time position is LAT $21^{\circ} 55^{\prime} \mathrm{S}$, LONG $52^{\circ} 27^{\prime} \mathrm{W}$. Your vessel is on course $056^{\circ} \mathrm{T}$ at a speed of 17.5 knots. An observation of the Sun's lower limb is made at 0938 zone time, and the observed altitude (Ho) is $46^{\circ} 06.5^{\prime}$. The chronometer reads 12 h 37 m 23 s , and the chronometer error is 1 m 24 s slow. LAN occurs at 1243 zone time, and a meridian altitude of the Sun's lower limb is made. The observed altitude (Ho) for this sight is $83^{\circ} 56.1^{\prime}$. Determine the vessel's 1200 zone time position.	LAT 2057.0'S, LONG $51^{\circ} 21.5^{\prime} \mathrm{W}$	$\begin{aligned} & \text { LAT } 20^{\circ} 58.0^{\prime} \mathrm{S}, \text { LONG } \\ & 51^{\circ} 25.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 21^{\circ} 04.0^{\prime} \mathrm{S}, \text { LONG } \\ & 51^{\circ} 12.0^{\prime} \mathrm{W} \end{aligned}$	LAT $21^{\circ} 04.0^{\prime} \mathrm{S}$, LONG $51^{\circ} 21.5^{\prime} \mathrm{W}$	
532	On 8 May in DR position LAT $30^{\circ} 26.0^{\prime} \mathrm{N}$, LONG $46^{\circ} 55.1^{\prime} \mathrm{W}$, you take an ex-meridian observation of Dubhe. The chronometer time of the sight is 11 h 10 m 54 s , and the chronometer error is 01 m 18 s slow. The sextant altitude (hs) is $58^{\circ} 35.0^{\prime}$. The index error is 1.5 ' on the arc, and your height of eye is 44 feet. What is the latitude at meridian transit?	LAT 30¹2.5'N	LAT 30¹9.8'N	LAT 30²7.6'N	LAT 30 ${ }^{\circ} 35.8^{\prime} \mathrm{N}$	
533	On 8 November your 1731 zone time DR position is LAT $27^{\circ} 16.0^{\prime} \mathrm{N}$, LONG $137^{\circ} 25.0^{\prime} \mathrm{W}$. Considering their magnitude, azimuth, and altitude, which group includes the three stars best suited for a fix at star time?	Alphecca, Fomalhaut, Schedar	Antares, Rasalhague, Altair	Sirius, Hamal, Dubhe	Peacock, Ankaa, Al Na'ir	
534	On 9 February, your 0739 zone time DR position is LAT $23^{\circ} 31.0^{\prime} \mathrm{N}$, LONG $143^{\circ} 41.0^{\prime} \mathrm{E}$. At that time, you observe the Sun bearing $104.5^{\circ} \mathrm{psc}$. The chronometer reads 09h 37 m 12 s , and the chronometer error is 01 m 52 s slow. The variation is $3.5^{\circ} \mathrm{W}$. What is the deviation of the standard magnetic compass?	$1.6^{\circ} \mathrm{E}$	$2.3^{\circ} \mathrm{W}$	$5.1^{\circ} \mathrm{W}$	$8.6^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
535	On 9 February your 0830 zone time DR position is LAT $22^{\circ} 19.0^{\prime} \mathrm{N}$, LONG $64^{\circ} 37.0^{\prime} \mathrm{E}$. Your vessel is on course $128^{\circ} \mathrm{T}$ at a speed of 19.0 knots. What is the zone time of local apparent noon (LAN)?	1152	1156	1201	1205	
536	On 9 May your vessel's 1809 ZT DR position is LAT $48^{\circ} 13.7^{\prime} \mathrm{N}$, LONG $168^{\circ} 36.3^{\prime} \mathrm{E}$, when an amplitude of the Sun is observed. The Sun's center is on the celestial horizon and bears 283.7° per standard magnetic compass. Variation in the area is $13.0^{\circ} \mathrm{E}$. The chronometer reads 07 h 13 m 19 s and is 02 m 56 s fast. What is the deviation of the standard compass?	$0.1^{\circ} \mathrm{W}$	$1.1^{\circ} \mathrm{W}$	$1.1{ }^{\circ} \mathrm{E}$	$1.9^{\circ} \mathrm{W}$	
537	On 9 November at 0426 ZT, your position was LAT $25^{\circ} 17.0^{\prime} \mathrm{S}$, LONG $154^{\circ} 16.0^{\prime} \mathrm{E}$. Your vessel is steaming at 14.0 knots on course $066^{\circ} \mathrm{T}$. A sextant observation of the Sun's lower limb is made at 0837 ZT. The chronometer reads 10 h 35 m 21 s , and the sextant altitude (hs) is $50^{\circ} 26.9^{\prime}$. The index error is 1.5 ' on the arc, and the chronometer error is 01 m 48 s slow. Your height of eye on the bridge is 56.0 feet. What is the observed altitude (Ho) and azimuth (Zn) of this sight using the assumed position?	50¹8.1', $086.3^{\circ} \mathrm{T}$	50¹8.1', $093.7^{\circ} \mathrm{T}$	${ }^{50} 33.5{ }^{\prime}, 085.9^{\circ} \mathrm{T}$	50³3.5', $093.7^{\circ} \mathrm{T}$	
538	On 9 November your 0400 DR position is LAT $18^{\circ} 24.0^{\prime} \mathrm{S}$, LONG $97^{\circ} 36.0^{\prime} \mathrm{W}$. You are on course $138^{\circ} \mathrm{T}$ at a speed of 16 knots. You observed 3 celestial bodies. Determine the latitude and longitude of your 0600 running fix.	$\begin{aligned} & \text { LAT } 18^{\circ} 15.0^{\prime} \mathrm{S}, \text { LONG } \\ & 98^{\circ} 52.5^{\prime} \mathrm{W} \end{aligned}$	LAT $18^{\circ} 45.0^{\prime} \mathrm{S}$, LONG 9706.8'W	$\begin{aligned} & \text { LAT } 18^{\circ} 52.5^{\prime} \mathrm{S}, \text { LONG } \\ & 97^{\circ} 10.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 19^{\circ} 15.5^{\prime} \mathrm{S}, \text { LONG } \\ & 98^{\circ} 08.8^{\prime} \mathrm{W} \end{aligned}$	NP-0027
539	On 9 September, your 2043 ZT position is LAT $24^{\circ} 18^{\prime} \mathrm{N}$, LONG $66^{\circ} 46^{\prime} \mathrm{W}$. You observe Polaris bearing $001^{\circ} \mathrm{pgc}$. At the time of the observation the helmsman noted that he was heading $031^{\circ} \mathrm{pgc}$ and $040^{\circ} \mathrm{psc}$. The variation is $11^{\circ} \mathrm{W}$. What is the deviation for that heading?	0°	$1^{\circ} \mathrm{W}$	$3^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{E}$	
540	On a North Pacific voyage, you wish to sail the shortest distance from LAT $46^{\circ} 05^{\prime} \mathrm{N}$, LONG $124^{\circ} 00^{\prime} \mathrm{W}$ to LAT $44^{\circ} 00^{\prime} \mathrm{N}$, LONG $150^{\circ} 00^{\prime} \mathrm{E}$. You do not want to exceed $50^{\circ} \mathrm{N}$ latitude due to anticipated fog conditions. Which voyage plot meets these requirements? (Use gnomonic tracking chart WOXZC 5270)	A great circle between departure and arrival with Mercator legs north of the Aleutians	A great circle between departure and arrival with parallel sailing where the track intersects the $50^{\circ} \mathrm{N}$ parallel	A great circle to $50^{\circ} \mathrm{N}$, $153^{\circ} \mathrm{W}$, parallel sailing to $50^{\circ} \mathrm{N}$, $173^{\circ} \mathrm{W}$, then a great circle to arrival	A great circle from departure to the midlongitude at $50^{\circ} \mathrm{N}$, then another great circle to arrival	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
541	On a voyage via the southern tip of Nova Scotia (LAT $43^{\circ} 20^{\prime} \mathrm{N}$, LONG $65^{\circ} 35^{\prime} \mathrm{W}$) you wish to sail the shortest route to La Coruna, Spain (LAT $43^{\circ} 20^{\prime} \mathrm{N}$, LONG $8^{\circ} 24^{\prime} \mathrm{W}$). Which of the following will require you to plot a composite sailing? (Use gnomonic tracking chart WOXZC 5274)	Shoals extending 15 miles from Sable Island	Sea ice reported 68 miles ESE of St. John's, Newfoundland	Icebergs reported extending west to west-northwest from LAT $47^{\circ} 00^{\prime} \mathrm{N}$, LONG $35^{\circ} 00^{\prime} \mathrm{W}$	Naval exercises using live ammunition being conducted within a 150 mile radius of LAT $49^{\circ} 00^{\prime} \mathrm{N}$, LONG 2000'W	
542	On May 20 , you are keeping ZD +4, and your 2300 $(Z D+4)$ DR position is LAT $42^{\circ} 07^{\prime} \mathrm{N}$, LONG $81^{\circ} 02^{\prime} \mathrm{W}$. At that time, you observe Polaris bearing $012^{\circ} \mathrm{psc}$. The chronometer time of the observation is 03 h 02 m 23 s , and the chronometer is 1 m 17 s fast. The variation is $9.5^{\circ} \mathrm{W}$. What is the deviation of the magnetic compass?	$2.7^{\circ} \mathrm{W}$	$12.2^{\circ} \mathrm{W}$	$6.8^{\circ} \mathrm{E}$	$12.2^{\circ} \mathrm{E}$	
543	On September 9 , your 2130 zone time (ZD +5) DR position is LAT $45^{\circ} 08^{\prime} \mathrm{N}$, LONG $82^{\circ} 38^{\prime} \mathrm{W}$. At that time, you observe Polaris bearing $000.5^{\circ} \mathrm{pgc}$. The chronometer time of the observation is 02 h 26 m 09 s , and the chronometer is 1 m 43 s slow. The variation is $8.7^{\circ} \mathrm{W}$. What is the gyro error?	$0.7^{\circ} \mathrm{E}$	$1.2^{\circ} \mathrm{E}$	$0.8^{\circ} \mathrm{W}$	$9.4{ }^{\circ} \mathrm{W}$	
544	On Sunday, 8 November, your ship is enroute from Texas City, TX, to Portland, ME. At 0632 ZT, you fix your position at LAT $27^{\circ} 06^{\prime} \mathrm{N}$, LONG $90^{\circ} 36^{\prime} \mathrm{W}$. When the lower limb of the Sun was two-thirds of a diameter above the visible horizon, the Sun bore 105° per standard magnetic compass. At this time the chronometer read 12 h 39 m 20 s and is 3 m 20 s slow. If the variation is $3^{\circ} \mathrm{E}$, determine the deviation of the standard compass.	$0.8^{\circ} \mathrm{E}$	$0.8^{\circ} \mathrm{W}$	$3.8{ }^{\circ} \mathrm{E}$	$3.8{ }^{\circ} \mathrm{W}$	
545	On which voyage would a great circle track be significantly shorter than a rhumb line track? (Use gnomonic tracking chart WOXZC 5274)	Savannah, GA, to Lisbon, Portugal	Dublin, Ireland (Irish Sea), to La Coruna, Spain (LAT 43²2'N, LONG $8^{\circ} 24^{\prime} \mathrm{W}$)	Reykjavik, Iceland, to Lisbon, Portugal	Boston to Sable Island	
546	On which voyage would a great circle track provide a significant savings in distance to steam, when compared to a rhumb line track? (Use gnomonic tracking chart WOXZC 5270.)	Valdez, AK, to the Marquesas Islands (LAT $8^{\circ} 00$ 'S, LONG $140^{\circ} 00^{\prime} \mathrm{W}$)	San Francisco to Kodiak, AK	$\begin{aligned} & \text { Christmas Island (LAT } \\ & 2^{\circ} 00^{\prime} \mathrm{N}, \text { LONG } \\ & 157^{\circ} 30^{\prime} \mathrm{W} \text {) to } \\ & \text { Singapore via LAT } \\ & 3^{\circ} 0^{\prime} \mathrm{N}, \text { LONG } \\ & 126^{\circ} 0^{\prime} \mathrm{E} \end{aligned}$	Guam (LAT $14^{\circ} 00^{\prime} \mathrm{N}$, LONG $145^{\circ} 00^{\prime} E$) to Seattle via LAT $47^{\circ} 30^{\prime} \mathrm{N}$, LONG $125^{\circ} 30^{\prime} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
547	The great circle distance from LAT $08^{\circ} 50.0^{\prime} \mathrm{N}$, LONG $80^{\circ} 21.0^{\prime} \mathrm{W}$ to LAT $12^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $128^{\circ} 16.0^{\prime} \mathrm{E}$ is 8664 miles, and the initial course is $306.6^{\circ} \mathrm{T}$. Determine the latitude of the vertex.	$37^{\circ} 30.2^{\prime} \mathrm{N}$	$37^{\circ} 39.6$ N	$37^{\circ} 48.2^{\prime} \mathrm{N}$	$37^{\circ} 53.6$ N	
548	The great circle distance from LAT $08^{\circ} 50.0^{\prime} \mathrm{N}$, LONG $80^{\circ} 21.0^{\prime} \mathrm{W}$ to LAT $22^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $128^{\circ} 16.0^{\prime} \mathrm{E}$ is 7801 miles and the initial course is $318^{\circ} 45^{\prime} \mathrm{T}$. The latitude of the vertex is $49^{\circ} 20.6^{\prime} \mathrm{N}$. What is the longitude of the vertex?	$156^{\circ} 43^{\prime} \mathrm{W}$	$162^{\circ} 41{ }^{\prime} \mathrm{W}$	$159^{\circ} 32^{\prime} \mathrm{W}$	$161^{\circ} 18 \mathrm{~W}$	
549	The great circle distance from LAT $24^{\circ} 25.3^{\prime} \mathrm{N}$, LONG $83^{\circ} 02.6^{\prime} \mathrm{W}$ to LAT $35^{\circ} 57.2^{\prime} \mathrm{N}$, LONG $5^{\circ} 45.7^{\prime} \mathrm{W}$ is 3966.5 miles. Determine the latitude of the vertex.	$38^{\circ} 46.2^{\prime} \mathrm{N}$	$38^{\circ} 16.4{ }^{\prime} \mathrm{N}$	$38^{\circ} 09.4{ }^{\prime} \mathrm{N}$	$37^{\circ} 57.3^{\prime} \mathrm{N}$	
550	The great circle distance from LAT $25^{\circ} 50$ ' N , LONG $77^{\circ} 00^{\prime} \mathrm{W}$ to LAT $35^{\circ} 56^{\prime} \mathrm{N}$, LONG $06^{\circ} 15^{\prime} \mathrm{W}$ is 3616 miles, and the initial course is $061.7^{\circ} \mathrm{T}$. Determine the latitude of the vertex.	$37^{\circ} 32.2^{\prime} \mathrm{N}$	37º34.9'N	$37^{\circ} 41.6^{\prime} \mathrm{N}$	$37^{\circ} 45.2^{\prime} \mathrm{N}$	
551	The great circle distance from LAT $25^{\circ} 50$ ' N , LONG $77^{\circ} 00^{\prime} \mathrm{W}$ to LAT $35^{\circ} 56^{\prime} \mathrm{N}$, LONG $06^{\circ} 15^{\prime} \mathrm{W}$ is 3616 miles, and the initial course is $061.7^{\circ} \mathrm{T}$. Determine the longitude of the vertex, given the latitude of the vertex as $37^{\circ} 34.9^{\prime} \mathrm{N}$.	25* $49.8^{\prime} \mathrm{W}$	25º $53.2^{\prime} \mathrm{W}$	2559.0'W	26º 03.4 'W	
552	The great circle distance from LAT $25^{\circ} 50$ ' N , LONG $77^{\circ} 00^{\prime} \mathrm{W}$ to LAT $35^{\circ} 56^{\prime} \mathrm{N}$, LONG $06^{\circ} 15^{\prime} \mathrm{W}$ is 3616 miles, and the initial course is $061.7^{\circ} \mathrm{T}$. The position of the vertex is LAT $37^{\circ} 34.9^{\prime} \mathrm{N}$, LONG $25^{\circ} 59.0^{\prime} \mathrm{W}$. Determine the latitude intersecting the great circle track 600 miles west of the vertex, along the great circle track.	$36^{\circ} 54.9^{\prime} \mathrm{N}$	$36^{\circ} 50.2^{\prime} \mathrm{N}$	$36^{\circ} 45.9^{\prime} \mathrm{N}$	$36^{\circ} 36.8^{\prime} \mathrm{N}$	
553	The great circle distance from LAT $25^{\circ} 50^{\prime} \mathrm{N}$, LONG $77^{\circ} 00^{\prime} \mathrm{W}$ to LAT $35^{\circ} 56$ 'N, LONG $06^{\circ} 15^{\prime} \mathrm{W}$ is 3616 miles, and the initial course is $061.7^{\circ} \mathrm{T}$. The position of the vertex is LAT $37^{\circ} 34.9^{\prime} \mathrm{N}$, LONG $25^{\circ} 59.0^{\prime} \mathrm{W}$. The difference of longitude from the vertex to a point (X) on the great circle track is $10^{\circ} \mathrm{W}$. Determine the latitude which intersects the great circle at point (X).	$37^{\circ} 02.5^{\prime} \mathrm{N}$	37º09.5'N	$37^{\circ} 15.6^{\prime} \mathrm{N}$	$37^{\circ} 21.2^{\prime} \mathrm{N}$	
554	The great circle distance from LAT $35^{\circ} 08.0^{\prime} \mathrm{S}$, LONG $19^{\circ} 26.0^{\prime} \mathrm{E}$ to LAT $33^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $115^{\circ} 36.0^{\prime} \mathrm{E}$ is 4559 miles and the initial course is $121^{\circ} \mathrm{T}$. Determine the latitude of the vertex.	44º29.1'S	45³0.9'S	46¹8.2'S	43041.8'S	
555	The great circle distance from LAT $35^{\circ} 08.0^{\prime} \mathrm{S}$, LONG $19^{\circ} 26.0^{\prime} \mathrm{E}$ to LAT $33^{\circ} 16.0^{\prime} \mathrm{S}$, LONG $115^{\circ} 36.0^{\prime} \mathrm{E}$ is 4559 miles and the initial course is $121^{\circ} \mathrm{T}$. Determine the longitude of the vertex.	26º $50.9^{\prime} \mathrm{E}$	65º45.9'E	69¹9.1'E	72¹8.3'E	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
556	The great circle distance from LAT $35^{\circ} 57.2^{\prime} \mathrm{N}$, LONG $05^{\circ} 45.7^{\prime} \mathrm{W}$ to LAT $24^{\circ} 25.3^{\prime} \mathrm{N}$, LONG $83^{\circ} 02.6^{\prime} \mathrm{W}$ is 3966.5 miles and the initial course is $283.7^{\circ} \mathrm{T}$. The latitude of the vertex is $38^{\circ} 09.4^{\prime} \mathrm{N}$. What is the longitude of the vertex?		28º $18.2^{\prime} \mathrm{W}$	28º 46.3 W	28º 54.7'W	
557	The great circle distance from LAT $38^{\circ} 17.0^{\prime} \mathrm{N}$, LONG $123^{\circ} 16.0^{\prime} \mathrm{W}$ to LAT $35^{\circ} 01.0^{\prime} \mathrm{N}$, LONG $142^{\circ} 21.0^{\prime} \mathrm{E}$ is 4330 miles and the initial course is $300.9^{\circ} \mathrm{T}$. The latitude of the vertex is $47^{\circ} 40.5^{\prime} \mathrm{N}$. What is the longitude of the vertex?	$173^{\circ} 04.6^{\prime} \mathrm{E}$	$167^{\circ} 18.0$ 'E	$173^{\circ} 04.6{ }^{\prime} \mathrm{W}$	167º $18.5^{\prime} \mathrm{W}$	
558	The great circle distance from LAT $38^{\circ} 17^{\prime} \mathrm{N}$, LONG $123^{\circ} 16^{\prime} \mathrm{W}$ to LAT $35^{\circ} 01^{\prime} \mathrm{N}$, LONG $142^{\circ} 21^{\prime} \mathrm{E}$ is 4330 miles, and the initial course is $300.9^{\circ} \mathrm{T}$. Determine the latitude of the vertex.	$46^{\circ} 54.8$ N	47º24.7'N	47º35.2'N	47º40.5'N	
559	The observed distance for a day's run was 302.7 miles. The propeller had a pitch of 20'06', and the average RPM was 67 . What was the slip?	+0.7\%	-0.7\%	+7.0\%	-7.0\%	
560	The observed noon to noon run for a 24 hour period is 489 miles. The average RPM for the day was 95 . The pitch of the wheel is 22.5 feet. What is the slip of the wheel?	+3.2\%	+3.4\%	+3.7\%	+3.9\%	
561	The pitch of the propeller on your vessel is 19'09". You estimate the slip at -3%. If you averaged 82 RPM for the day's run, how many miles did you steam?	370.8	373.6	393.7	395.3	
562	The propeller of a vessel has a pitch of 19.0 feet. If the vessel traveled 183.5 miles (observed distance) in 24 hours at an average of 44 RPM, what was the slip?	+7.4\%	-7.4\%	+11.6\%	-11.6\%	
563	The propeller on a vessel has a diameter of 18.8 feet and a pitch of 21.4 feet. What would be the slip if the vessel cruised 378 miles in a 24 hour day (observed distance) at an average RPM of 76 ?	+1.9\%	-1.9\%	+4.7\%	-4.7\%	
564	The propeller on a vessel has a diameter of 19.9 feet and a pitch of 21.6 feet. What would be the apparent slip if the vessel cruised 395 miles in a 23 hour day (observed distance) at an average RPM of 78?	-3.2\%	+3.2\%	-12.0\%	+12.0\%	
565	The propeller on a vessel has a diameter of 20.2 feet and a pitch of 19.0 feet. What would be the apparent slip if the vessel cruised 367 miles in a 24 hour day (observed distance) at an average RPM of 84?	+2.9\%	-2.9\%	+5.2\%	-5.2\%	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
566	The propeller on a vessel has a diameter of 20.6 feet and a pitch of 23.4 feet. What would be the apparent slip if the vessel cruised 538 miles in a 24 hour day (observed distance) at an average RPM of 87?	-11.6\%	+11.6\%	-10.3\%	+10.3\%	
567	The propeller on a vessel has a diameter of 20.9 feet and a pitch of 19.6 feet. What would be the apparent slip if the vessel cruised 447 miles in a 23 hour day (observed distance) at an average RPM of 108?	-5.6\%	+5.6\%	-7.0\%	+7.0\%	
568	The propeller on a vessel has a diameter of 21.2 feet and a pitch of 20.0 feet. What would be the apparent slip if the vessel cruised 391 miles in a 24 hour day (observed distance) at an average RPM of 88?	-11.5\%	+11.5\%	-6.2\%	+6.2\%	
569	The propeller on a vessel has a diameter of 21.5 feet and a pitch of 24.5 feet. What would be the apparent slip if the vessel cruised 458 miles in a 23 hour day (observed distance) at an average RPM of 78 ?	+5.6\%	-5.6\%	+12.3\%	-12.3\%	
570	The propeller on a vessel has a diameter of 22.8 feet and a pitch of 19.3 feet. What would be the apparent slip if the vessel cruised 287 miles in a 24 hour day (observed distance) at an average RPM of 67?	-6.3\%	+6.3\%	-24.0\%	+24.0\%	
571	The propeller on a vessel has a diameter of 23.7 feet and a pitch of 24.8 feet. What would be the apparent slip if the vessel cruised 442 miles in a 23 hour day (observed distance) at an average RPM of 89?	-7.6\%	+7.6\%	-11.8\%	+11.8\%	
572	The propeller on a vessel has a diameter of 24.0 feet and a pitch of 21.3 feet. What would be the slip if the vessel cruised 510 miles in a 24 hour day (observed distance) at an average RPM of 86 ?	-12.2\%	+12.2\%	-17.5\%	+17.5\%	
573	The propeller on a vessel has a diameter of 24.6 feet and a pitch of 26.1 feet. What would be the apparent slip if the vessel cruised 462 miles in a 24 hour day (observed distance) at an average RPM of 72 ?	-2.7\%	+2.7\%	-3.8\%	+3.8\%	
574	The propeller on a vessel has a diameter of 25.3 feet and a pitch of 23.2 feet. What would be the apparent slip if the vessel cruised 515 miles in a 23 hour day (observed distance) at an average RPM of 93 ?	-3.6\%	+3.6\%	-5.2\%	+5.2\%	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
575	The propeller on your vessel has a pitch of 18'09". If the observed distance for a day's run was 399.4 miles and the average RPM was 86 , which statement is TRUE?	The slip is a positive 5\%.	The day's run by engine RPM was 404.5 miles.	The slip is a negative 5\%.	The day's run by engine RPM was 390.6 miles.	
