
For Aspiring Core Network Dev Engineers/System Programmers

Level : Intermediate+

Programming language used : C

Ospf

Stp

Isis

Mpls

Ldp

RSVP

Bgp

RIP

AAA

IPSec

ICMP

IGMP

MLD

PIM

. . .

 Exclusively for Developers !

Core Network Development

• The AIM of this project is to cycle you through the experience of end-to-end implementation of a typical

network protocol

• You will be writing lots of C code to Implement a typical Network Protocols and its features

• Design, Document and implement new features (sub projects)

• Introduce to the world of Asynchronous programming, Timers, Packet Parsing

• Learn to use external libraries , See and understand alien code

• Focus is on solving Network Core problem – Think, design, implement and analyze the solution

• See your implementation solving real world networking problems

• This course is rehearsal of what you shall be doing as a Software Engineer at core network companies

• Same Design and implementation as a typical network Protocol is implemented in industry on a device

• Decorate your resume with an impressive project

• The project is Challenging – Sky is the limit. Expected LOCs – 20k+

Core Network Development

• After doing this course , you will be able to

• Understand how Network Protocols are implemented on Network Devices

• Understand end-to-end development of a network protocol

• Config via CLIs, show CLIs

• Implement new features incrementally

• React to config changes

• React to common admin actions such as interface shut down / IP Address change

• Packet processing, Update protocol data structures through packets processing

• Implement complex protocol state machines and Network Algorithms

• Control protocol behavior based on timers

• Debugging and troubleshoot code to resolve issues

• Add another feather to your resume

Core Network Development

• This Course is not a :

• Learning Programming Language or Data Structures

• Not a Socket Programming Course

• Not a Linux system programming learning course

• Core Developers aiming to work in Networking / Distributed Systems / System Programming side

• Not for those seeking non-development roles (This is pure Dev oriented Course)

• Not for those still struggling with basic data structures, basic C programming concepts

• Working professionals, Job Seekers, domain changers to Networking Dev, Learners, starving for knowledge

• Patience, fighters, challengers, winners

Core Network Development

• Basic L2 and L3 Networking knowledge

• C Programming

• Should be excellent with pointers, pointer arithmetic

• Must understand memory manipulations in C programming

• memcpy, memcmp, byte layout in memory

• Type-casting, Multi-threading

• Basic Data structures knowledge –

• Linked list

• Trees

• Rest I will take Care

Good luck , lets start . . .

Core Network Development

➢ We will be going to implement a simplified Routing Protocol in this course

➢ Routing protocol chosen – Interior gateway protocol (IGP , ex OSPF, ISIS)

➢ Don’t know about it – don’t worry, we shall cover theory first before any implementation

➢ A typical IGP (link state) protocol functionality is divided into 4 distinct parts :

1. Adjacency Management (Each device know its neighbours)

• Sending and Receiving hello packets periodically

• Update neighborship state machine

2. Building Link State Database (Each device internally creates a view of topology - Graph)

• Building Link State packets

• Flooding link state packets

• Build a Graph – a view of network topology

3. Running SPF algorithm (Dijkstra) on LSDB

• Process the LSDB through the algorithm

• Compute Results and store

• Algorithmically challenging

4. L3 Route Calculations

• Use Results of 3 to compute final L3 routes and update Routing Table

• Algorithmically challenging

We shall be going to implement all 4 parts in this course series

Along the journey we shall implement various sub-features within the protocol

Adjacency Mgmt

Building Link state

Database

Running SPF

Algorithm

L3 Route Calculations

Core Network Development

➢ Implementation divided into 4 parts

➢ Part X is dependent on part X -1

➢ Additionally, our protocol must respond to other network

events – link failures, config changes etc

➢ We must ensure concreteness of current phase of

implementation of the protocol before moving to next

➢ It is a big project – Expected LOCs 20k+

➢ I will provide you library which simulate a topology of

L3 routers on top of which you are required to

implement your protocol and test

➢ Industry level Coding standard and experience

➢ Same Design and implementation as a typical network

Protocol is implemented in industry on a device

➢ You will not do any socket programming !

➢ Sky is the limit

➢ Operating system Used : Linux (Ubuntu 20.04 LTS)

➢ Language : C (not even C++)

Adjacency Mgmt

Building Link state

Database

Running SPF

Algorithm

L3 Route Calculations

Core Network Development

• Memory Corruptions

• Memory Leaks

• Functionality breakages

• Crashes

• Not able to Code the logic !