576	The propeller on your vessel has a pitch of 22.8 feet. From 0800, 18 April, to 1020, 19 April, you steamed an observed distance of 403.6 miles. If your average RPM was 74 , what was the slip?	+7.0\%	-7.0\%	+8.0\%	-8.0\%	
577	The propellers on your twin screw vessel have a pitch of $16^{\prime} 04$ ". What is the distance in a day's run if the average RPM is 94 , and you estimate 7% positive slip?	338.3 miles	389.3 miles	676.6 miles	778.6 miles	
578	The speed necessary to reach port at a designated time is 18.7 knots. The propeller pitch is $24{ }^{\prime} 03$ ", and you estimate 3% positive slip. How many RPM's will the shaft have to turn?	81 RPM	87 RPM	98 RPM	104 RPM	
579	The speed of advance necessary to arrive in port at a designated time is 15.8 knots. The pitch of the propeller is 20.75 feet. You estimate 5% positive slip. How many RPM must you turn to make the necessary speed?	73.5	76.2	79.9	81.2	
580	The track line on the chart is $274^{\circ} \mathrm{T}$. Variation is $4^{\circ} \mathrm{E}$ and deviation is $2^{\circ} \mathrm{E}$. The gyro error is $1.5^{\circ} \mathrm{E}$. What course would be steered by gyrocompass to make good the desired course?	$280.5^{\circ} \mathrm{pgc}$	$278.0^{\circ} \mathrm{pgc}$	$275.5^{\circ} \mathrm{pgc}$	$272.5^{\circ} \mathrm{pgc}$	
581	The true course between two points is $023^{\circ} \mathrm{T}$. Your gyrocompass has an error of $1^{\circ} \mathrm{W}$ and you make an allowance of 4° leeway for an east wind. What gyro course should be steered to make the true course good?	020 ${ }^{\circ} \mathrm{pgc}$	021 ${ }^{\circ} \mathrm{pgc}$	026 ${ }^{\circ} \mathrm{pgc}$	028 ${ }^{\circ} \mathrm{pgc}$	
582	The true course between two points is 041°. Your gyrocompass has an error of $1^{\circ} \mathrm{W}$. You make an allowance of 2° leeway for a east-southeast wind. What gyro course should be steered to make the true course good?	040 ${ }^{\circ} \mathrm{pgc}$	042 ${ }^{\circ} \mathrm{pgc}$	043 ${ }^{\circ} \mathrm{pgc}$	044 ${ }^{\circ} \mathrm{pgc}$	
583	The true course between two points is 057°. Your gyrocompass has an error of 3° east and you make an allowance of 1° leeway for a north-northwest wind. Which gyro course should be steered to make the true course good?	053 ${ }^{\circ} \mathrm{pgc}$	056 ${ }^{\circ} \mathrm{pgc}$	059 ${ }^{\circ} \mathrm{pgc}$	060 ${ }^{\circ} \mathrm{pgc}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
584	The true course between two points is 078°. Your gyrocompass has an error of $2^{\circ} \mathrm{E}$. You make an allowance of 3° leeway for a north wind. What gyro course should be steered to make the true course good?	073 ${ }^{\circ} \mathrm{pgc}$	075 ${ }^{\circ} \mathrm{pgc}$	077 ${ }^{\circ} \mathrm{pgc}$	079 ${ }^{\circ} \mathrm{pgc}$	
585	The true course between two points is 106°. Your gyrocompass has an error of $2^{\circ} \mathrm{E}$ and you make an allowance of 2° leeway for a south wind. What gyro course should be steered to make the true course good?	$102^{\circ} \mathrm{pgc}$	$104^{\circ} \mathrm{pgc}$	$106^{\circ} \mathrm{pgc}$	$108^{\circ} \mathrm{pgc}$	
586	The true course between two points is 119°. Your gyrocompass has an error of $3^{\circ} \mathrm{E}$. You allow of 4° leeway for a south-southwest wind. What gyro course should be steered to make the true course good?	$112^{\circ} \mathrm{pgc}$	$118^{\circ} \mathrm{pgc}$	$120^{\circ} \mathrm{pgc}$	$126^{\circ} \mathrm{pgc}$	
587	The true course between two points is 194°. Your gyrocompass has an error of $2^{\circ} \mathrm{W}$ and you make an allowance of 1° leeway for a southwest wind. What gyro course should you steer to make the true course good?	$193^{\circ} \mathrm{pgc}$	$195^{\circ} \mathrm{pgc}$	$197^{\circ} \mathrm{pgc}$	$199^{\circ} \mathrm{pgc}$	
588	The true course between two points is 220°. Your gyrocompass has an error of $1^{\circ} \mathrm{E}$. You make an allowance of 1° leeway for a north-northwest wind. What gyro course should be steered to make the true course good?	$220^{\circ} \mathrm{pgc}$	$221^{\circ} \mathrm{pgc}$	$222^{\circ} \mathrm{pgc}$	$223^{\circ} \mathrm{pgc}$	
589	The true course between two points is 312°. Your gyrocompass has an error of $3^{\circ} \mathrm{W}$. You make an allowance of 4° leeway for a west by south wind. What gyro course should be steered to make the true course good?	$305^{\circ} \mathrm{pgc}$	$311^{\circ} \mathrm{pgc}$	$315^{\circ} \mathrm{pgc}$	$318^{\circ} \mathrm{pgc}$	
590	The true course between two points is 337°. Your gyrocompass has an error of $3^{\circ} \mathrm{E}$ and you make an allowance of 5° leeway for a west wind. Which gyro course should be steered to make the true course good?	$329^{\circ} \mathrm{pgc}$	$335^{\circ} \mathrm{pgc}$	$339^{\circ} \mathrm{pgc}$	$345^{\circ} \mathrm{pgc}$	
591	The true course from point A to point B is 317°. A SSW wind causes a 4° leeway, variation is $6^{\circ} \mathrm{W}$ and deviation is $1^{\circ} \mathrm{E}$. What is the magnetic compass course to steer to make good the true course?	$326^{\circ} \mathrm{psc}$	$318^{\circ} \mathrm{psc}$	$313^{\circ} \mathrm{psc}$	$308^{\circ} \mathrm{psc}$	
592	Two beacons form a range in the direction of $221.5^{\circ} \mathrm{T}$. The range is seen in line from your vessel bearing 223° per gyro compass. The variation in the area is $4^{\circ} \mathrm{E}$. What is the error of your gyro compass?	$1.5^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{W}$	$5.5^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
601	While on a course of $019^{\circ} \mathrm{pgc}$, a light bears 14° on the port bow at a distance of 15.3 miles. What course should you steer to pass 1.5 miles abeam of the light, leaving it to port?	006 ${ }^{\circ} \mathrm{pgc}$	011 ${ }^{\circ} \mathrm{pgc}$	$013^{\circ} \mathrm{pgc}$	015 ${ }^{\circ} \mathrm{pgc}$	
602	While on a course of $034^{\circ} \mathrm{pgc}$, a light bears 8° on the port bow at a distance of 8.8 miles. What course should you steer to pass 2.5 miles abeam of the light leaving it to port?	035 ${ }^{\circ} \mathrm{pgc}$	043 ${ }^{\circ} \mathrm{pgc}$	051 ${ }^{\circ} \mathrm{pgc}$	059 ${ }^{\circ} \mathrm{pgc}$	
603	While on a course of $066^{\circ} \mathrm{pgc}$, a light bears 13° on the port bow at a distance of 12.3 miles. What course should you steer to pass 4 miles abeam of the light leaving it to port?	$067^{\circ} \mathrm{pgc}$	072 ${ }^{\circ} \mathrm{pgc}$	079 ${ }^{\circ} \mathrm{pgc}$	085 ${ }^{\circ} \mathrm{pgc}$	
604	While on a course of $066^{\circ} \mathrm{pgc}$, a light bears 18° on the port bow at a distance of 12.3 miles. What course should you steer to leave the light 4 miles abeam to port?	067${ }^{\circ} \mathrm{pgc}$	072 ${ }^{\circ} \mathrm{pgc}$	079 ${ }^{\circ} \mathrm{pgc}$	085 ${ }^{\circ} \mathrm{pgc}$	
605	While on a course of $097^{\circ} \mathrm{pgc}$, a light bears 8° on the port bow at a distance of 11.7 miles. What course should you steer to pass 3 miles abeam of the light leaving it to port?	$082^{\circ} \mathrm{pgc}$	091 ${ }^{\circ} \mathrm{pgc}$	$104^{\circ} \mathrm{pgc}$	$112^{\circ} \mathrm{pgc}$	
606	While on a course of $138^{\circ} \mathrm{T}$, a light bears 14° on the starboard bow at a distance of 8.6 miles. What course should you steer to pass 3 miles abeam of the light leaving it to starboard?	$132^{\circ} \mathrm{T}$	$135^{\circ} \mathrm{T}$	$138^{\circ} \mathrm{T}$	$141^{\circ} \mathrm{T}$	
607	While on a course of $152^{\circ} \mathrm{T}$, a light bears 9° on the port bow at a distance of 11.6 miles. What course should you steer to pass 3 miles abeam of the light leaving it to port?	153°	158°	163°	167°	
608	While on a course of $159^{\circ} \mathrm{T}$, a light bears 11° on the starboard bow at a distance of 10.6 miles. What course should you steer to pass 2 miles abeam of the light leaving it to starboard?	$159^{\circ} \mathrm{T}$	$163^{\circ} \mathrm{T}$	$167^{\circ} \mathrm{T}$	$171^{\circ} \mathrm{T}$	
609	While on a course of 192°, a light bears 11° on the starboard bow at a distance of 12.7 miles. What course should you steer to pass 3 miles abeam of the light leaving it to starboard?	$167^{\circ} \mathrm{T}$	$173^{\circ} \mathrm{T}$	$185^{\circ} \mathrm{T}$	$189^{\circ} \mathrm{T}$	
610	While on a course of $214^{\circ} \mathrm{pgc}$, a light bears 9° on the port bow at a distance of 7.4 miles. What course should you steer to pass 2 miles abeam of the light leaving it to port?	$189^{\circ} \mathrm{pgc}$	$209^{\circ} \mathrm{pgc}$	$221^{\circ} \mathrm{pgc}$	$229^{\circ} \mathrm{pgc}$	
611	While on a course of $216^{\circ} \mathrm{pgc}$, a light bears 12° on the port bow at a distance of 11.2 miles. Which course should you steer to pass 2 miles abeam of the light leaving it to port?	$208^{\circ} \mathrm{pgc}$	$210^{\circ} \mathrm{pgc}$	$212^{\circ} \mathrm{pgc}$	$214{ }^{\circ} \mathrm{pgc}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
612	While on a course of 279°, a light bears 12° on the starboard bow at a distance of 9.3 miles. What course should you steer to pass 4 miles abeam of the light leaving it to starboard?	$2^{253}{ }^{\circ} \mathrm{T}$	$2^{66}{ }^{\circ} \mathrm{T}$	$291{ }^{\circ} \mathrm{T}$	$305^{\circ} \mathrm{T}$	
613	While on a course of $283^{\circ} \mathrm{pgc}$, a light bears 10° on the port bow at a distance of 8.3 miles. What course should you steer to pass 3.5 miles abeam of the light leaving it to port?	$289^{\circ} \mathrm{pgc}$	$294^{\circ} \mathrm{pgc}$	$298{ }^{\circ} \mathrm{pgc}$	$302^{\circ} \mathrm{pgc}$	
614	While on a course of $321^{\circ} \mathrm{T}$, a light bears 7° on the starboard bow at a distance of 9.7 miles. What course should you steer to pass 3.5 miles abeam of the light leaving it to starboard?	$297{ }^{\circ} \mathrm{T}$	$300^{\circ} \mathrm{T}$	$303^{\circ} \mathrm{T}$	$307{ }^{\circ} \mathrm{T}$	
615	While on a course of $349^{\circ} \mathrm{T}$, a light bears 13° on the starboard bow at a distance of 10.8 miles. What course should you steer to pass 2.5 miles abeam of the light leaving it to starboard?	$346^{\circ} \mathrm{T}$	$349^{\circ} \mathrm{T}$	$352^{\circ} \mathrm{T}$	$355^{\circ} \mathrm{T}$	
616	While on a course of $349^{\circ} \mathrm{T}$, a light bears 13° on your starboard bow at a distance of 10.8 miles. What course should you steer to pass 2.5 miles abeam of the light, leaving it to starboard?	323°	336°	349°	002 ${ }^{\circ}$	
617	While on course $321^{\circ} \mathrm{pgc}$ with a $1^{\circ} \mathrm{W}$ gyro error, you pick up a buoy on radar bearing 001° relative at 5.2 miles. What will be the course to pass the buoy by 1 mile abeam to starboard, if you change course when the buoy is 4.5 miles away?	$305^{\circ} \mathrm{T}$	$310^{\circ} \mathrm{pgc}$	$316^{\circ} \mathrm{T}$	$336^{\circ} \mathrm{pgc}$	
618	While proceeding up a channel on course 010° per gyro compass, you notice a pair of range lights in alignment with the masts of your vessel when viewed forward. A check of the chart shows the range to be $009^{\circ} \mathrm{T}$ and the variation to be $15^{\circ} \mathrm{W}$. If the ship's course is $026^{\circ} \mathrm{psc}$, what is the deviation for the present heading?	$2^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{W}$	$1^{\circ} \mathrm{E}$	
619	While steaming at 12 knots, your vessel burns 45 tons of fuel per day. What will be the rate of fuel consumption if you decrease speed to 11.5 knots?	31 tons/day	36 tons/day	40 tons/day	43 tons/day	
620	While steaming at 12.3 knots, your vessel burns 168 bbls of fuel per day. What will be the rate of fuel consumption if you increase speed to 13.5 knots?	192 bbls/day	204 bbls/day	222 bbls/day	238 bbls/day	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
621	While steaming at 13.5 knots, your vessel consumes 251 barrels of fuel oil per day. In order to reduce consumption to 129 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	6.9 knots	9.7 knots	10.8 knots	12.7 knots	
622	While steaming at 14 knots, your vessel burns 276 bbls of fuel per day. What will be the rate of fuel consumption if you decrease speed to 11.7 knots?	135 bbls/day	161 bbls/day	196 bbls/day	245 bbls/day	
623	While steaming at 14.5 knots, your vessel consumes 242 barrels of fuel oil per day. In order to reduce consumption to 152 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	9.1 knots	10.2 knots	11.5 knots	12.4 knots	
624	While steaming at 14.5 knots, your vessel consumes 319 barrels of fuel oil per day. In order to reduce consumption to 217 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	9.8 knots	11.9 knots	12.8 knots	13.5 knots	
625	While steaming at 15 knots, your vessel burns 326 bbls of fuel per day. What will be the rate of fuel consumption if you decrease speed to 12.2 knots?	175 bbls/day	215 bbls/day	277 bbls/day	300 bbls/day	
626	While steaming at 15.0 knots, your vessel consumes 326 barrels of fuel oil per day. In order to reduce consumption to 178 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	8.1 knots	8.5 knots	11.1 knots	12.2 knots	
627	While steaming at 15.5 knots, your vessel consumes 333 barrels of fuel oil per day. In order to reduce consumption to 176 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	11.3 knots	12.5 knots	13.6 knots	14.8 knots	
628	While steaming at 15.7 knots, your vessel consumes 329 barrels of fuel oil per day. In order to reduce consumption to 267 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	12.7 knots	13.5 knots	14.6 knots	15.5 knots	
629	While steaming at 16.3 knots, your vessel consumes 363 barrels of fuel oil per day. In order to reduce consumption to 298 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	12.6 knots	13.1 knots	14.7 knots	15.3 knots	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
630	While steaming at 16.5 knots, your vessel consumes 349 barrels of fuel oil per day. In order to reduce consumption to 189 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	12.1 knots	13.5 knots	14.6 knots	15.4 knots	
631	While steaming at 17.0 knots, your vessel consumes 382 barrels of fuel oil per day. In order to reduce consumption to 223 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	9.9 knots	11.8 knots	13.0 knots	14.2 knots	
632	While steaming at 17.5 knots, your vessel consumes 378 barrels of fuel oil per day. In order to reduce consumption to 194 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	12.5 knots	14.0 knots	15.5 knots	16.8 knots	
633	While steaming at 18.9 knots, your vessel consumes 386 barrels of fuel oil per day. In order to reduce consumption to 251 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	11.6 knots	12.3 knots	15.2 knots	16.4 knots	
634	While steaming at 19.4 knots, your vessel consumes 392 barrels of fuel oil per day. In order to reduce consumption to 182 barrels of fuel oil per day, what is the maximum speed the vessel can turn for?	13.2 knots	15.0 knots	17.4 knots	18.2 knots	
635	While steaming at 19.5 knots, your vessel burns 297 bbls of fuel per day. What will be the rate of fuel consumption if you decrease speed to 15 knots?	135 bbls	176 bbls	229 bbls	243 bbls	
636	While underway you sight a light 11° on your port bow at a distance of 12 miles. Assuming you make good your course, what will be your distance off the light when abeam?	2.3 miles	3.1 miles	3.9 miles	4.5 miles	
637	While your vessel is proceeding down a channel you notice a range of lights in line with your vessel's mast. If your vessel is on course 001° per gyro compass and the charted value of the range of lights is $359^{\circ} \mathrm{T}$, what is the gyro compass error?	$2^{\circ} \mathrm{W}$	$2^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{E}$	$1^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
638	You are heading $328^{\circ} \mathrm{pgc}$ to make good a course of $332^{\circ} \mathrm{T}$, allowing 3° leeway for westerly winds and $1^{\circ} \mathrm{E}$ gyro error. The variation is $17^{\circ} \mathrm{E}$. What should your heading be by standard magnetic compass to make good 332° T. DEVIATION TABLE	$315^{\circ} \mathrm{psc}$	$318^{\circ} \mathrm{psc}$	$343^{\circ} \mathrm{psc}$	$345^{\circ} \mathrm{psc}$	
639	You are keeping ZD +4 on your vessel. On 21 June at 0906 DST, your position is LAT $30^{\circ} 48.0^{\prime} \mathrm{N}$, LONG $71^{\circ} 00.0^{\prime} \mathrm{W}$. You are on a course of $167^{\circ} \mathrm{T}$ at 15.2 knots. At what time will local apparent noon (LAN) occur ZT at your vessel? You are keeping DST.	1145	1202	1218	1245	
640	You are off the coast of Mexico and are taking a time tick for 1600. At approximately 1554, you hear the preparatory signal "VVVV de XDD" from the time signal station. Then you hear a series of 1 second dashes followed by a 9 second silent period and then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 03h 59m 56s. When compared to the chronometer, the comparing watch reads 04h 01m 22s, and the chronometer reads 04 h 02 m 11s. What is the chronometer error?	Om 04s slow	2m 15s slow	Om 45s fast	1m 26s fast	
641	You are off the coast of Mexico and are taking a time tick for 1800. At approximately 1754, you hear the preparatory signal "VVVV de XDD" from the time signal station. Then you hear a series of 1 second dashes followed by a 9 second silent period and then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 06 h 00 m 07 s . When compared to the chronometer, the comparing watch reads 06h 01m 24s, and the chronometer reads 05 h 59 m 23 s . What is the chronometer error?	Om 07s fast	1m 17s fast	Om 37s slow	1m 54s slow	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
642	You are on a great circle track departing from LAT $25^{\circ} 50.0^{\prime} \mathrm{N}$, LONG $77^{\circ} 00.0^{\prime} \mathrm{W}$ and your initial course is $061.7^{\circ} \mathrm{T}$. The position of the vertex is LAT $37^{\circ} 35.6^{\prime} \mathrm{N}$, LONG $25^{\circ} 57.8^{\prime} \mathrm{W}$. What is the distance along the great circle track between the point of departure and the vertex?	2735.1 miles	2664.9 miles	2583.2 miles	2420.0 miles	
643	You are on a great circle track departing from position LAT $25^{\circ} 50^{\prime} \mathrm{N}$, LONG $77^{\circ} 00^{\prime} \mathrm{W}$. The position of the vertex is LAT $37^{\circ} 35.6^{\prime} \mathrm{N}$, LONG $25^{\circ} 57.8^{\prime} \mathrm{W}$. The distance along the great circle track from the vertex to a point (X) is 600 miles westward. Determine the position of point (X) on the great circle track.	LAT $36^{\circ} 47.5^{\prime} \mathrm{N}$, LONG $38^{\circ} 21.8^{\prime} \mathrm{W}$	$\begin{aligned} & \text { LAT } 36^{\circ} 50.4^{\prime} \mathrm{N}, \text { LONG } \\ & 38^{\circ} 25.6^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 36^{\circ} 55.6^{\prime} \mathrm{N}, \text { LONG } \\ & 38^{\circ} 30.0^{\prime} \mathrm{W} \end{aligned}$	LAT $37^{\circ} 02.3^{\prime} \mathrm{N}$, LONG $38^{\circ} 34.4^{\prime} \mathrm{W}$	
644	You are on a voyage from Baltimore, MD, to Seattle, WA. The distance from pilot to pilot is 5960 miles. The speed of advance is 16.0 knots. You estimate 16 hours for bunkering at Colon, and 12.0 hours for the Panama Canal transit. If you take departure at 0824 hours (ZD +5), 18 November, what is your ETA (ZD +8) at Seattle?	1654, 5 December	1354, 5 December	2154, 4 December	1354, 4 December	
645	You are on a voyage from Belem, Brazil, to Mobile, AL. The distance from departure to arrival is 3150 miles. The speed of advance is 14.0 knots. You estimate a layover in San Juan, Puerto Rico, of 17.5 hours. If you took departure at $2200(Z D+3 h 30 \mathrm{~m})$, 26 February, what was your ETA (ZD +6) at Mobile?	1900, 8 March	2200, 8 March	0400, 9 March	2200, 9 March	
646	You are on a voyage from Boston, MA, to the South Pass, LA. The distance is 1870 miles, and the speed of advance is 13.6 knots. You estimate 16.5 hours for bunkering enroute at Port Everglades, FL. If you sailed at 0836 hours (ZD +5), 26 February , what was your ETA (ZD +6) at the South Pass?	2336, 3 March	1136, 4 March	1236, 4 March	1736, 4 March	
647	You are on a voyage from Cape May (LAT $39^{\circ} 50^{\prime} \mathrm{N}$, LONG $74^{\circ} 45^{\prime} \mathrm{W}$) to the English Channel (LAT $49^{\circ} 00^{\prime} \mathrm{N}$, LONG $05^{\circ} 00^{\prime} \mathrm{W}$). What will NOT prohibit the use of a great circle track from departure to arrival? (Use gnomonic chart WOXZC5274.)	Newfoundland	Icebergs north of $48^{\circ} \mathrm{N}$ and west of $49^{\circ} \mathrm{W}$	Islands approximately 50 miles south of Cape Cod	The high latitude in which the vertex lies	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
648	You are on a voyage from Corpus Christi, TX, to Fort de France, Martinique. The distance from pilot to pilot is 2190 miles (2521 statute miles). The speed of advance is 15.0 knots. You estimate a layover in Charlotte Amalie, Virgin Islands, of 16.0 hours. If you take departure at 0654 (ZD +6), 27 November, what is your ETA $(Z D+4)$ at Fort de France?	2054, 3 December	2254, 3 December	0254, 4 December	2054, 4 December	
649	You are on a voyage from Halifax, Nova Scotia, to Galveston, TX. The distance is 2138 miles, and the speed of advance is 12.5 knots. You estimate 18.0 hours for bunkering enroute at Port Everglades, FL. If you sail at 0648 hours ($Z D+4$), 12 June, what is your ETA $(Z D+5)$ at Galveston?	0250, 20 June	0350, 20 June	0550, 20 June	1350, 20 June	
650	You are on a voyage from Limoy, Costa Rica, to Los Angeles, CA. The distance from departure to arrival is 3150 miles. The speed of advance is 14.0 knots. You estimate 24.0 hours for bunkering at Colon, and 12.0 hours for the Panama Canal transit. If you take departure at 1836 hours (ZD +6), 28 January, what is your ETA (ZD +8) at Los Angeles?	1736, 9 February	1736, 8 February	1336, 8 February	0536, 8 February	
651	You are on a voyage from New York, NY, to San Francisco, CA. The distance from pilot to pilot is 5132 miles. The speed of advance is 13.5 knots. You estimate 32 hours for bunkering at Colon, and 14 hours for the Panama Canal transit. If you take departure at 0600 hours ($Z D+4$), 16 May, what is your ETA (ZD +7) at San Francisco?	0609, 1 June	2109, 2 June	0009, 3 June	0409, 3 June	
652	You are on a voyage from Nome to Honolulu via Unimak Pass (LAT $54^{\circ} 30^{\prime} \mathrm{N}$, LONG $164^{\circ} 30^{\prime} \mathrm{W}$). The great circle track passes through a point at LAT $38^{\circ} 00^{\prime} \mathrm{N}$, LONG $161^{\circ} 40^{\prime} \mathrm{W}$. Using gnomonic chart WOXZC5270, determine which answer is TRUE. (The great circle distance, Unimak Pass to Honolulu, is 2013 miles.)	A great circle track results in a significant savings in distance when compared to a rhumb line.	The northern vertex of the great circle track would lie between Unimak Pass and Nome.	Distance of the great circle track is measured by using the length of degree of latitude at the midlatitude of the track.	A great circle course would offer no significant advantage because the rhumb line course is close to 180°.	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
653	You are on a voyage from San Diego, CA, to New York, NY. The distance from pilot to pilot is 4860 miles. The speed of advance is 15.0 knots. You estimate 18 hours for bunkering at Colon, and 14 hours for the Panama Canal transit. If you take departure at 0836 hours (ZD +7), 4 July, what is your ETA $(Z D+4)$ at New York?	0336, 20 July	0036, 19 July	0336, 19 July	0736, 19 July	
654	You are on a voyage from St. John, Canada, to Galveston, TX. The distance is 2280 miles, and the speed of advance is 15.0 knots. You estimate 16.5 hours for bunkering enroute at Ft. Lauderdale, FL. If you sailed at 1642 hours (ZD +4), 27 February , what was your ETA (ZD +6) at Galveston?	1512, 6 March	0812, 6 March	0712, 6 March	2312, 5 March	
655	You are on a voyage from Valdez, AK, to the Panama Canal. The distance from pilot to pilot is 4950 miles. The speed of advance is 15.0 knots. You estimate a layover in San Francisco, CA, of 36.0 hours. If you take departure at $0800(Z D+10)$, 29 October, what is your ETA $(Z D+5)$ at the Panama Canal?	1900, 13 November	1400, 13 November	1400, 14 November	0900, 13 November	
656	You are on a voyage via position LAT $44^{\circ} 00^{\prime} \mathrm{N}$, LONG $150^{\circ} 00^{\prime}$ E to LAT $46^{\circ} 15^{\prime} \mathrm{N}$, LONG $124^{\circ} 00^{\prime} \mathrm{W}$. Using gnomonic chart WOXZC 5270, determine which statement is TRUE?	A composite sailing with a limiting latitude of $51^{\circ} \mathrm{N}$ will clear the Aleutian Islands.	The northern hemisphere vertex is east of the arrival position.	The Aleutian Islands are not a navigational hazard on the direct great circle track.	The final course angle lies in the northeast quadrant.	
657	You are on course 006°, speed 16.6 knots. At 0516 you see a light bearing $008^{\circ} \mathrm{T}$ at a range of 10.2. If you change course at 0528 to leave the light abeam to port at 1.0 mile, at what time will the light be abeam?	0553	0556	0604	0607	
658	You are on course $035^{\circ} \mathrm{T}$, speed 18.3 knots. At 0719 you see a buoy bearing $036^{\circ} \mathrm{T}$ at a range of 4.1. If you change course at 0725 to leave the buoy abeam to port at 1.0 mile, at what time will the buoy be abeam?	0740	0738	0735	0732	
659	You are on course $061^{\circ} \mathrm{T}$, at a speed of 12.4 knots. At 0839 you see a rock bearing $059^{\circ} \mathrm{T}$ at a range of 4.4 miles. If you change course at 0845 to leave the rock abeam to starboard at 1.5 mile, at what time will the rock be abeam?	0854	0859	0903	0906	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
660	You are on course $079^{\circ} \mathrm{T}$, speed 11.2 knots. At 0904 you see a daymark bearing $078^{\circ} \mathrm{T}$ at a range of 4.6. If you change course at 0910 to leave the daymark abeam to starboard at 0.5 mile, at what time will the daymark be abeam?	0918	0923	0928	0935	
661	You are on course $086^{\circ} \mathrm{T}$, speed 11.7 knots. At 1013 you see a buoy bearing $088^{\circ} \mathrm{T}$ at a range of 4.8 miles. If you change course at 1019 to leave the buoy abeam to port at 1.0 mile, at what time will the buoy be abeam?	1037	1040	1043	1052	
662	You are on course $251^{\circ} \mathrm{pgc}$ and 241° per magnetic compass, when you observe a range in line bearing $192^{\circ} \mathrm{pgc}$. The chart indicates that the range is in line on a bearing of $194^{\circ} \mathrm{T}$. The variation is $16^{\circ} \mathrm{E}$. What is the deviation of the magnetic compass?	$2^{\circ} \mathrm{E}$	$2^{\circ} \mathrm{W}$	$4^{\circ} \mathrm{W}$	$10^{\circ} \mathrm{W}$	
663	You are planning a voyage between Portland, LAT $46^{\circ} 05^{\prime} \mathrm{N}$, LONG $124^{\circ} 00^{\prime} \mathrm{W}$, and Korea via LAT $44^{\circ} 00^{\prime} \mathrm{N}$, LONG $155^{\circ} 00^{\prime} \mathrm{E}$. Which statement is TRUE? (Use gnomonic tracking chart WOXZC 5270)	You can sail a great circle track between the two points.	The vertex of the great circle track is north of the Aleutian Islands.	Distance is measured in 60-mile segments using the length of a degree of latitude at the mid-latitude.	You can steam on course $270^{\circ} \mathrm{T}$, at latitude $52^{\circ} \mathrm{N}$, between longitudes $149^{\circ} \mathrm{W}$ and $160^{\circ} \mathrm{W}$ in a composite sailing.	
664	You are planning a voyage by great circle from LAT $38^{\circ} 00^{\prime} \mathrm{N}$, LONG $73^{\circ} 00^{\prime} \mathrm{W}$ to LAT $49^{\circ} 00^{\prime} \mathrm{N}$, LONG $06^{\circ} 00^{\prime} \mathrm{W}$. Which of the following statements is TRUE? (Use gnomonic tracking chart WOXZC 5274)	You will pass to the south of icebergs reported extending to 100 miles south of Cape Race Newfoundland.	The shoals with a 25mile radius around Sable Island will be a hazard.	You will reach the maximum northerly latitude at longitude $29^{\circ} 45^{\prime} \mathrm{W}$.	The distance is measured in 60-mile segments using the length of a degree of latitude at the vertex.	
665	You are planning a voyage by great circle from LAT $59^{\circ} 00^{\prime} \mathrm{N}$, LONG $07^{\circ} 00^{\prime} \mathrm{W}$ via LAT $38^{\circ} 00^{\prime} \mathrm{N}$, LONG $61^{\circ} 30^{\prime} \mathrm{W}$. Which of the following statements is TRUE? (Use gnomonic tracking chart WOXZC 5274)	You are to the east of the Northern Hemisphere vertex.	When plotted on a Mercator chart the track line will be concave to Cape Farwell (Kap Farvel).	All courses are in the southwest quadrant of the compass.	Distance is measured by using the length of a degree of latitude at the midpoint of the track line.	
666	You are planning a voyage by great circle from Reykjavik (LAT $63^{\circ} 30^{\prime} \mathrm{N}$, LONG $24^{\circ} 00^{\prime} \mathrm{W}$) to the Azores (LAT $39^{\circ} 30^{\prime} \mathrm{N}$, LONG $29^{\circ} 00^{\prime} \mathrm{W}$). Which statement is TRUE? (Use gnomonic tracking chart WOXZC 5274)	The distance is measured in sixty-mile segments based on the length of a degree of latitude at the midlatitude and midlongitude position.	The Northern Hemisphere vertex lies south of Reykjavik.	The great circle track is not appreciably shorter than a rhumb line track.	When plotted on a Mercator chart, the great circle track will be convex to the British Isles.	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
667	You are planning a voyage by great circle from the mouth of the Delaware River (LAT $38^{\circ} 40^{\prime} \mathrm{N}$, LONG $75^{\circ} 00^{\prime} \mathrm{W}$) to Lisbon, Portugal. Which statement is TRUE? (Use gnomonic tracking chart WOXZC 5274.)	You will reach the northernmost latitude of the voyage in the vicinity of LONG $42^{\circ} 30^{\prime} \mathrm{W}$.	The Northern Hemisphere vertex lies to the east of Lisbon.	You must plot a composite sailing to remain south of icebergs reported north of $44^{\circ} \mathrm{N}$.	The distance is measured in 60-mile segments using the length of the degree of latitude crossed by the track line.	
668	You are planning a voyage by great circle to Reykjavik, Iceland, via Cape Race, Newfoundland, LAT $46^{\circ} 30^{\prime} \mathrm{N}$, LONG $53^{\circ} 00^{\prime} \mathrm{W}$. Which statement is TRUE? (Use gnomonic tracking chart WOXZC 5274)	The track line will be concave to Cape Farewell (Kap Farvel) when plotted on a Mercator chart.	You will reach the northernmost latitude in the vicinity of Reykjavik.	The distance is measured using the length of a degree of latitude at the midlatitude and midlongitude position.	The Northern Hemisphere vertex is in the vicinity of $49^{\circ} \mathrm{W}$ longitude.	
669	You are planning a voyage from Cape May (LAT $38^{\circ} 45^{\prime} \mathrm{N}$, LONG $74^{\circ} 45^{\prime} \mathrm{W}$) to Lisbon (LAT $38^{\circ} 37^{\prime} \mathrm{N}$, LONG $09^{\circ} 45^{\prime} \mathrm{W}$). Which of the following is TRUE? (Use gnomonic chart WOXZC 5274)	Because the latitudes are almost the same, a great circle track approximates a parallel sailing.	The northern hemisphere vertex is approximately at longitude $42^{\circ} 26^{\prime} \mathrm{W}$.	The distance is measured by using the length of one degree of the meridian at the position of the vertex.	A composite sailing must be plotted to remain south of a limiting latitude of $44^{\circ} \mathrm{N}$.	
670	You are planning a voyage from departure Seattle (LAT $48^{\circ} 30^{\prime} \mathrm{N}$, LONG $125^{\circ} 00^{\prime} \mathrm{W}$) to a position at LAT $44^{\circ} 00^{\prime} \mathrm{N}$, LONG $161^{\circ} 00^{\prime} \mathrm{E}$. Which statement is TRUE? (Use gnomonic chart WOXZC 5270.)	You must plot a composite sailing to remain south of the Aleutians.	The northern hemisphere vertex lies to the west of your arrival position.	Military exercises north of $53^{\circ} \mathrm{N}$, between $150^{\circ} \mathrm{W}$ and $165^{\circ} \mathrm{W}$, will not affect your voyage.	At your highest latitude, the sun will be visible at upper and lower transit if the voyage occurs on 21 June.	
671	You are planning a voyage from Godthab, Greenland, to Cayenne, French Guiana. Using chart WOXZC 5274, determine which statement is TRUE.	Godthab is located at the Northern Hemisphere vertex.	The rhumb line track approximates a great circle track.	A great circle track will be considerably shorter due to the length of the voyage.	Distance is measured by using the length of meridian at the point of tangency.	
672	You are planning a voyage from Jacksonville, FL, to the Strait of Gibraltar. Using chart WOXZC 5274, determine which statement is TRUE.	All of the courses lie in the northeast quadrant of the compass.	You will be east of the Northern Hemisphere vertex during the entire voyage.	The great circle track approximates a rhumb line track because there is little difference in the latitudes.	None of the above are true.	