• Code Reading and Remembering the flows

• Capture and Analyze packets ingressing/egressing devices

• Narrow the down the problem from topology level to device level

• Analyze logs/ insert more logs as required

• Find MRE (Minimal Reproducible Example)

• Debuggers – gdb, Core-files , Valgrind

• Code Navigator Tools – Source Insight (best AFAIK)

• Deliver and test incrementally

• Code maintenance : Use github (or similar)

Core Network Development

Get familiar with

TCP/IP Stack

Library

➢ Building , Compiling, Running

➢ Packet Captures

➢ Build Topologies

➢ Config Topology –

➢ Ip Address Change

➢ Link up down , etc

➢ Collect log files

➢ Understand the supporting dev libraries

➢ Understand the library design and arch (high level)

Let’s Cover the theory

of the Protocol we are

looking to implement

➢ What is the protocol ?

➢ How complicated ?

➢ How does it work ?

➢ Development phases ?

➢ Complete Theory

➢ Get Complete Idea about

protocol logistics

Development Begins

!!

Schooling ! College ! At Work !

➢ Adding new CLIs

➢ Implement Protocol Core logic

➢ Config protocol

➢ Troubleshoot

➢ Observe end results

➢ Enhancements

➢ Bug fixing

➢ Code maintenance

➢ Critical Analysis

➢ Etc . .

Core Network Development

➢ Do all necessary theory before hitting the keyboard

➢ Do all assignment religiously

➢ Use github (mandatory , do some 30 min basic tutorial – that suffice)

➢ Use tools for troubleshoot – gdb, valgrind, traces, printfs etc …

➢ Ask in Udemy QnA Or join telegram grp : telecsepracticals

➢ Test thoroughly before proceeding to next

Adjacency Mgmt

Building Link state

Database

Running SPF

Algorithm

L3 Route Calculations

➢ First Module (12 hr+) , Total HRs – 30+hrs

➢ Setup the development environment

➢ know the libraries to be used

➢ Know where to find which information

➢ Cheat sheet, Code browse etc ..

➢ Instructor shall be writing all codes from scratch

➢ As we progress, students will tend to take driving seat

➢ Implementing logic on their own

➢ Implementing new sub-features features

Get Familiar with TCP/IP Stack Library → Download Src Code

➢ TCP/IP Stack Library User Guide

https://drive.google.com/open?id=1KfSlLIeS9WSqkcJRhJyFUp9owX4MRNEp

➢ TCP/IP Stack library will allow us to build the Topology of L3 routers and L2 switches quickly

➢ Library provides the software simulation of Devices and topology, tested on linux (ubuntu 20.04)

➢ Download project Code :

➢ Using git (Recommended)

➢ Repo : https://github.com/sachinites/tcpip_stack

➢ Fork my Repository into your git account and git clone your version of repository

➢ git clone https://github.com/<your user name>/tcpip_stack

➢ git checkout proto-dev

➢ Report any bugs to :

➢ Open a case on git https://github.com/sachinites/tcpip_stack

➢ Send email to Udemy QnA or email me sachinites@gmail.com

https://drive.google.com/open?id=1KfSlLIeS9WSqkcJRhJyFUp9owX4MRNEp
https://github.com/sachinites/tcpip_stack
https://github.com/sachinites/tcpip_stack
https://github.com/%3cyour
https://github.com/sachinites/tcpip_stack
mailto:sachinites@gmail.com

Setup Code Navigation Tool

Code Navigation Tool : Source Insight (Link in Resource section)

> v 3.5 with key (v 4.0 and above is paid and key is not available)

> Windows only

> Mac Users (Try something else … cscope … etc)

Get 30 days free Access to all our Courses :

https://csepracticals.teachable.com/p/trial-goldmine

Get Familiar with TCP/IP Stack Library → Launching a Pre-built Topology

➢ All topologies present in tcpip_stack/topologies.c

➢ main() is in testapp.c , check which topology is currently running there

➢ Get familiar with CLI interface

➢ show topology

➢ ping

➢ show route and ARP tables

➢ show interface stats

➢ packet capture and logging

➢ packet gen executable

➢ For this Course, don’t run topology with VLANs (Limitation)