673	You are planning a voyage from LAT $48^{\circ} 30^{\prime} \mathrm{N}$, LONG $125^{\circ} 00^{\prime}$ W to Korea via LAT $48^{\circ} 30^{\prime} \mathrm{N}$, LONG $153^{\circ} 00^{\prime} \mathrm{E}$. Which of the following track lines would you select for the safest and most direct route? (Use gnomonic tracking chart WOXZC 5270)	Parallel sailing along $48^{\circ} 30^{\prime} \mathrm{N}$	Great circle track line between the two points	Great circle to LAT $51^{\circ} 00^{\prime} \mathrm{N}$, LONG $178^{\circ} 00^{\prime} \mathrm{W}$, parallel sailing for 80 miles, then great circle to the via point	Rhumb line track between the two points	
674	You are running coastwise at 14 knots. You sight a lighthouse abeam at 0912. At 0939 the lighthouse is 4 points abaft the beam. What is your distance off at the second bearing?	5.5 miles	6.3 miles	7.8 miles	8.9 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
675	You are running coastwise in hazy weather; the visibility improves just before you pass a lighthouse abeam. Your speed is 15 knots, and the lighthouse was abeam at 1015. At 1037 the lighthouse is 4 points abaft the beam. What is your distance off at the second bearing?	3.9 miles	5.5 miles	6.6 miles	7.8 miles	
676	You are running coastwise on a course of $323^{\circ} \mathrm{T}$, and you have a buoy bearing 11° on your port bow at a distance of 7 miles. You desire to leave the buoy abeam to port at a distance of 2.5 miles. What course should you steer?	$291{ }^{\circ} \mathrm{T}$	$312^{\circ} \mathrm{T}$	$333^{\circ} \mathrm{T}$	$344^{\circ} \mathrm{T}$	
677	You are steaming at 19 knots and burning 440 barrels of fuel per day. You must decrease your consumption to 137 barrels per day. What must you reduce your speed to in order to burn this amount of fuel?	18.2	14.8	12.9	11.1	
678	You are steaming at 22 knots and burning 319 barrels of fuel per day. You must decrease your consumption to 137 barrels per day. What must you reduce your speed to in order to burn this amount of fuel?	12.4	14.8	16.6	18.2	
679	You are steaming at 22 knots and burning 319 barrels of fuel per day. You must decrease your consumption to 137 barrels per day. What must you reduce your speed to in order to burn this amount of fuel?	12.4	14.8	16.6	18.2	
680	You are steaming on a course of $025^{\circ} \mathrm{T}$ at 15.5 knots. At 0645 you observe a lighthouse bearing $059^{\circ} \mathrm{T}$. At 0655 the same lighthouse bears $075^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	1.5 miles	2.6 miles	4.0 miles	5.3 miles	
681	You are steaming on a course of $058^{\circ} \mathrm{T}$ at 11.5 knots. At 0209 you observe a lighthouse bearing $129^{\circ} \mathrm{T}$. At 0252 the lighthouse bears $173^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	9.4 miles	10.7 miles	11.2 miles	12.8 miles	
682	You are steaming on a course of $071^{\circ} \mathrm{T}$ at 19 knots. At 1907 you observe a lighthouse bearing $122^{\circ} \mathrm{T}$. At 1915 the lighthouse bears 154° T. What is your distance off at the second bearing?	3.4 miles	3.7 miles	4.0 miles	4.3 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
683	You are steaming on a course of $084^{\circ} \mathrm{T}$ at a speed of 13 knots. At 1919 a lighthouse bears $106.5^{\circ} \mathrm{T}$. At 1957 the same lighthouse bears $129^{\circ} \mathrm{T}$. What will be your distance off the lighthouse when abeam?	4.3 miles	5.7 miles	7.1 miles	8.2 miles	
684	You are steaming on a course of $114^{\circ} \mathrm{T}$ at 17 knots. At 1122 you observe a lighthouse bearing $077^{\circ} \mathrm{T}$. At 1133 the lighthouse bears $051^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	3.3 miles	3.9 miles	4.3 miles	4.9 miles	
685	You are steaming on a course of $133^{\circ} \mathrm{T}$ at 16 knots. At 2216 you observe a lighthouse bearing $086^{\circ} \mathrm{T}$. At 2223 the lighthouse bears 054° T. What is your distance off at the second bearing?	1.7 miles	2.0 miles	2.3 miles	2.6 miles	
686	You are steaming on a course of $167^{\circ} \mathrm{T}$ at 19.5 knots. At 1837 you observe a lighthouse bearing $224^{\circ} \mathrm{T}$. At 1904 the lighthouse bears 268° T. What is your distance off at the second bearing?	8.8 miles	9.5 miles	10.4 miles	11.3 miles	
687	You are steaming on a course of $198^{\circ} \mathrm{T}$ at 18.5 knots. At 0316 you observe a lighthouse bearing $235^{\circ} \mathrm{T}$. At 0348 the lighthouse bears $259^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	14.8 miles	15.3 miles	15.8 miles	16.3 miles	
688	You are steaming on a course of $208^{\circ} \mathrm{T}$ at 21 knots. At 2019 you observe a lighthouse bearing $129^{\circ} \mathrm{T}$. At 2030 the lighthouse bears $103^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	8.2 miles	8.6 miles	8.9 miles	9.3 miles	
689	You are steaming on a course of $211^{\circ} \mathrm{T}$ at 17 knots. At 0417 a light bears $184^{\circ} \mathrm{T}$, and at 0428 the same light bears $168^{\circ} \mathrm{T}$. What is the distance off the light at 0428?	3.4 miles	4.6 miles	5.1 miles	5.6 miles	
690	You are steaming on a course of $215^{\circ} \mathrm{T}$ at 14 knots. At 1841 you observe a lighthouse bearing $178^{\circ} \mathrm{T}$. At 1904 the same lighthouse bears $156^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	5.4 miles	6.6 miles	7.5 miles	8.7 miles	
691	You are steaming on a course of $246^{\circ} \mathrm{T}$ at 17 knots. At 2107 you observe a lighthouse bearing $207^{\circ} \mathrm{T}$. At 2119 the lighthouse bears 179° T. What is your distance off at the second bearing?	3.9 miles	4.2 miles	4.6 miles	5.1 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
692	You are steaming on a course of $253^{\circ} \mathrm{T}$ at 14 knots. At 2329 you observe a lighthouse bearing $282^{\circ} \mathrm{T}$. At 2345 the lighthouse bears $300^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	3.7 miles	4.3 miles	5.2 miles	5.9 miles	
693	You are steaming on a course of $267^{\circ} \mathrm{T}$ at 22 knots. At 0433 you observe a lighthouse bearing $290^{\circ} \mathrm{T}$. At 0452 the lighthouse bears $328^{\circ} \mathrm{T}$. What is your distance off at the second bearing?	4.5 nm	5.9 nm	6.6 nm	7.2 nm	
694	You are steaming on a course of $327^{\circ} \mathrm{T}$ at 13 knots. At 0207 you observe a lighthouse bearing $020^{\circ} \mathrm{T}$. At 0226 the lighthouse bears 042° T. What is your distance off at the second bearing?	8.5 miles	8.9 miles	9.2 miles	9.7 miles	
695	You are steaming on course $126^{\circ} \mathrm{T}$ at 14.8 knots. At 1022 you sight a buoy bearing $128^{\circ} \mathrm{T}$, at a range of 4.8 miles. If you change course at 1026, what true course will you steer to leave the buoy 0.5 mile abeam to port?	136°	133°	122°	119°	
696	You are steaming on course $168^{\circ} \mathrm{T}$ at a speed of 18 knots. At 1426 you sight a buoy bearing $144^{\circ} \mathrm{T}$. At 1435 you sight the same buoy bearing $116^{\circ} \mathrm{T}$. What is your distance off at the second bearing and predicted distance when abeam?	2.3 miles 2nd bearing, 1.8 miles abeam	2.5 miles 2nd bearing, 2.8 miles abeam	2.8 miles 2nd bearing, 1.8 miles abeam	3.3 miles 2nd bearing, 2.8 miles abeam	
697	You are steering $019^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 11.6 miles at 0216 . You change course to pass the light 3 miles off abeam to port. If you are making 14 knots, what is your ETA at the position 3 miles off the light?	0258	0301	0304	0307	
698	You are steering $031^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 12.7 miles at 0017 . You change course to pass the light 3.5 miles off abeam to starboard. If you are making 11 knots, what is your ETA at the position 3.5 miles off the light?	0118	0121	0124	0127	
699	You are steering $078^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 15.6 miles at 2316 . You change course to pass the light 4.5 miles off abeam to port. If you are making 17 knots, what is your ETA at the position 4.5 miles off the light?	0006	0009	0012	0015	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
700	You are steering $107^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 11 miles at 0847 . You change course to leave the light 3 miles off to starboard. If you are making 15.5 knots, what is your ETA at the position 3 miles off the light?	0928	0931	0934	0937	
701	You are steering $115^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 16.7 miles at 0522 . You change course to pass the light 3.5 miles off abeam to port. If you are making 12 knots, what is your ETA at the position 3.5 miles off the light?	0644	0647	0650	0653	
702	You are steering $125^{\circ} \mathrm{pgc}$. The wind is southwest by south causing a 3° leeway. The variation is $6^{\circ} \mathrm{E}$, the deviation is $2^{\circ} \mathrm{W}$, and the gyro error is $1^{\circ} \mathrm{W}$. What is the true course made good?	$121^{\circ} \mathrm{T}$	$123^{\circ} \mathrm{T}$	$127^{\circ} \mathrm{T}$	$129^{\circ} \mathrm{T}$	
703	You are steering $142^{\circ} \mathrm{pgc}$ to make good your desired course. The gyro error is $1^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. What should you steer by standard magnetic compass to make good the desired course? DEVIATION TABLE	$133^{\circ} \mathrm{psc}$	$146^{\circ} \mathrm{psc}$	$148^{\circ} \mathrm{psc}$	$151{ }^{\circ} \mathrm{psc}$	
704	You are steering $143^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 18.2 miles at 2006. You change course to pass the light 5.5 miles off abeam to port. If you are making 14.5 knots, what is your ETA at a position 5.5 miles off the light?	2115	2118	2121	2124	
705	You are steering 154° per gyrocompass. The wind is northeast by east, causing 4° leeway. The gyro error is 3° east, variation is 11° west, and deviation is $7^{\circ} \mathrm{E}$. What is the true course made good?	$151{ }^{\circ} \mathrm{T}$	$158^{\circ} \mathrm{T}$	$161^{\circ} \mathrm{T}$	$164^{\circ} \mathrm{T}$	
706	You are steering $154^{\circ} \mathrm{pgc}$. The wind is southwest causing 4° leeway. The gyro error is $3^{\circ} \mathrm{E}$, variation is $11^{\circ} \mathrm{W}$ and deviation is $7^{\circ} \mathrm{E}$. What is the true course made good?	$153^{\circ} \mathrm{T}$	$158^{\circ} \mathrm{T}$	$161^{\circ} \mathrm{T}$	$164^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
707	You are steering $163^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 11 miles at 0142 . You change course to pass the light 2 miles off abeam to starboard. If you are making 13 knots, what is your ETA at the position 2 miles off the light?	0226	0229	0232	0235	
708	You are steering $173^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 13.9 miles at 0054 . You change course to pass the light 4.5 miles off abeam to port. If you are making 21 knots, what is your ETA at the position 4.5 miles off the light?	0122	0125	0131	0134	
709	You are steering $202^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 14.6 miles at 2234 . You change course to pass the light 5 miles off abeam to starboard. If you are making 21 knots, what is your ETA at the position 5 miles off the light?	2310	2313	2316	2319	
710	You are steering $231^{\circ} \mathrm{T}$, a light is picked up dead ahead at a distance of 12.3 miles at 0338 . You change course to pass the light 4 miles off abeam to starboard. If you are making 16.5 knots, what is your ETA at the position 4 miles off the light?	0420	0423	0426	0429	
711	You are steering $246^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 14 miles at 1037. You change course to pass the light 2.5 miles off abeam to port. If you are making 12 knots, what is your ETA at the position 2.5 miles off the light?	1143	1146	1149	1152	
712	You are steering $257^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 13.3 miles at 2016. You change course to pass the light 4 miles off abeam to starboard. If you are making 18.5 knots, what is your ETA at the position 4 miles off the light?	2057	2100	2103	2113	
713	You are steering $287^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 19.4 miles at 0419. You change course to pass the light 4 miles off abeam to starboard. If you are making 13 knots, what is your ETA at the position 4 miles off the light?	0541	0544	0547	0550	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
714	You are steering 318° psc. A northeasterly wind causes 3° of leeway. The variation is $14^{\circ} \mathrm{E}$ and the deviation table is extracted below. What will be the true course made good?	$301{ }^{\circ} \mathrm{T}$	$303^{\circ} \mathrm{T}$	$327^{\circ} \mathrm{T}$	$329{ }^{\circ} \mathrm{T}$	
715	You are steering $349^{\circ} \mathrm{T}$, and a light is picked up dead ahead at a distance of 17.2 miles at 2122. You change course to pass the light 4.5 miles off abeam to port. If you are making 19.5 knots, what is your ETA at the position 4.5 miles off the light?	2207	2210	2213	2216	
716	You are steering a course of $240^{\circ} \mathrm{T}$, and a lighthouse bears 025° on the starboard bow at 2116. At 2144 the same lighthouse bears 050° on the starboard bow, and you have run 6 miles since the first bearing. What is the ETA when the lighthouse is abeam?	2156	2159	2202	2205	
717	You are steering a course of $316^{\circ} \mathrm{T}$, and a light bears 34° on the port bow at 2053. At 2126 the same light bears 68° on the port bow, and you have run 5 miles since the first bearing. What is the ETA when the lighthouse is abeam?	2139	2143	2149	2159	
718	You are steering a magnetic compass course of 075°. The variation for the area is $10^{\circ} \mathrm{W}$, and the compass deviation is $5^{\circ} \mathrm{E}$. What is the true course you are steering?	060 ${ }^{\circ} \mathrm{T}$	070T	$080^{\circ} \mathrm{T}$	090${ }^{\circ} \mathrm{T}$	
719	You are taking a time tick using the 1200 signal from Valparaiso, Chile. You hear a series of 1 second dashes followed by a 9 second silent period, then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 12 h 00 m 18 s . When compared to the chronometer, the comparing watch reads 12h 01m 23s, and the chronometer reads 11 h 59 m 35 s . What is the chronometer error?	Om 18s fast	1m 05s fast	Om 25s slow	1m 30s slow	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
720	You are taking a time tick using the 1400 signal from Buenos Aires, Argentina. You hear a 0.4 second dash followed by a series of dots, noting that the 29th and the 56th to 59th dots are omitted. At the start of the following 0.4 second dash (which is followed by an 8 second pulse), the comparing watch reads 01 h 59 m 57 s . When compared to the chronometer, the comparing watch reads 02 h 00 m 38 s , and the chronometer reads 02 h 01 m 33 s . What is the chronometer error?	Om 03s slow	Om 4ls slow	0m 52s fast	1m 36s fast	
721	You are taking a time tick using the 1400 signal from Buenos Aires, Argentina. You hear a 0.4 second dash followed by a series of dots, noting that the 29th and the 56th to 59th dots are omitted. At the start of the following 0.4 second dash (which is followed by an 8 second pulse), the comparing watch reads $02 h$ 00 m 15 s . When compared to the chronometer, the comparing watch reads 02 h 01 m 29 s , and the chronometer reads 01 h 59 m 50 s . What is the chronometer error?	Om 15s fast	1m 14s fast	1m 24s slow	1m 54s slow	
722	You are taking a time tick using the 1930 signal from Rio de Janeiro, Brazil. You hear the preparatory signal "CQ DE PPE" repeated several times followed by a short dash (0.4 sec), 60 dots (0.1 sec each) and another short dash. At the beginning of the last dash, the comparing watch reads 07 h 30 m 13s. When compared to the chronometer, the comparing watch reads 07h 31m 56s, and the chronometer reads 07h 30 m 21 s . What is the chronometer error?	Om 13s fast	1m 43s fast	1m 22s slow	1m 48s slow	
723	You are taking a time tick using the 1930 signal from Rio de Janeiro, Brazil. You hear the preparatory signal "CQ DE PPE" repeated several times followed by a short dash (0.4 sec), 60 dots (0.1 sec each) and another short dash. At the beginning of the last dash, the comparing watch reads 07 h 30 m 08 s . When compared to the chronometer, the comparing watch reads 07h 31m 48s, and the chronometer reads 07h 32 m 16 s . What is the chronometer error?	Om 28s slow	1m 40s slow	Om 08s fast	Om 36s fast	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
724	You are taking a time tick using the 2000 signal from Kekaha-Kauai, Hawaii (WWVH). You hear a series of 1 second dashes followed by a 9 second silent period, then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 07 h 59 m 54 s . When compared to the chronometer, the comparing watch reads 08 h 00 m 00 s , and the chronometer reads 08 h 00 m 06 s . What is the chronometer error?	Om 06s slow	Om 06s fast	Om 12s fast	No error	
725	You are taking a time tick using the 2000 signal from Kekaha-Kauai, Hawaii (WWVH). You hear a series of 1 second dashes followed by a 9 second silent period, then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 08 h 00 m 49 s . When compared to the chronometer, the comparing watch reads 08h 01m 33 s , and the chronometer reads 08 h 00 m 56 s . What is the chronometer error?	Om 12s fast	Om 56s fast	Om 44s slow	1m 26s slow	
726	You are taking a time tick using the 2000 signal from Kekaha-Kauai, Hawaii (WWVH). You hear a series of 1 second dashes followed by a 9 second silent period, then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 08 h 00 m 08 s . When compared to the chronometer, the comparing watch reads 08h 01m 15 s , and the chronometer reads 07 h 59 m 55 s . What is the chronometer error?	Om 08s fast	1m 07s fast	1m 12s slow	1m 28s slow	
727	You are taking a time tick using the 2000 signal from Kekaha-Kauai, Hawaii (WWVH). You hear a series of 1 second dashes followed by a 9 second silent period, then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 08 h 00 m 12s. When compared to the chronometer, the comparing watch reads 08h 01m 22s, and the chronometer reads 07h 59m 39s. What is the chronometer error?	Om 12s fast	1m 10s fast	Om 21s slow	1m 31s slow	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
728	You are taking a time tick using the 2100 signal from Callao, Peru. You hear a series of 1 second dashes followed by a 9 second silent period, then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 09h 00m 07s. When compared to the chronometer, the comparing watch reads 09h 01m 12s, and the chronometer reads 08h 59 m 32 s . What is the chronometer error?	1m 33s slow	Om 28s slow	1m 05s fast	Om 07s fast	
729	You are taking a time tick using the 2100 signal from Callao, Peru. You hear a series of 1 second dashes followed by a 9 second silent period, then a long 1.3 second dash. At the beginning of the long dash, your comparing watch reads 09 h 00 m 10 s . When compared to the chronometer, the comparing watch reads 09h 01m 20s, and the chronometer reads 08h 59 m 22 s . What is the chronometer error?	1m 48s slow	Om 38s slow	1m 10s fast	Om 10s fast	
730	You are turning 100 RPM, with a propeller pitch of 25 feet, and an estimated slip of -5%. What is the speed of advance?	24.7 knots	23.5 knots	25.9 knots	22.3 knots	
731	You are turning 100 RPM, with propeller pitch of 25 feet, and an estimated negative slip of 5%. What is the speed of advance?	23.4 knots	24.7 knots	25.9 knots	26.3 knots	
732	You are turning 105 RPM, with a propeller pitch of 17 feet, and an estimated slip of -1%. What is the speed of advance?	15.3 knots	16.9 knots	17.4 knots	17.8 knots	
733	You are turning 68 RPM, with a propeller pitch of 18 feet, and an estimated slip of $+2 \%$. What is the speed of advance?	10.7 knots	11.5 knots	11.8 knots	12.3 knots	
734	You are turning 78 RPM, with a propeller pitch of 21 feet, and an estimated slip of -7%. What is the speed of advance?	14.9 knots	15.7 knots	17.3 knots	17.8 knots	
735	You are turning 82 RPM, with a propeller pitch of 23 feet, and an estimated slip of $+6 \%$. What is the speed of advance?	17.5 knots	17.9 knots	18.4 knots	19.7 knots	
736	You are turning 84 RPM, with a propeller pitch of 22 feet, and an estimated slip of 0%. What is the speed of advance?	16.8 knots	17.7 knots	18.0 knots	18.2 knots	
737	You are turning 85 RPM, with a propeller pitch of 19 feet, and an estimated slip of $+3 \%$. What is the speed of advance?	14.7 knots	15.5 knots	16.4 knots	17.1 knots	
738	You are turning 88 RPM, with a propeller pitch of 19 feet, and an estimated slip of 0%. What is the speed of advance?	16.5 knots	16.9 knots	17.3 knots	18.1 knots	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
739	You are turning 90 RPM, with a propeller pitch of 24 feet, and an estimated slip of -3%. What is the speed of advance?	18.8 knots	19.2 knots	20.6 knots	21.9 knots	
740	You are turning 93 RPM, with a propeller pitch of 25 feet, and an estimated slip of 0%. What is the speed of advance?	20.2 knots	21.9 knots	22.4 knots	22.9 knots	
741	You are underway and intend to make good a course of $040^{\circ} \mathrm{T}$. You experience a current with a set and drift of $190^{\circ} \mathrm{T}$ at 1.4 knots, and a northwest wind produces a leeway of 3°. You adjust your course to compensate for the current and leeway, while maintaining an engine speed of 10 knots. What will be your speed made good over your intended course of $040^{\circ} \mathrm{T}$?	7.8 knots	8.8 knots	9.8 knots	11.0 knots	
742	You are underway and intend to make good a course of $088^{\circ} \mathrm{T}$. You experience a current with a set and drift of $300^{\circ} \mathrm{T}$ at 2.4 knots, and a southerly wind produces a leeway of 3°. You adjust your course to compensate for the current and leeway, while maintaining an engine speed of 16 knots. What will be your speed made good over your intended course of $088^{\circ} \mathrm{T}$?	13.4 knots	13.9 knots	14.4 knots	14.9 knots	
743	You are underway and intend to make good a course of $170^{\circ} \mathrm{T}$. You experience a current with a set and drift of $050^{\circ} \mathrm{T}$ at 2.8 knots, and a easterly wind produces a leeway of 3°. You adjust your course to compensate for the current and leeway, while maintaining an engine speed of 18.5 knots. What will be your speed made good over your intended course of $170^{\circ} \mathrm{T}$?	18.5 knots	18.1 knots	17.6 knots	17.2 knots	
744	You are underway and intend to make good a course of $350^{\circ} \mathrm{T}$. You experience a current with a set and drift of $070^{\circ} \mathrm{T}$ at 1.5 knots, and a westerly wind produces a leeway of 4°. You adjust your course to compensate for the current and leeway, while maintaining an engine speed of 10 knots. What will be your speed made good over your intended course of $350^{\circ} \mathrm{T}$?	9.4 knots	9.8 knots	10.2knots	10.6 knots	
745	You are underway on a course of $135^{\circ} \mathrm{pgc}$ at 15 knots, and you sight a lighthouse dead ahead at a range of 12.5 miles at 1145 . What course would you steer to leave the lighthouse 3.0 miles off your port beam?	$117^{\circ} \mathrm{pgc}$	$121^{\circ} \mathrm{pgc}$	$149^{\circ} \mathrm{pgc}$	$154^{\circ} \mathrm{pgc}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
746	You are underway on course $000^{\circ} \mathrm{T}$ at 9.5 knots. The current is $082^{\circ} \mathrm{T}$ at 1.1 knots. What is the course being made good?	$00{ }^{\circ} \mathrm{T}$	$009^{\circ} \mathrm{T}$	$021^{\circ} \mathrm{T}$	$353^{\circ} \mathrm{T}$	
747	You are underway on course 000° Tat 9.5 knots. The current is $082^{\circ} \mathrm{T}$ at 1.1 knots. What is the speed being made good?	9.2 knots	9.5 knots	9.8 knots	10.1 knots	
748	You are underway on course $017^{\circ} \mathrm{T}$ at a speed of 14.2 knots. You sight a buoy bearing $025^{\circ} \mathrm{T}$ at a radar range of 3.7 miles at 1947. If you change course at 1953, what is the course to steer to leave the buoy abeam to starboard at 0.1 mile?	$021^{\circ} \mathrm{T}$	024 ${ }^{\circ} \mathrm{T}$	$0^{027}{ }^{\circ}$	${ }^{030^{\circ} \mathrm{T}}$	
749	You are underway on course $059^{\circ} \mathrm{T}$ at a speed of 13.8 knots. You sight a light bearing $064^{\circ} \mathrm{T}$ at a radar range of 5.1 miles at 1839. If you change course at 1845 , what is the course to steer to leave the light abeam to starboard at 1.0 mile?	047 ${ }^{\circ} \mathrm{T}$	050 ${ }^{\circ} \mathrm{T}$	$053^{\circ} \mathrm{T}$	058T	
750	You are underway on course $106^{\circ} \mathrm{T}$ at a speed of 15.3 knots. You sight a buoy bearing $109^{\circ} \mathrm{T}$ at a radar range of 3.6 miles at 1725. If you change course at 1728, what is the course to steer to leave the buoy abeam to port at 0.5 mile?	$100^{\circ} \mathrm{T}$	$117^{\circ} \mathrm{T}$	$120^{\circ} \mathrm{T}$	$125^{\circ} \mathrm{T}$	
751	You are underway on course $128^{\circ} \mathrm{T}$ at a speed of 17.6 knots. You sight a daymark bearing $126^{\circ} \mathrm{T}$ at a radar range of 4.3 miles at 1649. If you change course at 1654, what is the course to steer to leave the daymark abeam to starboard at 0.5 mile?	$113^{\circ} \mathrm{T}$	$116^{\circ} \mathrm{T}$	$119^{\circ} \mathrm{T}$	$136^{\circ} \mathrm{T}$	
752	You are underway on course $137^{\circ} \mathrm{T}$ at a speed of 16.2 knots. You sight a rock bearing $134^{\circ} \mathrm{T}$ at a radar range of 4.6 miles at 1508. If you change course at 1514 , what is the course to steer to leave the rock abeam to port at 1.5 miles?	$162^{\circ} \mathrm{T}$	$158^{\circ} \mathrm{T}$	$154^{\circ} \mathrm{T}$	$151{ }^{\circ} \mathrm{T}$	
753	You are underway on course $160^{\circ} \mathrm{T}$ at 10 knots. The current is $210^{\circ} \mathrm{T}$ at 0.9 knots. What is the course made good?	$156^{\circ} \mathrm{T}$	$160^{\circ} \mathrm{T}$	$164^{\circ} \mathrm{T}$	$169^{\circ} \mathrm{T}$	
754	You are underway on course $160^{\circ} \mathrm{T}$ at 10 knots. The current is $210^{\circ} \mathrm{T}$ at 0.9 knots. What is the speed being made good?	10.7 knots	11.0 knots	11.6 knots	12.3 knots	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
755	You are underway on course $163^{\circ} \mathrm{T}$ at a speed of 15.8 knots. You sight a buoy bearing $161^{\circ} \mathrm{T}$ at a radar range of 5.5 miles at 1319. If you change course at 1325 , what is the course to steer to leave the buoy abeam to starboard at 1.0 mile?	$145^{\circ} \mathrm{T}$	$148^{\circ} \mathrm{T}$	$151^{\circ} \mathrm{T}$	$175{ }^{\circ} \mathrm{T}$	
756	You are underway on course $172^{\circ} \mathrm{T}$ at 18.5 knots. The current is $078^{\circ} \mathrm{T}$ at 2.8 knots. What is the speed being made good?	18.5 knots	19.0 knots	19.5 knots	20.0 knots	
757	You are underway on course $204^{\circ} \mathrm{T}$ at a speed of 17.3 knots. You sight a light bearing $205^{\circ} \mathrm{T}$ at a radar range of 4.7 miles at 1222. If you change course at 1228, what is the course to steer to leave the light abeam to port at 1.5 miles?	$223^{\circ} \mathrm{T}$	$229^{\circ} \mathrm{T}$	$236^{\circ} \mathrm{T}$	$240^{\circ} \mathrm{T}$	
758	You are underway on course $215^{\circ} \mathrm{T}$ at 12 knots. The current is $000^{\circ} \mathrm{T}$ at 2.3 knots. What is the course made good?	$209^{\circ} \mathrm{T}$	$217^{\circ} \mathrm{T}$	$222^{\circ} \mathrm{T}$	$232^{\circ} \mathrm{T}$	
759	You are underway on course $215^{\circ} \mathrm{T}$ at 12 knots. The current is $000^{\circ} \mathrm{T}$ at 2.3 knots. What is the speed being made good?	8.5 knots	10.2 knots	10.9 knots	11.2 knots	
760	You are underway on course $241^{\circ} \mathrm{T}$ at a speed of 18.2 knots. You sight a daymark bearing $241^{\circ} \mathrm{T}$ at a radar range of 3.9 miles at 1006. If you change course at 1009, what is the course to steer to leave the daymark abeam to starboard at 1.0 mile?	$218^{\circ} \mathrm{T}$	$222^{\circ} \mathrm{T}$	$257^{\circ} \mathrm{T}$	$260^{\circ} \mathrm{T}$	
761	You are underway on course $254^{\circ} \mathrm{T}$ at a speed of 16.5 knots. You sight a rock bearing $255^{\circ} \mathrm{T}$ at a radar range of 6.1 miles at 0916. If you change course at 0922, what is the course to steer to leave the rock abeam to starboard at 1.5 miles?	$268^{\circ} \mathrm{T}$	$239^{\circ} \mathrm{T}$	$236{ }^{\circ} \mathrm{T}$	$233^{\circ} \mathrm{T}$	
762	You are underway on course $315^{\circ} \mathrm{T}$ at 14 knots. The current is $135^{\circ} \mathrm{T}$ at 1.9 knots. What is the course being made good?	$130^{\circ} \mathrm{T}$	$315^{\circ} \mathrm{T}$	$317{ }^{\circ} \mathrm{T}$	$322^{\circ} \mathrm{T}$	
763	You are underway on course $315^{\circ} \mathrm{T}$ at 14 knots. The current is $135^{\circ} \mathrm{T}$ at 1.9 knots. What is the speed being made good?	12.1 knots	13.5 knots	14.0 knots	15.9 knots	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
764	You are underway on course $340^{\circ} \mathrm{T}$ at a speed of 14.8 knots. You sight a buoy bearing $342^{\circ} \mathrm{T}$ at a radar range of 4.8 miles at 1422 . If you change course at 1428 , what is the true course to steer to leave the buoy abeam to port at 1.0 mile?	$327^{\circ} \mathrm{T}$	$354{ }^{\circ} \mathrm{T}$	$357{ }^{\circ} \mathrm{T}$	001T ${ }^{\text {T }}$	
765	You depart LAT $15^{\circ} 48^{\prime} \mathrm{N}$, LONG $174^{\circ} 06^{\prime} \mathrm{E}$ and steam 905 miles on course 090°. What is the LONG of arrival?	$165^{\circ} 41^{\prime} \mathrm{W}$	170¹3'W	$172^{\circ} 47^{\prime} \mathrm{W}$	17906'E	
766	You depart LAT $16^{\circ} 24^{\prime} \mathrm{S}$, LONG $169^{\circ} 38^{\prime} \mathrm{W}$, for LAT $16^{\circ} 24^{\prime} \mathrm{S}$, LONG $174^{\circ} 52^{\prime} \mathrm{E}$. What are the course and distance by parallel sailing?	090${ }^{\circ} \mathrm{T}, 301$ miles	090${ }^{\circ} \mathrm{T}, 892$ miles	$270^{\circ} \mathrm{T}$, 301 miles	$270^{\circ} \mathrm{T}, 892$ miles	
767	You depart LAT $22^{\circ} 35.0^{\prime} \mathrm{N}$, LONG $157^{\circ} 30.0^{\prime} \mathrm{W}$, and steam 4505.0 miles on course $135^{\circ} \mathrm{T}$. What are the latitude and longitude of your arrival by Mercator sailing?	$30^{\circ} 30.5$ S, $102^{\circ} 35.3^{\prime} \mathrm{W}$	$30^{\circ} 30.5{ }^{\prime} \mathrm{S}, 104^{\circ} 30.0^{\prime} \mathrm{W}$	$32^{\circ} 20.0$ S, $102^{\circ} 35.3^{\prime} \mathrm{W}$	$32^{\circ} 20.0$ S, $104^{\circ} 30.0^{\prime} \mathrm{W}$	
768	You depart LAT $25^{\circ} 54^{\prime} \mathrm{N}$, LONG $9^{\circ} 38^{\prime} \mathrm{E}$ and steam 592 miles on course 270°. What is the longitude of arrival?	1²0'E	$0^{\circ} 40^{\prime} \mathrm{E}$	$0^{\circ} 40^{\prime} \mathrm{W}$	$1^{\circ} 20^{\prime} \mathrm{W}$	
769	You depart LAT $26^{\circ} 03^{\prime}$ S, LONG $10^{\circ} 28^{\prime} \mathrm{E}$, for LAT $26^{\circ} 03^{\prime} \mathrm{S}$, LONG $01^{\circ} 16^{\prime} \mathrm{W}$. What are the course and distance by parallel sailing?	090${ }^{\circ} \mathrm{T}, 547.2$ miles	090${ }^{\circ} \mathrm{T}, 632.5$ miles	$270^{\circ} \mathrm{T}, 547.2$ miles	$270^{\circ} \mathrm{T}$, 632.5 miles	
770	You depart LAT $28^{\circ} 55.0^{\prime} \mathrm{N}$, LONG $89^{\circ} 10.0^{\prime} \mathrm{W}$, enroute to LAT $24^{\circ} 25.0^{\prime} \mathrm{N}$, LONG $83^{\circ} 00.0^{\prime} \mathrm{W}$. Determine the true course and distance by mid-latitude sailing?	418 miles, $122^{\circ} \mathrm{T}$	427 miles, $129^{\circ} \mathrm{T}$	436 miles, $133^{\circ} \mathrm{T}$	442 miles, $122^{\circ} \mathrm{T}$	
771	You depart LAT $32^{\circ} 16.6^{\prime} \mathrm{N}$, LONG $68^{\circ} 28.0^{\prime} \mathrm{W}$. What is the course and distance as calculated by Mercator sailing to a position at LAT $43^{\circ} 12.2^{\prime} \mathrm{N}$, LONG $55^{\circ} 39.0^{\prime} \mathrm{W}$?	042.8 ${ }^{\circ} \mathrm{T}, 896.2$ miles	$049.1^{\circ} \mathrm{T}, 955.1$ miles	$132.8^{\circ} \mathrm{T}, 896.2$ miles	136.6° T, 955.1 miles	
772	You depart LAT $33^{\circ} 45.0^{\prime} \mathrm{N}$, LONG $118^{\circ} 30.0^{\prime} \mathrm{W}$, and steam 2216 miles on course $250^{\circ} \mathrm{T}$. What is the longitude of your arrival by Mercator sailing?	LONG 15608.0'W	LONG 156³6.0'W	LONG $157^{\circ} 21.0^{\prime} \mathrm{W}$	LONG 157³1.0'W	
773	You depart LAT $34^{\circ} 22^{\prime}$ S, LONG $18^{\circ} 23^{\prime}$ E, and steam 3174 miles on course $282^{\circ} \mathrm{T}$. What is the longitude of your arrival by Mercator sailing?	LONG 40³3.5'W	LONG 40¹9.5'W	LONG 40¹8.2'W	LONG 40¹7.3'W	
774	You depart LAT $37^{\circ} 36^{\prime} \mathrm{N}$, LONG $123^{\circ} 00^{\prime} \mathrm{W}$, and steam 2022 miles on course $241^{\circ} \mathrm{T}$. What is the longitude of your arrival by Mercator sailing?	LONG 163²8.2'W	LONG 163¹8.2'W	LONG 15651.7'W	LONG 154¹8.3'W	
775	You depart LAT $38^{\circ} 12^{\prime}$ S, LONG $12^{\circ} 06^{\prime} \mathrm{W}$ and steam 1543 miles on course 270°. What is the Longitude of arrival?	4449'W	$45^{\circ} 12^{\prime} \mathrm{W}$	$45^{\circ} 37{ }^{\prime} \mathrm{W}$	$45^{\circ} 42^{\prime} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
776	You depart LAT $38^{\circ} 14^{\prime} \mathrm{N}$, LONG $12^{\circ} 42^{\prime} \mathrm{W}$, for LAT $38^{\circ} 14^{\prime} \mathrm{N}$, LONG $46^{\circ} 09^{\prime} \mathrm{W}$. What are the course and distance by parallel sailing?	090${ }^{\circ} \mathrm{T}, 1576.5$ miles	090${ }^{\circ} \mathrm{T}, 2879.0$ miles	270 ${ }^{\circ} \mathrm{T}$, 1576.5 miles	270${ }^{\circ} \mathrm{T}, 2868.5$ miles	
777	You depart LAT $40^{\circ} 42.0^{\prime} \mathrm{N}$, LONG $74^{\circ} 01.0^{\prime} \mathrm{W}$, and steam 3365.6 miles on course $118^{\circ} \mathrm{T}$. What is the longitude of your arrival by Mercator sailing?	24²9.0'W	22º58.0'W	17041.0'W	$10^{\circ} 46.0^{\prime} \mathrm{W}$	
778	You depart LAT $49^{\circ} 38^{\prime} \mathrm{N}$, LONG $152^{\circ} 49^{\prime} \mathrm{E}$, for LAT $49^{\circ} 38^{\prime} \mathrm{N}$, LONG $176^{\circ} 12^{\prime} \mathrm{E}$. What are the course and distance by parallel sailing?	090${ }^{\circ}$, 909 miles	090${ }^{\circ} \mathrm{T}, 1204$ miles	$270^{\circ} \mathrm{T}$, 909 miles	$270^{\circ} \mathrm{T}, 1204$ miles	
779	You depart LAT $49^{\circ} 45.0^{\prime} \mathrm{N}$, LONG $06^{\circ} 35.0^{\prime} \mathrm{W}$, and steam 3599 miles on course $246.5^{\circ} \mathrm{T}$. What is the longitude of your arrival by Mercator sailing?	LONG 76³6.2'W	LONG 7702.8'W	LONG 78¹4.0'W	LONG 78²2.6'W	
780	You depart LAT $50^{\circ} 06.0^{\prime} \mathrm{N}$, LONG $153^{\circ} 06.0^{\prime} \mathrm{E}$ and steam 879 miles on course 090°. What is the LONG of arrival?	$175^{\circ} 56.0$ E	177º 24.0'E	178³6.0'W	17504.0'W	
781	You depart LAT $51^{\circ} 48.0^{\prime}$ S, LONG $178^{\circ} 35.0^{\prime} \mathrm{W}$ and steam 179 miles on course 270°. What is the longitude of arrival?	$173^{\circ} 47^{\prime} \mathrm{W}$	174²7'E	176³6'E	$179^{\circ} 52^{\prime} \mathrm{W}$	
782	You depart LAT $52^{\circ} 01^{\prime} \mathrm{N}$, LONG $176^{\circ} 09^{\prime} \mathrm{E}$, for LAT $52^{\circ} 01^{\prime} \mathrm{N}$, LONG $178^{\circ} 46^{\prime} \mathrm{W}$. What are the course and distance by parallel sailing?	$090^{\circ} \mathrm{T}, 95$ miles	090${ }^{\circ}$, 188 miles	$270^{\circ} \mathrm{T}, 95$ miles	$270^{\circ} \mathrm{T}, 188$ miles	
783	You desire to make good 152° T. The magnetic compass deviation is $4^{\circ} \mathrm{E}$, the variation is $5^{\circ} \mathrm{E}$, and the gyro error is $3^{\circ} \mathrm{E}$. A southwesterly wind produces a 4° leeway. Which course would you steer per standard compass to make good the true course?	$137^{\circ} \mathrm{psc}$	$141^{\circ} \mathrm{psc}$	$143^{\circ} \mathrm{psc}$	$147^{\circ} \mathrm{psc}$	
784	You desire to make good a true course of 007°. The variation is $5^{\circ} \mathrm{E}$, magnetic compass deviation is $3^{\circ} \mathrm{W}$, and gyrocompass error is $2^{\circ} \mathrm{E}$. A southwest by west wind produces a 2° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$003^{\circ} \mathrm{psc}$	$005^{\circ} \mathrm{psc}$	007ºpsc	009 ${ }^{\circ} \mathrm{psc}$	
785	You desire to make good a true course of 038°. The variation is $5^{\circ} \mathrm{E}$, magnetic compass deviation is $4^{\circ} \mathrm{W}$, and gyrocompass error is $4^{\circ} \mathrm{W}$. A southeasterly wind produces a 4° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$033^{\circ} \mathrm{psc}$	041 ${ }^{\circ} \mathrm{psc}$	043 ${ }^{\circ} \mathrm{psc}$	047 ${ }^{\circ} \mathrm{psc}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
786	You desire to make good a true course of 046°. The variation is $6^{\circ} \mathrm{E}$, magnetic compass deviation is $12^{\circ} \mathrm{W}$, and the gyrocompass error is $3^{\circ} \mathrm{W}$. A northerly wind produces a 5° leeway. What is the course to steer per standard magnetic compass to make good the true course?	047 ${ }^{\circ} \mathrm{psc}$	049 ${ }^{\circ} \mathrm{psc}$	052 ${ }^{\circ} \mathrm{psc}$	057 ${ }^{\circ} \mathrm{psc}$	
787	You desire to make good a true course of 067°. The variation is $11^{\circ} \mathrm{W}$, magnetic compass deviation is $3^{\circ} \mathrm{E}$, and gyrocompass error is $1^{\circ} \mathrm{W}$. A northwesterly wind produces a 5° leeway. What is the course to steer per standard magnetic compass to make the true course good?	054 ${ }^{\circ} \mathrm{psc}$	064 ${ }^{\circ} \mathrm{psc}$	070 ${ }^{\circ} \mathrm{psc}$	074 ${ }^{\circ} \mathrm{psc}$	
788	You desire to make good a true course of 129°. The variation is $7^{\circ} \mathrm{E}$, magnetic compass deviation is $4^{\circ} \mathrm{E}$, and gyrocompass error is $2^{\circ} \mathrm{W}$. An easterly wind produces a 4° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$114^{\circ} \mathrm{psc}$	$116^{\circ} \mathrm{psc}$	$122^{\circ} \mathrm{psc}$	$126^{\circ} \mathrm{psc}$	
789	You desire to make good a true course of 132°. The variation is $10^{\circ} \mathrm{W}$, magnetic compass deviation is $5^{\circ} \mathrm{E}$, and gyrocompass error is $5^{\circ} \mathrm{W}$. A northeast by east wind produces a 5° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$132^{\circ} \mathrm{psc}$	$135^{\circ} \mathrm{psc}$	$137^{\circ} \mathrm{psc}$	$142^{\circ} \mathrm{psc}$	