 Refer to DEBUGGING section

In cheat sheet

Get Familiar with TCP/IP Stack Library → Setting Up Development Environment → IDE & SSH

➢ Well , every person has his own taste for setting up his own favorite set of tools for development work

➢ Let me share my development environment, and probably I am very satisfied with it now

➢ My development environment is for those who are using windows OS/MAC as host machine, and linux machine as Guest

VM Using Virtual Machine Software such as Virtual Box, VMWare etc

➢ Set up SSH login from windows to ubuntu (Google or goto youtube)

➢ Use Visual Studio code on Windows/MAC and connect VS code to guest machine and access the code dir

(goto Youtube or Google for howto steps)

➢ We shall be writing and modifying all codes on windows VSCode editor , but compiling, building and running

it on guest OS

Windows/MAC

Virtual Machine

ubuntu

ssh

Get Familiar with TCP/IP Stack Library → Brief history

➢ This TCP/IP Stack library is the output of my two existing udemy courses

➢ In this Course, we would treat this library as black box

➢ No need-to-know internal implementation details

➢ Use its publicly exposed APIs for protocol dev

➢ Those who are coming after finishing existing udemy courses, need to make a decision -

➢ Do you want to use your implementation of tcpip_stack lib rather than using mine ?

➢ Is it completely bug free ?

➢ Have you added all the features and functionalities ?

➢ Thoroughly tested ?

➢ Stable ?

➢ I have resolved several bugs from library and bring it to the point through several cycles of enhancements that it is now

suitable for protocol development while viewing tcpip_stack library as black box

➢ I recommend you – only if you could answer the above Questions in YES , then only use your library for this course

➢ I understand, people have the strong urge to use something which they have built with their own hands ! ☺

Part A Part B

tcpip_stack

Lib

(Raw)

tcpip_stack

Lib

For Proto

Dev

Misc Enhancements

Get Familiar with TCP/IP Stack Library → Library internal design and Arch

➢ The library implements minimal TCP/IP stack – specifically :

➢ Layer 1

➢ Send and Recv packets on interfaces

➢ Layer 2 :

➢ Mac Learning

➢ ARP resolution

➢ VLAN based routing (no STP)

➢ Layer 3 :

➢ L3 routing

➢ Layer 5 :

➢ Application Layer (this Course)

➢ In Application Layer, We can implement as many Applications as we want – no limit. Applications can harness the facilities

Provided by lower layers

➢ Application can program tcp/ip stack to express interest in pkts it want to receive. Conversely Application can also push the pkt

down to the tcp/ip stack

➢ No Socket Programming

➢ There is no socket programming involved directly while developing Network Protocols

➢ Industry usually hide socket interface/APIs behind simple high APIs to be invoked by applications

Physical Layer

Data Link Layer

Network Layer

Application Layer

Routing

Protocols

Security

Protocols

etc

Application Code

TCP/IP Stack Core Code

Get Familiar with TCP/IP Stack Library → Library internal design and Arch → Interface Events

Physical Layer

Data Link Layer

Network Layer

Application Layer

Interface Events :

• IP Address change

• shut / not-shut

• vlan config change

• Cost change

➢ Applications may be interested in being notified

of admin config change on an interface

➢ Such config change notification is sent to applications

so that appln can process and react to it

➢ For Example, is user changes IP Address from X to Y

on interface eth1, then IGP would have to change

its hello pkts to advertise IP Y instead of X

➢ Exactly similar mechanism on real device

➢ Application has to register for interface events during

initialization phase

➢ Event is notified to all registered applications

eth1

eth2

eth3
eth4

Get Familiar with TCP/IP Stack Library → Library internal design and Arch → CLI

Physical Layer

Data Link Layer

Network Layer

Application Layer

CLIs

• Config/un-config

• Show / clear

• Debugging

➢ User interacts with each node of the topology using CLI interface

➢ LIBCLI library parse the CLI tokens, validate CLI format and invoke

the appropriate backend handler for processing in backend code

➢ The backend handler could be fn in L2 Or L3 or L5 or anywhere ..

➢ Throughout the course, we would be going to develop bunch of custom

CLIs to control and config our baby – our protocol

➢ We shall go through brief training in which we will learn how to develop

and add custom CLIs

➢ This is not a Quick do and Move on to next Course ! Take your time ..