790	You desire to make good a true course of 157°. The variation is $15^{\circ} \mathrm{E}$, magnetic compass deviation is $9^{\circ} \mathrm{W}$, and gyrocompass error is $3^{\circ} \mathrm{E}$. A southwesterly wind produces a 2° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$145^{\circ} \mathrm{psc}$	$147^{\circ} \mathrm{psc}$	$150^{\circ} \mathrm{psc}$	$153^{\circ} \mathrm{psc}$	
791	You desire to make good a true course of 174°. The variation is $17^{\circ} \mathrm{W}$, magnetic compass deviation is $4^{\circ} \mathrm{W}$, and gyrocompass error is $4^{\circ} \mathrm{E}$. A westsouthwest wind produces a 4° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$195^{\circ} \mathrm{psc}$	197ºpsc	199 ${ }^{\circ} \mathrm{psc}$	203 ${ }^{\circ} \mathrm{psc}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
792	You desire to make good a true course of 203°. The variation is $19^{\circ} \mathrm{E}$, magnetic compass deviation is $2^{\circ} \mathrm{W}$, and gyrocompass error is $1^{\circ} \mathrm{E}$. A westerly wind produces a 3° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$183^{\circ} \mathrm{psc}$	$189{ }^{\circ} \mathrm{psc}$	$210^{\circ} \mathrm{psc}$	$223^{\circ} \mathrm{psc}$	
793	You desire to make good a true course of 223°. The variation is $2^{\circ} \mathrm{E}$, magnetic compass deviation is $2^{\circ} \mathrm{E}$, and gyrocompass error is $1^{\circ} \mathrm{W}$. An east-southeast wind produces 3° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$213^{\circ} \mathrm{psc}$	$216^{\circ} \mathrm{psc}$	$220^{\circ} \mathrm{psc}$	$223^{\circ} \mathrm{psc}$	
794	You desire to make good a true course of 236°. The variation is $8^{\circ} \mathrm{E}$, magnetic compass deviation is $1^{\circ} \mathrm{E}$, and gyrocompass error is $3^{\circ} \mathrm{W}$. A southsoutheasterly wind produces a 1° leeway. What is the course to steer per standard magnetic compass (psc) to make the true course good?	$226^{\circ} \mathrm{psc}$	$228^{\circ} \mathrm{psc}$	$244^{\circ} \mathrm{psc}$	$246{ }^{\circ} \mathrm{psc}$	
795	You desire to make good a true course of 279°. The variation is $8^{\circ} \mathrm{W}$, magnetic compass deviation is $3^{\circ} \mathrm{E}$, and gyrocompass error is $1^{\circ} \mathrm{E}$. A north-northwesterly wind produces 3° leeway. What is the course to steer per standard magnetic compass (psc) to make the true course good?	$281^{\circ} \mathrm{psc}$	$284^{\circ} \mathrm{psc}$	$287{ }^{\circ} \mathrm{psc}$	$290^{\circ} \mathrm{psc}$	
796	You desire to make good a true course of 329°. The variation is $13^{\circ} \mathrm{W}$, magnetic compass deviation is $4^{\circ} \mathrm{E}$, and gyrocompass error is $2^{\circ} \mathrm{W}$. A southerly wind produces a 1° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$319^{\circ} \mathrm{psc}$	$321^{\circ} \mathrm{psc}$	$337^{\circ} \mathrm{psc}$	$339^{\circ} \mathrm{psc}$	
797	You desire to make good a true course of 347°. The variation is $11^{\circ} \mathrm{E}$, magnetic compass deviation is $7^{\circ} \mathrm{W}$, and gyrocompass error is $4^{\circ} \mathrm{W}$. A north by east wind produces a 4° leeway. What is the course to steer per standard magnetic compass to make the true course good?	$339^{\circ} \mathrm{psc}$	$343^{\circ} \mathrm{psc}$	$347{ }^{\circ} \mathrm{psc}$	$351{ }^{\circ} \mathrm{psc}$	
798	You have steamed 1124 miles at 21 knots, and consumed 326 tons of fuel. If you have 210 tons of usable fuel remaining, how far can you steam at 17 knots?	1096 miles	1105 miles	1218 miles	1304 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
799	You have steamed 1134 miles at 10 knots, and consumed 121 tons of fuel. If you have to steam 1522 miles to complete the voyage, how many tons of fuel will be consumed while steaming at 12 knots?	146 tons	189 tons	200 tons	234 tons	
800	You have steamed 1175 miles at 19 knots, and consumed 257 tons of fuel. If you have to steam 1341 miles to complete the voyage, how many tons of fuel will be consumed while steaming at 18 knots?	293 tons	263 tons	202 tons	172 tons	
801	You have steamed 1260 miles at 18 knots, and consumed 205 tons of fuel. If you have to steam 1423 miles to complete the voyage, how many tons of fuel will be consumed while steaming at 16 knots?	143 tons	163 tons	183 tons	293 tons	
802	You have steamed 132 miles and consumed 14.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 289 miles?	21.6 tons	24.5 tons	27.9 tons	30.7 tons	
803	You have steamed 142 miles and consumed 15.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 472 miles?	36.5 tons	49.9 tons	53.8 tons	61.4 tons	
804	You have steamed 142 miles and consumed 21.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 465 miles?	43.4 tons	57.6 tons	68.8 tons	72.8 tons	
805	You have steamed 150 miles and consumed 17 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 350 miles?	12.82 tons	29.41 tons	34.00 tons	39.66 tons	
806	You have steamed 156 miles and consumed 19 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 273 miles?	23.6 tons	27.9 tons	33.3 tons	37.2 tons	
807	You have steamed 1587 miles at 11.2 knots, and have consumed one-half of your total fuel capacity of 2840 bbls. What is the maximum speed you can steam to complete the remaining 1951 miles?	9.1 knots	9.9 knots	10.1 knots	11.6 knots	
808	You have steamed 162 miles and consumed 14.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 285 miles?	24.6 tons	34.7 tons	43.3 tons	54.8 tons	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
809	You have steamed 174 miles and consumed 18.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 416 miles?	34.9 tons	38.4 tons	43.0 tons	46.2 tons	
810	You have steamed 182 miles and consumed 16.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 392 miles?	28.3 tons	34.5 tons	49.6 tons	74.2 tons	
811	You have steamed 199 miles and consumed 23.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 410 miles?	32.6 tons	39.9 tons	47.4 tons	97.6 tons	
812	You have steamed 201 miles and consumed 18.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 482 miles?	25.2 tons	43.2 tons	52.6 tons	103.5 tons	
813	You have steamed 216 miles and consumed 19.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 315 miles?	27.7 tons	32.3 tons	36.9 tons	40.4 tons	
814	You have steamed 217 miles and consumed 23.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 362 miles?	33.8 tons	38.4 tons	42.6 tons	45.7 tons	
815	You have steamed 264 miles and consumed 22.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 521 miles?	31.7 tons	38.6 tons	43.4 tons	85.7 tons	
816	You have steamed 265 miles and consumed 25.0 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 346 miles?	32.6 tons	37.4 tons	42.6 tons	49.5 tons	
817	You have steamed 300 miles and consumed 34 tons of fuel. If you maintain the same speed, how many tons of fuel will you consume while steaming 700 miles?	79.3 tons	74.3 tons	68.4 tons	66.2 tons	
818	You have steamed 369 miles at 16 knots and burning 326 barrels of fuel per day. You must decrease your consumption to 212 barrels per day with 271 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	11.1	12.9	13.6	15.1	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
819	You have steamed 432 miles at 18 knots and burning 406 barrels of fuel per day. You must decrease your consumption to 221 barrels per day with 190 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	10.6	12.8	20.0	22.9	
820	You have steamed 449 miles at 19 knots and burning 476 barrels of fuel per day. You must decrease your consumption to 185 barrels per day with 362 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	13.2	14.3	17.1	18.2	
821	You have steamed 463 miles at 19 knots and burning 440 barrels of fuel per day. You must decrease your consumption to 200 barrels per day with 410 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	12.1	13.6	15.2	17.5	
822	You have steamed 491 miles at 20 knots and burning 568 barrels of fuel per day. You must decrease your consumption to 265 barrels per day with 313 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	10.9	14.3	17.1	18.2	
823	You have steamed 499 miles at 21 knots and are burning 462 barrels of fuel per day. You must decrease your consumption to 221 barrels per day with 311 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	17.3	18.4	19.1	20.0	
824	You have steamed 504 miles at 21 knots and burning 633 barrels of fuel per day. You must decrease your consumption to 410 barrels per day with 399 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	20.1	19.0	16.2	15.0	
825	You have steamed 520 miles at 22 knots and burning 319 barrels of fuel per day. You must decrease your consumption to 137 barrels per day with 410 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	12.8	14.8	16.2	18.2	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
826	You have steamed 525 miles at 16.0 knots, and consumed 105 tons of fuel. If you have 308 tons of usable fuel remaining, how far can you steam at 19 knots?	920 miles	1092 miles	1297 miles	2172 miles	
827	You have steamed 540 miles at 22 knots and burning 618 barrels of fuel per day. You must decrease your consumption to 372 barrels per day with 299 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	22.9	20.0	19.1	17.6	
828	You have steamed 560 miles at 23 knots and burning 524 barrels of fuel per day. You must decrease your consumption to 260 barrels per day with 316 miles left in your voyage. What must you reduce your speed (kts) to in order to burn this amount of fuel?	16.3	18.6	19.9	21.6	
829	You have steamed 607 miles at 17.0 knots, and consumed 121 tons of fuel. If you have 479 tons of usable fuel remaining, how far can you steam at 14.5 knots?	1211 miles	1748 miles	2817 miles	3303 miles	
830	You have steamed 632 miles at 18.5 knots, and consumed 197 tons of fuel. If you have 278 tons of usable fuel remaining, how far can you steam at 15.0 knots?	681 miles	892 miles	1100 miles	1357 miles	
831	You have steamed 726 miles at 17.5 knots, and consumed 138 tons of fuel. If you have 252 tons of usable fuel remaining, how far can you steam at 13.5 knots?	789 miles	1326 miles	1719 miles	2228 miles	
832	You have steamed 746 miles at 14.0 knots, and consumed 152 tons of fuel. If you have 201 tons of usable fuel remaining, how far can you steam at 10 knots?	1381 miles	1934 miles	2263 miles	2707 miles	
833	You have steamed 775 miles at 17 knots, and consumed 145 tons of fuel. If you have to steam 977 miles to complete the voyage, how many tons of fuel will be consumed while steaming at 18 knots?	204 tons	181 tons	163 tons	129 tons	
834	You have steamed 803 miles at 13 knots, and consumed 179 tons of fuel. If you have 371 tons of usable fuel remaining, how far can you steam at 16 knots?	1099 miles	1374 miles	1833 miles	2581 miles	
835	You have steamed 824 miles at 15.5 knots, and consumed 179 tons of fuel. If you have 221 tons of usable fuel remaining, how far can you steam at 18 knots?	495 miles	650 miles	754 miles	876 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
836	You have steamed 836 miles at 14.5 knots, and consumed 191 tons of fuel. If you have 310 tons of usable fuel remaining, how far can you steam at 17 knots?	842 miles	987 miles	1157 miles	1865 miles	
837	You have steamed 916 miles at 13 knots, and consumed 166 tons of fuel. If you have 203 tons of usable fuel remaining, how far can you steam at 14 knots?	757 miles	841 miles	966 miles	1108 miles	
838	You have steamed 916 miles at 13 knots, and consumed 166 tons of fuel. If you have to steam 1325 miles to complete the voyage, how many tons of fuel will be consumed while steaming at 14 knots?	133 tons	181 tons	207 tons	278 tons	
839	You have steamed 918 miles at 15.0 knots, and consumed 183 tons of fuel. If you have 200 tons of usable fuel remaining, how far can you steam at 12 knots?	1021 miles	1261 miles	1568 miles	1960 miles	
840	You have steamed 925 miles at 13.5 knots, and consumed 181 tons of fuel. If you have 259 tons of usable fuel remaining, how far can you steam at 16 knots?	795 miles	942 miles	1117 miles	1409 miles	
841	You have steamed 989 miles at 16.5 knots, and consumed 215 tons of fuel. If you have 345 tons of usable fuel remaining, how far can you steam at 13 knots?	1025 miles	1993 miles	2557 miles	3245 miles	
842	You must average 16.25 knots to reach port at a designated time. Your propeller has a pitch of 21'08", and you estimate 4\% negative slip. How many RPM's must you average to arrive on time?	73 RPM	77 RPM	82 RPM	88 RPM	
843	You observe the lower limb of the Sun at a sextant altitude (hs) of $22^{\circ} 58.6^{\prime}$ on 16 June. The index error is 2.0^{\prime} off the arc. The height of eye is 61 feet. What is the observed altitude (Ho)?	23 ${ }^{\circ} 06.7^{\prime}$	23º 09.9^{\prime}	23º $15.4{ }^{\prime}$	$23^{\circ} 22.2^{\prime}$	
844	You observe the lower limb of the Sun at a sextant altitude (hs) of $24^{\circ} 00.7^{\prime}$ on 10 January. The index error is 2.6^{\prime} off the arc. The height of eye is 55 feet. What is the observed altitude (Ho)?	24º 07.4	24º 08.9^{\prime}	24¹0.2'	24º11.8'	
845	You observe the lower limb of the Sun at a sextant altitude (hs) of $28^{\circ} 24.7^{\prime}$ on 17 May. The index error is 1.5 ' off the arc. The height of eye is 86 feet (26 meters). What is the observed altitude (Ho)?	28²0.7'	$28^{\circ} 30.6{ }^{\prime}$	28³1.5'	28³ 32.9^{\prime}	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
846	You observe the lower limb of the Sun at a sextant altitude (hs) of $31^{\circ} 31.5^{\prime}$ on 6 March. The index error is 2.5^{\prime} on the arc. The height of eye is 76 feet. What is the observed altitude (Ho)?	$31^{\circ} 35.3{ }^{\prime}$	$31^{\circ} 36.7^{\prime}$	$31^{\circ} 38.2^{\prime}$	31³9.5'	
847	You observe the lower limb of the Sun at a sextant altitude (hs) of $34^{\circ} 51.4^{\prime}$ on 18 October. The index error is 2.0 off the arc. The height of eye is 54 feet (16.5 meters). What is the observed altitude (Ho)?	$35^{\circ} 01.2^{\prime}$	$35^{\circ} 03.6^{\prime}$	$35^{\circ} 05.2^{\prime}$	$35^{\circ} 07.4^{\prime}$	
848	You observe the lower limb of the Sun at a sextant altitude (hs) of $35^{\circ} 26.3^{\prime}$ on 25 June. The index error is 1.5^{\prime} on the arc. The height of eye is 58 feet (17.6 meters). What is the observed altitude (Ho)?	$35^{\circ} 28.2{ }^{\prime}$	$35^{\circ} 29.9{ }^{\prime}$	$35^{\circ} 32.1{ }^{\prime}$	35 ${ }^{\circ} 36.7^{\prime}$	
849	You observe the lower limb of the Sun at a sextant altitude (hs) of $37^{\circ} 47.2^{\prime}$ on 11 October. The index error is 3.0' off the arc. The height of eye is 63 feet (19.2 meters). What is the observed altitude (Ho)?	$37^{\circ} 25.2^{\prime}$	$37^{\circ} 42.5{ }^{\prime}$	$37^{\circ} 51.5^{\prime}$	$3^{3}{ }^{\circ} 57.5^{\prime}$	
850	You observe the lower limb of the Sun at a sextant altitude (hs) of $38^{\circ} 07.5^{\prime}$ on 8 August. The index error is 5.2 ' off the arc. The height of eye is 72 feet (22 meters). What is the observed altitude (Ho)?	$38^{\circ} 08.4{ }^{\prime}$	$38^{\circ} 13.3^{\prime}$	$38^{\circ} 19.2{ }^{\prime}$	$38^{\circ} 23.4{ }^{\prime}$	
851	You observe the lower limb of the Sun at a sextant altitude (hs) of $41^{\circ} 29.8^{\prime}$ on 11 January. The index error is 2.4 off the arc. The height of eye is 68 feet. What is the observed altitude (Ho)?	$41^{\circ} 36.4{ }^{\prime}$	41³9.4'	410 42.0^{\prime}	41 ${ }^{\circ} 44.5^{\prime}$	
852	You observe the lower limb of the Sun at a sextant altitude (hs) of $42^{\circ} 44.0^{\prime}$ on 22 June. The index error is 0.8 ' off the arc. The height of eye is 70 feet (21.3 meters). What is the observed altitude (Ho)?	42¹9.8'	$42^{\circ} 21.7^{\prime}$	4251.7'	4254.2'	
853	You observe the lower limb of the Sun at a sextant altitude (hs) of $45^{\circ} 49.7^{\prime}$ on 13 November . The index error is 1.0 on the arc. The height of eye is 61 feet (18.6 meters). What is the observed altitude (Ho)?	$45^{\circ} 59.3^{\prime}$	4556.4'	$45^{\circ} 52.9^{\prime}$	45* $49.8{ }^{\prime}$	
854	You observe the lower limb of the Sun at a sextant altitude (hs) of $46^{\circ} 20.3^{\prime}$ on 1 April. The index error is 4.5^{\prime} off the arc. The height of eye is 57 feet (17.4 meters). What is the observed altitude (Ho)?	$46^{\circ} 24.2^{\prime}$	46²7.9'	$46^{\circ} 30.1^{\prime}$	$4^{\circ} 32.6{ }^{\prime}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
855	You observe the lower limb of the Sun at a sextant altitude (hs) of $50^{\circ} 26.9^{\prime}$ on 9 November. The index error is 1.5' on the arc. The height of eye is 56 feet (17 meters). What is the observed altitude (Ho)?	5004.2'	50⒙1'	50³3.5'	5041.4'	
856	You observe the lower limb of the Sun at a sextant altitude (hs) of $54^{\circ} 28.2^{\prime}$ on 22 July. The index error is 1.5 ' off the arc. The height of eye is 56 feet (17.1 meters). What is the observed altitude (Ho)?	${ }^{54}{ }^{\circ} 30.9^{\prime}$	$54^{\circ} 36.2^{\prime}$	$54^{\circ} 37.7^{\prime}$	54³7.9'	
857	You observe the lower limb of the Sun at a sextant altitude (hs) of $58^{\circ} 06.6^{\prime}$ on 5 April. The index error is 1.0^{\prime} off the arc. The height of eye is 55 feet (16.8 meters). What is the observed altitude (Ho)?	58¹4.2'	$58^{\circ} 15.8^{\prime}$	$58^{\circ} 16.9^{\prime}$	58¹8.1'	
858	You observe the lower limb of the Sun at a sextant altitude (hs) of $62^{\circ} 22.2^{\prime}$ on 6 June. The index error is 1.2^{\prime} on the arc. The height of eye is 28 feet (8.5 meters). What is the observed altitude (Ho)?	$6^{\circ} 24.8^{\prime}$	62²6.9'	$62^{\circ} 31.4{ }^{\prime}$	62 ${ }^{\circ} 36.7^{\prime}$	
859	You observe the lower limb of the Sun at a sextant altitude (hs) of $75^{\circ} 12.3^{\prime}$ on 6 August. The index error is 1.5^{\prime} off the arc. The height of eye is 32 feet (9.8 meters). What is the observed altitude (Ho)?	$75^{\circ} 18.6$	$75^{\circ} 24.0{ }^{\prime}$	$75^{\circ} 30.7{ }^{\prime}$	$75^{\circ} 34.6{ }^{\prime}$	
860	You observe the planet Jupiter at a sextant altitude (hs) of $66^{\circ} 27.6^{\prime}$ on 26 May. The index error is 5.2^{\prime} on the arc. The height of eye is 52 feet. What is the observed altitude (Ho)?	$65^{\circ} 39.5^{\prime}$	$65^{\circ} 32.8{ }^{\prime}$	$66^{\circ} 27.2^{\prime}$	$6^{\circ} 15.0{ }^{\prime}$	
861	You observe the planet Saturn at a sextant altitude (hs) of $63^{\circ} 05.1^{\prime}$ on 25 May. The index error is 4.5^{\prime} off the arc. The height of eye is 62 feet. What is the observed altitude (Ho)?	$63^{\circ} 00.6^{\prime}$	$63^{\circ} 01.5^{\prime}$	$63^{\circ} 02.9^{\prime}$	6304.1'	
862	You observe the star Antares at a sextant altitude (hs) of $38^{\circ} 18.7^{\prime}$ on 28 February. The index error is 2.4 ' on the arc. The height of eye is 40 feet (12.2 meters). What is the observed altitude (Ho)?	$38^{\circ} 07.5^{\prime}$	$38^{\circ} 09.0{ }^{\prime}$	$38^{\circ} 10.5{ }^{\prime}$	$38^{\circ} 12.5^{\prime}$	