➢ Along the journey, We shall be using various libraries :

➢ Linked-list

➢ Trees

➢ Timers

➢ CLIs

➢ Scheduler

➢ TLV encoders

➢ BIT manipulation macros

eth1

eth2

eth3
eth4

LIBCLI

Library

<Some Command> . . .

This is what you are

supposed to do

This is the skill you need

to develop

 Only interface change,

fundamentals do not

Getting Started with the Routing Protocol Development → Complete Theory

➢ We will be going to implement a working prototype of the IGP – ISIS

➢ ISIS and OSPF are two popular IGP protocols being used in industry for decades

➢ OSPF has been more popular until recently, when ISIS is being shown more interest and preferred

over ospf more by Network Admins

➢ First, we need to get familiar how IGP protocols work – at high level. It works in 4 phases :

1. Adjacency Management (Each device know its neighbours)

• Sending and Receiving hello packets periodically

• Update neighborship state machine

2. Building Link State Database (Each device internally creates a view of

topology - Graph)

• Building Link State packets

• Flooding link state packets

• Build a Graph – a view of network topology

3. Running SPF algorithm (Dijkstra) on LSDB

• Process the LSDB through the algorithm

• Compute Results and store

• Algorithmically challenging

4. L3 Route Calculations

• Use Results of 3 to compute final L3 routes and update Routing

Table

• Algorithmically challenging

 Videos following this lecture Videos

Covers all required theory to get to

know how IGP works

 Once we complete this section, we

would have fair idea how IGP (ISIS)

works end to end

 Pls spend ~60 minutes to learn the theory

Getting Started with the Routing Protocol Development → Complete Theory

➢ So far, we have completed the theory regarding protocol internal functioning

➢ Now , we shall work towards seeing this theory in action

➢ Let’s begin protocol development starting from :

➢ Integrating the protocol as an application with TCP/IP Stack library ecosystem

➢ Implement Protocol phase wise

Getting Started with the Routing Protocol Development → Protocol Implementation

➢ So let us bring our protocol to life first

➢ Let’s do some preliminary steps to develop minimal barely breathing ISIS as a new application

running in appln layer of TCP/IP stack library

➢ I would help you to achieve this, we need to follow some fixed steps. Once you are familiar with the steps,

then this process become quite mundane

 In production also, we need to follow some definite steps to setup new application. You just don’t go and write
xyz_main.c in whatever way you want !! Production environment have their own infrastructure/ecosystem of
Whole code base and application needs to be written in harmony with ecosystem

➢ Protocol application Setup Steps :

➢ Register with TCP/IP stack for interested ISIS pkts

➢ Develop first appln CLI

➢ Some more steps – later . . .

Congratulations for Finishing the College
Professional

Getting Started with the Routing Protocol Development → Ecosystem for Protocol Dev

➢ One just cannot start writing protocol from int main () straightaway, an ecosystem is required to

facilitate network protocol development

Physical Layer

Data Link Layer (ARP, …)

Network Layer
(IP, Ipv6)

Application Layer
(OSPF, BGP, ISIS, MPLS, etc …)

Data Structures:

LinkedList,

Trees etc

UI : CLIs, GUI,

Rest APIs etc ..

System Supportive

Libraries :

Schedulers, Memory

Mgrs, Timers,

Locking etc ..

System Calls –

fork(), malloc,

IPC, Sockets

etc ..

Underlying

TCP/IP Stack

layer support

NIC Drivers

for pkt Tx/Rx

Other supportive

base application –

Interface

Managers, Build

System etc

Our TCP/IP Stack library exactly tend to provide (Partially) Simulated ecosystem to facilitate

pseudo protocol development from scratch

This Ecosystem is also called as Technology stack

Testing&

Automation

Infrastructure

• Quality of the end product largely

depends on quality of technology stack

• Companies have teams managing

different components of ecosystem (

Infrastructure teams)

• In this Course, we would need to

harness the ecosystem to build our

protocol

• Project will rehearse you how to pick up

reusable software packages and

use

them for software dev

• We shall be incrementally integrating

our protocol (appn) one by one with each

of the supplementary component/library

Getting Started with the Routing Protocol Development → Develop Ist CLI

➢ Network Equipment generally do not have GUI, and we operate them using CLIs only