863	You observe the star Deneb at a sextant altitude (hs) of $48^{\circ} 34.8^{\prime}$ on 16 December. The index error is 4.0^{\prime} off the arc. The height of eye is 58 feet. What is the observed altitude (Ho)?	$48^{\circ} 02.9^{\prime}$	$48^{\circ} 30.5{ }^{\prime}$	48³1.4'	$4^{\circ} 46.5^{\prime}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
864	You receive a distress call from a vessel reporting her position as LAT $30^{\circ} 21^{\prime} \mathrm{N}$, LONG $88^{\circ} 34^{\prime} \mathrm{W}$. Your position is LAT $24^{\circ} 30^{\prime} \mathrm{N}$, LONG $83^{\circ} 00^{\prime} \mathrm{W}$. Determine the true course and distance to the distress scene by Mercator sailing.	$317^{\circ} \mathrm{T}, 470$ miles	$320^{\circ} \mathrm{T}, 460$ miles	$322^{\circ} \mathrm{T}, 455$ miles	$324^{\circ} \mathrm{T}, 460$ miles	
865	You sight a light 9° on your starboard bow at a distance of 21 miles. Assuming you make good your course, what will be your distance off the light when abeam?	3.3 miles	3.7 miles	4.0 miles	4.3 miles	
866	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a gyro heading of 037°.	$1.0^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{E}$	$2.0^{\circ} \mathrm{E}$	
867	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a gyro heading of 166°.	$1.0^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{E}$	$0.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{E}$	
868	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a gyro heading of 196°.	$2.0^{\circ} \mathrm{E}$	$2.0^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{W}$	0.0°	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
869	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 057°.	$1.0^{\circ} \mathrm{E}$	$1.5^{\circ} \mathrm{E}$	$1.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{W}$	
870	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 104°.	$1.8{ }^{\circ} \mathrm{E}$	$2.6{ }^{\circ} \mathrm{E}$	$2.2^{\circ} \mathrm{W}$	$2.7^{\circ} \mathrm{W}$	
871	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 143°.	$2.0^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{W}$	0.0°	
872	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 234°.	$2.5^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{E}$	$1.0^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
873	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a true heading of 258°.	$0.5^{\circ} \mathrm{W}$	0.0°	$0.5^{\circ} \mathrm{E}$	$1.0^{\circ} \mathrm{E}$	
874	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a gyro heading of 039°.	$0.8^{\circ} \mathrm{E}$	0.0°	$0.5^{\circ} \mathrm{W}$	$1.0{ }^{\circ} \mathrm{W}$	
875	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a gyro heading of 058°.	$1.5{ }^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{E}$	$0.5^{\circ} \mathrm{W}$	
876	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 004°.	$1.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{W}$	0.0°	$1.0^{\circ} \mathrm{E}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
877	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 022°.	$1.5^{\circ} \mathrm{E}$	$0.5^{\circ} \mathrm{E}$	0.0°	$0.5^{\circ} \mathrm{W}$	
878	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 166°.	$2.0^{\circ} \mathrm{W}$	$1.5{ }^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{W}$	
879	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a magnetic compass heading of 210°.	0.0°	$0.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{E}$	$1.0^{\circ} \mathrm{E}$	
880	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a true heading of 157°.	$2.0^{\circ} \mathrm{W}$	$1.5^{\circ} \mathrm{W}$	$1.0^{\circ} \mathrm{W}$	0.0°	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
881	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a true heading of 236°.	$1.0^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{E}$	$1.5^{\circ} \mathrm{E}$	0.0°	
882	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{W}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a true heading of 319°.	$0.5^{\circ} \mathrm{E}$	$1.0^{\circ} \mathrm{W}$	$2.5^{\circ} \mathrm{E}$	$2.5^{\circ} \mathrm{W}$	
883	You swung ship and compared the magnetic compass against the gyro compass to find deviation. Gyro error is $2^{\circ} \mathrm{E}$. The variation is $8^{\circ} \mathrm{W}$. Find the deviation on a true heading of 187°.	$1.5^{\circ} \mathrm{W}$	$0.5^{\circ} \mathrm{W}$	0.0°	$1.0^{\circ} \mathrm{E}$	
884	You want to make good a true course of 137°. A north-northeast wind produces a 3° leeway. The variation is 11° west, deviation is 5° east, and gyrocompass error is 2° east. What course must you steer per gyrocompass to make the true course good?	$132^{\circ} \mathrm{pgc}$	$134^{\circ} \mathrm{pgc}$	$136^{\circ} \mathrm{pgc}$	$138^{\circ} \mathrm{pgc}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
885	You wish to check the deviation of your standard magnetic compass. You find a natural range that you steer for and note that the gyrocompass heading is 034°, and the heading by standard magnetic compass is 026°. The gyro error is $1^{\circ} \mathrm{W}$. Variation is $9^{\circ} \mathrm{E}$. What is the deviation for that heading?	$2^{\circ} \mathrm{W}$	0°	$2^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{E}$	
886	You wish to make good a course of $035^{\circ} \mathrm{T}$ while turning for an engine speed of 12 knots. The set is $340^{\circ} \mathrm{T}$, and the drift is 2 knots. What course should you steer?	$0^{02}{ }^{\circ} \mathrm{T}$	$037^{\circ} \mathrm{T}$	044 ${ }^{\circ} \mathrm{T}$	054 ${ }^{\circ} \mathrm{T}$	
887	You wish to make good a course of $035^{\circ} \mathrm{T}$ while turning for an engine speed of 12 knots. The set is $340^{\circ} \mathrm{T}$, and the drift is 2 knots. What speed will you make good along the track line?	12.2 knots	12.7 knots	13.0 knots	13.3 knots	
888	You wish to make good a course of $053^{\circ} \mathrm{T}$ while turning for an engine speed of 16 knots. The set is $345^{\circ} \mathrm{T}$, and the drift is 2.4 knots. What speed will you make good along the track line?	14.1 knots	15.2 knots	16.1 knots	16.8 knots	
889	You wish to make good a course of $230^{\circ} \mathrm{T}$ while turning for an engine speed of 12.5 knots. The set is $180^{\circ} \mathrm{T}$, and the drift is 1.7 knots. What course should you steer?	$244^{\circ} \mathrm{T}$	$236^{\circ} \mathrm{T}$	$231^{\circ} \mathrm{T}$	$222^{\circ} \mathrm{T}$	
890	You wish to make good a course of $230^{\circ} \mathrm{T}$ while turning for an engine speed of 12.5 knots. The set is $180^{\circ} \mathrm{T}$, and the drift is 1.7 knots. What speed will you make good along the track line?	11.5 knots	12.5 knots	13.6 knots	14.0 knots	
891	You wish to make good a course of $258^{\circ} \mathrm{T}$, allowing 4° leeway for northerly winds. The variation is $21^{\circ} \mathrm{W}$. What should you steer per standard magnetic compass to make good 258° ?	$242^{\circ} \mathrm{psc}$	$271{ }^{\circ} \mathrm{psc}$	$278{ }^{\circ} \mathrm{psc}$	288 ${ }^{\circ} \mathrm{psc}$	
892	You wish to make good a course of $300^{\circ} \mathrm{T}$ while turning for an engine speed of 11 knots. The set is $350^{\circ} \mathrm{T}$, and the drift is 2.1 knots. Which course should you steer?	$2^{278}{ }^{\circ} \mathrm{T}$	$288^{\circ} \mathrm{T}$	${ }^{292}{ }^{\circ} \mathrm{T}$	$308^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
893	You wish to make good a course of $350^{\circ} \mathrm{T}$ while turning for an engine speed of 10 knots. The set is $070^{\circ} \mathrm{T}$, and the drift is 1.5 knots. What course should you steer?	$332^{\circ} \mathrm{T}$	$341^{\circ} \mathrm{T}$	$345^{\circ} \mathrm{T}$	$359^{\circ} \mathrm{T}$	
894	Your 0000 zone time position on 13 June is LAT $24^{\circ} 35^{\prime} \mathrm{N}$, LONG $142^{\circ} 26^{\prime} \mathrm{E}$. Your vessel is on course $245^{\circ} \mathrm{T}$, speed is 13.5 knots. What is the zone time of sunrise?	0440	0445	0503	0528	
895	Your 0745 ZT 15 July position is LAT $29^{\circ} 04.0^{\prime} \mathrm{N}$, LONG $71^{\circ} 17.5^{\prime} \mathrm{W}$. You are on course $165^{\circ} \mathrm{T}$, and your speed is 8.0 knots. You observed 3 morning sun lines. Determine the latitude and longitude of your 1130 running fix?	$\begin{aligned} & \text { LAT } 28^{\circ} 35.0^{\prime} \mathrm{N}, \text { LONG } \\ & 71^{\circ} 08.5^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 39.8^{\prime} \mathrm{N}, \text { LONG } \\ & 71^{\circ} 04.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 40.5^{\prime} \mathrm{N}, \text { LONG } \\ & 71^{\circ} 13.0^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { LAT } 28^{\circ} 43.3^{\prime} \mathrm{N}, \text { LONG } \\ & 71^{\circ} 02.5^{\prime} \mathrm{W} \end{aligned}$	NP-0003
896	Your 0830 DR position is LAT $27^{\circ} 33^{\prime} \mathrm{S}$, LONG $79^{\circ} 17^{\prime} \mathrm{E}$. Your vessel is on a course of $066^{\circ} \mathrm{T}$, at a speed of 19.5 knots. Determine the time of LAN on 10 December.	1131	1136	1153	1215	
897	Your 0900 DR position is LAT $23^{\circ} 16^{\prime} \mathrm{N}$, LONG $146^{\circ} 12^{\prime} \mathrm{E}$. Your vessel is on a course of $286^{\circ} \mathrm{T}$, at a speed of 14.5 knots. Determine the zone time of LAN on 14 March.	1151	1209	1223	1228	
898	Your are on course $317^{\circ} \mathrm{T}$ at 13 knots. A light is bearing 22.5° relative at 0640 . At 0659 the same light is bearing 45° relative. At what time should the light be abeam?	0709	0712	0718	0721	
899	Your ship is entering port from sea, and you sight a pair of range lights. When in line, they bear 315° per standard magnetic compass. The chart shows that the range bearing is $312^{\circ} \mathrm{T}$, and that variation is $6^{\circ} \mathrm{W}$. What is the deviation of your compass at the time of the sighting?	$3^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{W}$	
900	Your vessel arrives in port with sufficient fuel to steam 1175 miles at 19 knots. If you are unable to take on bunkers, at what speed must you proceed to reach your next port, 1341 miles distant?	16.7 knots	17.3 knots	17.8 knots	19.4 knots	
901	Your vessel arrives in port with sufficient fuel to steam 595 miles at 14 knots. If you are unable to take on bunkers, at what speed must you proceed to reach your next port, 707 miles distant?	12.2 knots	12.5 knots	12.8 knots	14.4 knots	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
902	Your vessel arrives in port with sufficient fuel to steam 726 miles at 16 knots. If you are unable to take on bunkers, at what speed must you proceed to reach your next port, 873 miles distant?	14.6 knots	15.1 knots	16.3 knots	16.8 knots	
903	Your vessel arrives in port with sufficient fuel to steam 775 miles at 17 knots. If you are unable to take on bunkers, at what speed must you proceed to reach your next port, 977 miles distant?	15.1 knots	15.8 knots	17.2 knots	17.7 knots	
904	Your vessel arrives in port with sufficient fuel to steam 812 miles at 15 knots. If you are unable to take on bunkers, at what speed must you proceed to reach your next port, 928 miles distant?	13.6 knots	14.0 knots	15.3 knots	15.7 knots	
905	Your vessel consumes 156 barrels of fuel per day at a speed of 13.0 knots. What will be the fuel consumption of your vessel at 16.0 knots?	192 bbls	236 bbls	291 bbls	315 bbls	
906	Your vessel consumes 178 barrels of fuel per day at a speed of 13.5 knots. What will be the fuel consumption of your vessel at 15.0 knots?	172 bbls	198 bbls	219 bbls	244 bbls	
907	Your vessel consumes 199 barrels of fuel per day at a speed of 14.5 knots. What will be the fuel consumption of your vessel at 10.0 knots?	65 bbls	95 bbls	137 bbls	148 bbls	
908	Your vessel consumes 215 barrels of fuel per day at a speed of 18.0 knots. What will be the fuel consumption of your vessel at 14.0 knots?	67 bbls	101 bbls	130 bbls	167 bbls	
909	Your vessel consumes 216 barrels of fuel per day at a speed of 15.0 knots. What will be the fuel consumption of your vessel at 17.5 knots?	232 bbls	252 bbls	294 bbls	343 bbls	
910	Your vessel consumes 236 barrels of fuel per day at a speed of 16.5 knots. What will be the fuel consumption of your vessel at 13.0 knots?	102 bbls	115 bbls	147 bbls	186 bbls	
911	Your vessel consumes 268 barrels of fuel per day at a speed of 19.0 knots. What will be the fuel consumption of your vessel at 15.0 knots?	132 bbls	167 bbls	212 bbls	243 bbls	
912	Your vessel consumes 274 barrels of fuel per day at a speed of 17.5 knots. What will be the fuel consumption of your vessel at 13.5 knots?	126 bbls	163 bbls	211 bbls	253 bbls	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
913	Your vessel departs Arkhangel'sk, from position LAT $64^{\circ} 32^{\prime} \mathrm{N}$, LONG $40^{\circ} 31^{\prime} \mathrm{E}$ at 0236 zone time, on 19 August. It is bound for New York, at position LAT $40^{\circ} 42^{\prime} \mathrm{N}$, LONG $74^{\circ} 01^{\prime} \mathrm{W}$. The distance is determined to be 4,216 miles, and you estimate that you will average 13.0 knots. What is your estimated zone time of arrival?	1155, 31 August	1755, 31 August	0655, 1 September	1155, 1 September	
914	Your vessel departs LAT $32^{\circ} 45^{\prime} \mathrm{N}$, LONG $79^{\circ} 50^{\prime} \mathrm{W}$, and is bound for LAT $34^{\circ} 21^{\prime} \mathrm{S}$, LONG $18^{\circ} 29^{\prime} \mathrm{E}$. Determine the distance by Mercator sailing.	5,021 miles	6,884 miles	6,954 miles	7,002 miles	
915	Your vessel departs Montevideo, Uruguay, LAT $34^{\circ} 40.3^{\prime} \mathrm{S}$, LONG $54^{\circ} 09.1^{\prime} \mathrm{W}(Z D+4)$, at 1800 zone time, on 15 October . It is bound for New York, LAT $40^{\circ} 27.5^{\prime} \mathrm{N}$, LONG $73^{\circ} 49.9^{\prime} \mathrm{W}(Z D+5)$. The distance is 5,749 miles, and you expect to average 20 knots. What is your estimated zone time of arrival?	0427, 26 October	1627, 26 October	1627, 27 October	0427, 27 October	
916	Your vessel departs Seattle at 1010 zone time (ZD +8), on 28 May, bound for Apra, Guam (ZD -10). The distance by great circle is 4,948 miles, and you estimate that you will average 18.5 knots. What is your estimated zone time of arrival?	0737, 9 June	1737, 9 June	1937, 9 June	0737, 10 June	
917	Your vessel departs Yokohama from position LAT $35^{\circ} 27.0^{\prime} N$, LONG $139^{\circ} 39.0^{\prime} E$ (ZD -9), at 1330 ZT , on 23 July, bound for Seattle at position LAT $47^{\circ} 36.0^{\prime} \mathrm{N}$, LONG $122^{\circ} 22.0^{\prime} \mathrm{W}$ (ZD +8). The distance by great circle is 4,245 miles, and you estimate that you will average 13.6 knots. What is your estimated ZT of arrival?	0438, 4 August	2038, 4 August	0438, 5 August	1238, 5 August	
918	Your vessel has consumed 1087 bbls of fuel after steaming 2210 miles at a speed of 10.75 kts. What is the maximum speed you can steam for the last 1000 miles of the voyage on the remaining 725 bbls, if you estimate 3% of the fuel is not usable?	11.43 knots	11.76 knots	12.84 knots	15.33 knots	
919	Your vessel is on a course of $034^{\circ} \mathrm{T}$ at 17 knots . At 0551 a light bears $056.5^{\circ} \mathrm{T}$, and at 0623 the light bears $079^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0636, 5.9 miles	0646, 5.9 miles	0636, 6.4 miles	0646, 6.4 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
920	Your vessel is on a course of $052^{\circ} \mathrm{T}$ at 16 knots. At 0916 a light bears $078.5^{\circ} \mathrm{T}$, and at 0927 the light bears $097^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0929, 2.0 miles	0932, 2.3 miles	0935, 2.6 miles	0938, 2.9 miles	
921	Your vessel is on a course of $079^{\circ} \mathrm{T}$ at 11 knots. At 0152 a light bears $105.5^{\circ} \mathrm{T}$, and at 0209 the light bears $124^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0219, 2.3 miles	0226, 3.1 miles	0233, 3.9 miles	0242, 4.7 miles	
922	Your vessel is on a course of $082^{\circ} \mathrm{T}$ at 19 knots. At 0255 a light bears $059.5^{\circ} \mathrm{T}$, and at 0312 the light bears $037^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0333, 5.1 miles	0321, 4.7 miles	0327, 4.3 miles	0324, 3.8 miles	
923	Your vessel is on a course of $103^{\circ} \mathrm{T}$ at 14 knots. At 1918 a light bears $129.5^{\circ} \mathrm{T}$, and at 1937 the light bears $148^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	1947, 2.8 miles	1950, 3.2 miles	1953, 3.8 miles	1956, 4.4 miles	
924	Your vessel is on a course of $107^{\circ} \mathrm{T}$ at 16 knots. At 0403 a light bears $129.5^{\circ} \mathrm{T}$, and at 0426 the light bears $152^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0434, 3.2 miles	0442, 4.3 miles	0434, 4.3 miles	0442, 3.4 miles	
925	Your vessel is on a course of $126^{\circ} \mathrm{T}$ at 17 knots. At 0251 a light bears $099.5^{\circ} \mathrm{T}$, and at 0313 the light bears $081^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0327, 4.4 miles	0335, 6.2 miles	0345, 6.8 miles	0351, 7.4 miles	
926	Your vessel is on a course of $129^{\circ} \mathrm{T}$ at 13 knots. At 1937 a light bears $151.5^{\circ} \mathrm{T}$. At 2003 the light bears $174^{\circ} \mathrm{T}$. At which time and distance off will your vessel be when abeam of this light?	2016, 2.8 miles	2016, 3.9 miles	2021, 3.9 miles	2021, 2.8 miles	
927	Your vessel is on a course of $144^{\circ} \mathrm{T}$ at 16 knots. At 0126 a light bears $166.5^{\circ} \mathrm{T}$, and at 0152 the light bears $189^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0205, 4.1 miles	0210, 4.8 miles	0215, 6.0 miles	0220, 6.4 miles	
928	Your vessel is on a course of $144^{\circ} \mathrm{T}$ at 20 knots. At 0022 a light bears $117.5^{\circ} \mathrm{T}$, and at 0035 the light bears 099°. At what time and at what distance off will your vessel be when abeam of the light?	0044, 3.2 miles	0048, 4.3 miles	0052, 5.1 miles	0056, 6.0 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
929	Your vessel is on a course of $196^{\circ} \mathrm{T}$ at 17 knots. At 0417 a light bears $218.5^{\circ} \mathrm{T}$, and at 0442 the light bears $241^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0500, 5.0 miles	0504, 6.2 miles	0500, 6.2 miles	0504, 5.0 miles	
930	Your vessel is on a course of $207^{\circ} \mathrm{T}$ at 13 knots. At 0539 a light bears $180.5^{\circ} \mathrm{T}$, and at 0620 the light bears $162^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0633, 5.9 miles	0641, 6.5 miles	0653, 7.6 miles	0701, 8.9 miles	
931	Your vessel is on a course of $221^{\circ} \mathrm{T}$ at 15 knots. At 0319 a light bears $198.5^{\circ} \mathrm{T}$, and at 0353 the light bears $176^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0407, 4.3 miles	0410, 5.2 miles	0417, 6.0 miles	0427, 7.4 miles	
932	Your vessel is on a course of $223^{\circ} \mathrm{T}$ at 17 knots. At 1323 a lighthouse bears 318° relative. At 1341 the same lighthouse bears 287° relative. What is your distance off the lighthouse at 1341?	4.3 miles	5.1 miles	6.6 miles	7.8 miles	
933	Your vessel is on a course of $237^{\circ} \mathrm{T}$ at 18 knots. At 0404 a light bears $263.5^{\circ} \mathrm{T}$, and at 0430 the light bears $282^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0448, 6.8 miles	0452, 7.2 miles	0456, 7.8 miles	0500, 8.4 miles	
934	Your vessel is on a course of $253^{\circ} \mathrm{T}$ at 18 knots. At 2027 a light bears 275.5°, and at 2055 the light bears $298^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	2115, 5.9 miles	2109, 6.4 miles	2123, 7.3 miles	2104, 7.7 miles	
935	Your vessel is on a course of $255^{\circ} \mathrm{T}$, at 14 knots. At 2116 a lighthouse is sighted dead ahead at a distance of 11 miles. You change course at this time to pass the lighthouse 3 miles abeam to port. What will be your ETA at this position off the lighthouse?	2149	2201	2212	2228	
936	Your vessel is on a course of $255^{\circ} \mathrm{T}$, at 14 knots. At 2126 a lighthouse is sighted dead ahead at a distance of 11 miles. You change course at this time to pass the lighthouse 3 miles abeam to port. What will be your ETA at this position off the lighthouse?	2149	2201	2211	2228	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
937	Your vessel is on a course of $272^{\circ} \mathrm{T}$ at 15 knots. At 2113 a light bears $245.5^{\circ} \mathrm{T}$, and at 2120 the light bears $227^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	2124, 1.3 miles	2127, 1.8 miles	2131, 2.3 miles	2135, 2.7 miles	
938	Your vessel is on a course of $297^{\circ} \mathrm{T}$ at 11 knots. At 0019 a light bears $274.5^{\circ} \mathrm{T}$, and at 0048 the light bears $252^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0102, 2.6 miles	0108, 3.7 miles	0057, 4.6 miles	0117, 5.0 miles	
939	Your vessel is on a course of $307^{\circ} \mathrm{T}$ at 20 knots. At 0914 a light bears $284.5^{\circ} \mathrm{T}$, and at 0937 the light bears $262^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0950, 4.4 miles	0953, 5.4 miles	0957, 6.6 miles	1002, 7.1 miles	
940	Your vessel is on a course of $311^{\circ} \mathrm{T}$ at 21 knots. At 1957 a light bears $337.5^{\circ} \mathrm{T}$, and at 2018 the light bears $356^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	2027, 5.2 miles	2033, 6.8 miles	2039, 7.4 miles	2043, 10.3 miles	
941	Your vessel is on a course of $316^{\circ} \mathrm{T}$ at 12 knots. At 2326 a light bears $289.5^{\circ} \mathrm{T}$, and at 2354 the light bears $271^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0014, 4.8 miles	0018, 5.2 miles	0022, 5.6 miles	0026, 6.4 miles	
942	Your vessel is on a course of $343^{\circ} \mathrm{T}$ at 14 knots. At 2156 a light bears $320.5^{\circ} \mathrm{T}$, and at 2217 the light bears $298^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	2232, 3.4 miles	2235, 4.3 miles	2228, 4.9 miles	2241, 6.9 miles	
943	Your vessel is on a course of $358^{\circ} \mathrm{T}$ at 19 knots. At 0316 a light bears $024.5^{\circ} \mathrm{T}$, and at 0334 the light bears $043^{\circ} \mathrm{T}$. At what time and at what distance off will your vessel be when abeam of the light?	0352, 5.7 miles	0355, 6.2 miles	0359, 7.1 miles	0403, 8.0 miles	
944	Your vessel is on course $093^{\circ} \mathrm{T}$ at 15 knots. At 1835 a light bears $136^{\circ} \mathrm{T}$, and at 1857 the same light bears $170^{\circ} \mathrm{T}$. What was your distance off the light at $1857 ?$	6.0 miles	6.4 miles	6.8 miles	7.2 miles	
945	Your vessel is on course $312^{\circ} \mathrm{pgc}$ and you sight a lighthouse dead ahead at a range of 10 miles. The gyro error is $3^{\circ} \mathrm{E}$. What course would you steer to leave the lighthouse 1.5 miles abeam to starboard?	$309^{\circ} \mathrm{pgc}$	$304^{\circ} \mathrm{pgc}$	$309^{\circ} \mathrm{T}$	$304{ }^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
946	Your vessel is proceeding down a channel, and you see a pair of range lights that are in line dead ahead. The chart indicates that the direction of this pair of lights is $229^{\circ} \mathrm{T}$, and variation is $6^{\circ} \mathrm{W}$. If the heading of your vessel at the time of the sighting is 232° per standard magnetic compass, what is the deviation?	$3^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{W}$	
947	Your vessel is proceeding up a channel steering on a pair of range lights that are in line ahead. The chart indicates that the direction of this pair of lights is $249^{\circ} \mathrm{T}$, and the variation is $14^{\circ} \mathrm{E}$. If the heading of your vessel at the time of the sighting is 226° per standard magnetic compass, what is the correct deviation?	$5^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{W}$	
948	Your vessel is proceeding up a channel, and you see a pair of range lights that are in line ahead. The chart indicates that the direction of this pair of lights is $014^{\circ} \mathrm{T}$, and the variation is $11^{\circ} \mathrm{E}$. If the heading of your vessel at the time of the sighting is 009° per standard magnetic compass, what is the correct deviation?	$5^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{W}$	$6^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{W}$	
949	Your vessel is proceeding up a channel, and you see a pair of range lights that are in line ahead. The chart indicates that the direction of this pair of lights is $064^{\circ} \mathrm{T}$, and the variation is $17^{\circ} \mathrm{W}$. If the heading of your vessel at the time of the sighting is 094° per standard magnetic compass, what is the correct deviation?	$4^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{W}$	$13^{\circ} \mathrm{E}$	$13^{\circ} \mathrm{W}$	
950	Your vessel is proceeding up a channel, and you see a pair of range lights that are in line ahead. The chart indicates that the direction of this pair of lights is $186^{\circ} \mathrm{T}$, and the variation is $11^{\circ} \mathrm{W}$. If the heading of your vessel at the time of the sighting is 193° per standard magnetic compass, what is the correct deviation?	$4^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{W}$	$7^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{W}$	
951	Your vessel is proceeding up a channel, and you see a pair of range lights that are in line ahead. The chart indicates that the direction of this pair of lights is $212^{\circ} \mathrm{T}$, and the variation is $7^{\circ} \mathrm{W}$. If the heading of your vessel at the time of the sighting is 208° per standard magnetic compass, what is the correct deviation?	$4^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{W}$	$11^{\circ} \mathrm{E}$	$11^{\circ} \mathrm{W}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
958	Your vessel is proceeding up a channel, and you see a pair of range lights that are in line ahead. The chart indicates that the direction of this pair of lights is $196^{\circ} \mathrm{T}$, and the variation is $7^{\circ} \mathrm{E}$. If the heading of your vessel at the time of the sighting is 192° per standard magnetic compass, what is the deviation?	$3^{\circ} \mathrm{E}$	$3^{\circ} \mathrm{W}$	$4^{\circ} \mathrm{E}$	$4^{\circ} \mathrm{W}$	
959	Your vessel is proceeding up a channel, and you see a pair of range lights that are in line dead ahead. The chart indicates that the direction of this pair of lights is 283° T , and the variation is $13^{\circ} \mathrm{E}$. If the heading of your vessel at the time of the sighting is 278° per standard compass, what is the deviation?	$5^{\circ} \mathrm{E}$	$5^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{W}$	
960	Your vessel is steaming on a course of $140^{\circ} \mathrm{T}$ at 15 knots. At 1530 a lighthouse bears 200° T. At 1550 it bears $249^{\circ} \mathrm{T}$. What is your distance from the lighthouse at 1550 ?	1.15 miles	4.60 miles	5.45 miles	5.75 miles	
961	Your vessel is steering $049^{\circ} \mathrm{T}$ at 15 knots. At 1914 a light bears $078^{\circ} \mathrm{T}$, and at 1951 the same light bears $116^{\circ} \mathrm{T}$. What will be your distance off abeam?	6.7 miles	7.1 miles	7.5 miles	8.3 miles	
962	Your vessel is steering $074^{\circ} \mathrm{T}$ at 12 knots. At 0214 a light bears $115^{\circ} \mathrm{T}$, and at 0223 the same light bears $135^{\circ} \mathrm{T}$. What will be your distance off abeam?	2.4 miles	3.0 miles	3.5 miles	4.2 miles	
963	Your vessel is steering $096^{\circ} \mathrm{T}$ at 17 knots. At 1847 a light bears $057^{\circ} \mathrm{T}$, and at 1916 the same light bears $033^{\circ} \mathrm{T}$. What will be your distance off abeam?	9.9 miles	10.7 miles	11.4 miles	11.9 miles	
964	Your vessel is steering $143^{\circ} \mathrm{T}$ at 16 knots. At 2147 a light bears $106^{\circ} \mathrm{T}$, and at 2206 the same light bears $078^{\circ} \mathrm{T}$. What will be your distance off abeam?	5.1 miles	5.4 miles	5.9 miles	6.5 miles	
965	Your vessel is steering $157^{\circ} \mathrm{T}$ at 18 knots. At 2018 a light bears $208^{\circ} \mathrm{T}$. At 2044 the same light bears $232^{\circ} \mathrm{T}$. What will be your distance off when abeam?	12.8 miles	14.4 miles	15.2 miles	16.7 miles	
966	Your vessel is steering $194^{\circ} \mathrm{T}$ at 13 knots. At 0116 a light bears $243^{\circ} \mathrm{T}$, and at 0147 the same light bears $267^{\circ} \mathrm{T}$. What will be your distance off abeam?	11.2 miles	11.6 miles	12.0 miles	12.5 miles	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
967	Your vessel is steering 195° per standard magnetic compass. Variation for the area is $13^{\circ} \mathrm{W}$, and the deviation is $4^{\circ} \mathrm{E}$. The wind is from the westsouthwest, producing a 2° leeway. Which true course are you making good?	$178{ }^{\circ} \mathrm{T}$	$180^{\circ} \mathrm{T}$	$182^{\circ} \mathrm{T}$	$184^{\circ} \mathrm{T}$	
968	Your vessel is steering $218^{\circ} \mathrm{T}$ at 19 knots. At 2223 a light bears $261^{\circ} \mathrm{T}$, and at 2234 the same light bears $289^{\circ} \mathrm{T}$. What will be your distance off abeam?	4.5 miles	4.9 miles	5.3 miles	5.7 miles	
969	Your vessel is steering $238^{\circ} \mathrm{T}$ at 11 knots. At 2304 a light bears $176^{\circ} \mathrm{T}$, and at 2323 the same light bears $155^{\circ} \mathrm{T}$. What will be your distance off abeam?	7.5 miles	8.0 miles	8.5 miles	9.0 miles	
970	Your vessel is steering $263^{\circ} \mathrm{T}$ at 22 knots. At 0413 a light bears $294^{\circ} \mathrm{T}$, and at 0421 the same light bears $312^{\circ} \mathrm{T}$. What will be your distance off abeam?	3.4 miles	3.7 miles	4.3 miles	4.9 miles	
971	Your vessel is steering $283^{\circ} \mathrm{T}$ at 10 knots. At 0538 a light bears $350^{\circ} \mathrm{T}$, and at 0552 the same light bears $002^{\circ} \mathrm{T}$. What will be your distance off abeam?	9.6 miles	10.3 miles	10.7 miles	11.3 miles	
972	Your vessel is steering $354^{\circ} \mathrm{T}$ at 14 knots. At 0317 a light bears $049^{\circ} \mathrm{T}$, and at 0342 the same light bears $071^{\circ} \mathrm{T}$. What will be your distance off abeam?	12.4 miles	12.7 miles	13.0 miles	13.3 miles	
973	Your vessel is steering a course of $337^{\circ} \mathrm{psc}$. Variation for the area is $13^{\circ} \mathrm{W}$, and deviation is $4^{\circ} \mathrm{E}$. The wind is from the south, producing a 3° leeway. Which true course are you making good?	$325^{\circ} \mathrm{T}$	$328^{\circ} \mathrm{T}$	$331{ }^{\circ} \mathrm{T}$	$349^{\circ} \mathrm{T}$	
974	Your vessel is steering course 027° per standard magnetic compass (psc), variation for the area is $19^{\circ} \mathrm{W}$, and deviation is $2^{\circ} \mathrm{E}$. The wind is from the north-northwest, producing a 5° leeway. What true course are you making good?	$005^{\circ} \mathrm{T}$	015 ${ }^{\circ}$ T	044 ${ }^{\circ} \mathrm{T}$	049 ${ }^{\circ} \mathrm{T}$	
975	Your vessel is steering course $073^{\circ} \mathrm{psc}$, variation for the area is $15^{\circ} \mathrm{E}$, and deviation is $4^{\circ} \mathrm{E}$. The wind is from the southeast, producing a 4° leeway. Which true course are you making good?	050T	$058^{\circ} \mathrm{T}$	088 ${ }^{\circ} \mathrm{T}$	096T	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
976	Your vessel is steering course $111^{\circ} \mathrm{psc}$, variation for the area is $5^{\circ} \mathrm{E}$, and deviation is $3^{\circ} \mathrm{W}$. The wind is from the northwest, producing a 1° leeway. What true course are you making good?	$108^{\circ} \mathrm{T}$	$110^{\circ} \mathrm{T}$	$112^{\circ} \mathrm{T}$	$114^{\circ} \mathrm{T}$	
977	Your vessel is steering course $149^{\circ} \mathrm{psc}$, variation for the area is $13^{\circ} \mathrm{E}$, and deviation is $4^{\circ} \mathrm{E}$. The wind is from the northeast, producing a 4° leeway. What true course are you making good?	$128^{\circ} \mathrm{T}$	$136^{\circ} \mathrm{T}$	$162^{\circ} \mathrm{T}$	$170^{\circ} \mathrm{T}$	
978	Your vessel is steering course $166^{\circ} \mathrm{psc}$, variation for the area is $8^{\circ} \mathrm{W}$, and deviation is $3^{\circ} \mathrm{W}$. The wind is from the west-southwest, producing a 2° leeway. What true course are you making good?	$153^{\circ} \mathrm{T}$	$157^{\circ} \mathrm{T}$	$175^{\circ} \mathrm{T}$	$179^{\circ} \mathrm{T}$	
979	Your vessel is steering course $197^{\circ} \mathrm{psc}$, variation for the area is $7^{\circ} \mathrm{E}$, and deviation is $4^{\circ} \mathrm{W}$. The wind is from the west, producing a 2° leeway. Which true course are you making good?	$192^{\circ} \mathrm{T}$	$196^{\circ} \mathrm{T}$	$198^{\circ} \mathrm{T}$	$202^{\circ} \mathrm{T}$	
980	Your vessel is steering course 216° per standard magnetic compass, variation for the area is $9^{\circ} \mathrm{W}$, and deviation is $2^{\circ} \mathrm{E}$. The wind is from the east, producing a 5° leeway. What true course are you making good?	$204^{\circ} \mathrm{T}$	214 ${ }^{\circ} \mathrm{T}$	$223^{\circ} \mathrm{T}$	$227^{\circ} \mathrm{T}$	
981	Your vessel is steering course $243^{\circ} \mathrm{psc}$. Variation for the area is $5^{\circ} \mathrm{E}$, and deviation is $2^{\circ} \mathrm{W}$. The wind is from the south-southeast, producing a 2° leeway. What true course are you making good?	$242^{\circ} \mathrm{T}$	$244^{\circ} \mathrm{T}$	$246^{\circ} \mathrm{T}$	$248^{\circ} \mathrm{T}$	
982	Your vessel is steering course $284^{\circ} \mathrm{psc}$, variation for the area is $6^{\circ} \mathrm{W}$, and deviation is $3^{\circ} \mathrm{E}$. The wind is from the north-northeast, producing a 3° leeway. What true course are you making good?	$275^{\circ} \mathrm{T}$	$278{ }^{\circ} \mathrm{T}$	$284^{\circ} \mathrm{T}$	$290^{\circ} \mathrm{T}$	
983	Your vessel is steering course $299^{\circ} \mathrm{psc}$, variation for the area is $7^{\circ} \mathrm{W}$, and deviation is $4^{\circ} \mathrm{W}$. The wind is from the southwest, producing a 3° leeway. What true course are you making good?	291 ${ }^{\circ} \mathrm{T}$	${ }^{296}{ }^{\circ} \mathrm{T}$	$299^{\circ} \mathrm{T}$	$313^{\circ} \mathrm{T}$	
984	Your vessel is steering course $352^{\circ} \mathrm{psc}$, variation for the area is $11^{\circ} \mathrm{E}$, and deviation is $9^{\circ} \mathrm{W}$. The wind is from the northeast, producing a 1° leeway. What true course are you making good?	$349^{\circ} \mathrm{T}$	$351{ }^{\circ} \mathrm{T}$	$353^{\circ} \mathrm{T}$	$355^{\circ} \mathrm{T}$	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
985	Your vessel is underway on a course of $115^{\circ} \mathrm{T}$ at 18 knots. At 1850 a lighthouse bears 137.5° T. At 1920, the same lighthouse bears $160^{\circ} \mathrm{T}$. What time will the lighthouse pass abeam to starboard?	1929	1941	1949	1955	
986	Your vessel is underway on a course of $323.5^{\circ} \mathrm{T}$ at a speed of 16 knots. At 1945° a light bears 350° T. At 2010 the light bears $008.5^{\circ} \mathrm{T}$. What will be your distance off when abeam of the light?	3.3 miles	4.8 miles	6.7 miles	8.7 miles	
987	Your vessel receives a distress call from a vessel reporting her position as LAT $35^{\circ} 01.0^{\prime} \mathrm{S}$, LONG $18^{\circ} 51.0^{\prime} \mathrm{W}$. Your position is LAT $35^{\circ} 01.0^{\prime} \mathrm{S}$, LONG $21^{\circ} 42.0^{\prime} \mathrm{W}$. Determine the true course and distance from your vessel to the vessel in distress by parallel sailing.	090 ${ }^{\circ} \mathrm{T}$, 140.0 miles	090${ }^{\circ} \mathrm{T}, 189.2$ miles	$270^{\circ} \mathrm{T}, 140.0$ miles	$270^{\circ} \mathrm{T}, 189.2$ miles	
988	Your vessel receives a distress call from a vessel reporting her position as LAT $35^{\circ} 01$ 'S, LONG $18^{\circ} 51^{\prime} \mathrm{W}$. Your position is LAT $30^{\circ} 18^{\prime} \mathrm{S}$, LONG $21^{\circ} 42^{\prime} \mathrm{W}$. Determine the true course from your vessel to the vessel in distress by Mercator sailing.	$135^{\circ} \mathrm{T}$	$149^{\circ} \mathrm{T}$	$153^{\circ} \mathrm{T}$	$160^{\circ} \mathrm{T}$	
989	Your vessel receives a distress call from a vessel reporting her position at LAT $5^{\circ} 24^{\prime} \mathrm{N}$, LONG $31^{\circ} 16^{\prime} \mathrm{W}$. Your position is LAT $2^{\circ} 39^{\prime} \mathrm{S}$, LONG $39^{\circ} 24^{\prime} \mathrm{W}$. Determine the distance from your vessel to the vessel in distress by Mercator sailing.	669.3 miles	688.7 miles	699.2 miles	712.9 miles	
990	Your vessel will sail from a position in LAT $8^{\circ} 51.0^{\prime} \mathrm{N}$, LONG $81^{\circ} 31.0^{\prime} \mathrm{W}$ to a position at LAT $33^{\circ} 51.5^{\prime} \mathrm{S}$, LONG $151^{\circ} 13.0^{\prime} \mathrm{E}$. The distance by great circle is 7,635 miles, and you estimate an average speed of 15.0 knots. What is your estimated zone time of arrival if you depart at 1510 ZT , on 23 July?	1110, 14 August	0110, 14 August	1110, 13 August	1510, 13 August	
991	Your vessel's propeller has a pitch of 22'06". From 0530, 19 March, to 1930, 20 March, the average RPM was 82 . The distance run by observation was 721.5 miles. What was the slip?	+4\%	-4\%	+7\%	-7\%	

ID \#	Question	Choice A	Choice B	Choice C	Choice D	Illustrations
992	Your voyage commences off Cape May, NJ, at LAT $38^{\circ} 40^{\prime} \mathrm{N}$, LONG $74^{\circ} 00^{\prime} \mathrm{W}$, for LAT $44^{\circ} 00^{\prime} \mathrm{N}$, LONG $10^{\circ} 00^{\prime} \mathrm{W}$. Sea ice is north of $45^{\circ} \mathrm{N}$ and west of $45^{\circ} \mathrm{W}$. Extensive naval exercises will be conducted within a 150 -mile radius of LAT $50^{\circ} 00^{\prime} \mathrm{N}$, LONG $35^{\circ} 00^{\prime} \mathrm{W}$. Which statement about a direct great circle route is TRUE? (Use gnomonic tracking chart WOXZC 5274.)	The latitude of the great circle vertex is above $50^{\circ} \mathrm{N}$.	You must plot a composite sailing to remain south of the ice limits.	The naval exercises will interfere with the direct great circle route.	The shifting shoals northwest of Sable Island will be a navigational hazard on the track line.	