➢ FAST

➢ Automatable

➢ Don’t need heavy resources

➢ Runnable on system with no GUI (embedded)

➢ TCP/IP Stack library comes with pre-integrated CLI library

➢ How to use Quick Tutorial : Appendix A (Part 1 and Par 2) Sections

➢ Recommended to go through Section Appendix A

➢ How to use the CLI library

➢ Developing some custom example command

➢ Move to next lecture Video after finishing this tutorial

➢ Finish tutorial fast, do not bang head

➢ In the next lecture video, we will develop our first CLI

Getting Started with the Routing Protocol Development → Develop Ist CLI

➢ Create a new files : isis_cli.c & isis_cmdcodes.h

➢ Whenever create new .c file, always update tcpip_stack/Makefile

➢ Let us add CLI to enable/disable protocol on a particular device

➢ Adding a CLI

➢ Code the backend handler

config node <node-name> [no] protocol isis

 Every company provide their own infrastructure to build/add new CLIs, There is no standard way of doing this.
 Learn and Unlearn

int

isis_config_cli_tree(param_t *param) {

{

// write protocol CLI hiérarchie here

static param_t isis_proto;

init_param(&isis_proto, CMD, "isis", isis_config_handler, 0, INVALID, 0, "isis protocol");

libcli_register_param(param, &isis_proto);

set_param_cmd_code(&isis_proto, ISIS_CONFIG_NODE_ENABLE);

}

return 0;

}

static int

isis_config_handler(param_t *param,

ser_buff_t *tlv_buf,

op_mode enable_or_disable){

printf(« blah blah … »)

return 0;

}Prototype in tcpip_stack/Layer5/app_handlers.h

Register isis_config_cli_tree()in

tcpip_stack/nwcli.c

1

2

3

4

6 Rebuild project, run and press . (dot)

See your new CLIs must appear5
define in isis_cmdcodes.h

Getting Started with the Routing Protocol Development → Parsing CLI

static int

isis_config_handler(param_t *param,

ser_buff_t *tlv_buf,

op_mode enable_or_disable){

int cmdcode = -1;

char *node_name = NULL;

node_t *node = NULL;

tlv_struct_t *tlv = NULL;

cmdcode = EXTRACT_CMD_CODE(tlv_buf);

TLV_LOOP_BEGIN(tlv_buf, tlv){

if (strncmp(tlv->leaf_id, "node-name", strlen("node-name")) ==0)

node_name = tlv->value;

else

assert(0);

} TLV_LOOP_END;

node = node_get_node_by_name(topo, node_name);

switch(cmdcode) {

// . . .

}

return 0;

}

switch(cmdcode) {

case ISIS_CONFIG_NODE_ENABLE:

switch(enable_or_disable) {

case CONFIG_ENABLE:

isis_init(node);

break;

case CONFIG_DISABLE:

isis_de_init(node);

break;

default: ;

}

break;

default: ;

}

Getting Started with the Routing Protocol Development → Protocol Configuration Holders

Network Protocol

Configs

Device Level Configs

Per interface level

Configs

• Impact protocol behavior on a device

• For ex :

• Stop generating LSP packets

• Advertise information X in LSP pkts

• If protocol is disabled at device level, protocol

is automatically disabled on all interfaces

• Impact protocol behavior per interface

• For ex :

• Stop sending LSP pkts out of eth0

• Start sending hellos out of eth1 at 5 sec/hello pkt

• Enable/disable protocol on eth4

➢ We need Data structures which can hold proto configs :

➢ At device level (one instance is required)

➢ Per interface level (one instance per interface)

➢ Next : Steps to add protocol specific node and per-interface level data

configuration holders (data objects)

Getting Started with the Routing Protocol Development → Protocol Configuration Holders

Network Protocol

Configs

Device Level Configs
Per interface level

Configs

typedef struct isis_node_info_ {

. . .

} isis_node_info_t;

node_t-> node_nw_prop->isis_node_info; // type void *

typedef struct isis_intf_info_ {

. . .

} isis_intf_info_t;

interface_t->intf_nw_props->isis_intf_info; // type void *

isis_rtr.h isis_intf.h

Getting Started with the Routing Protocol Development → Develop show CLI

➢ Use existing files : isis_cli.c & isis_cmdcodes.h

➢ Let us add CLI to see protocol status on a particular device

➢ Adding a CLI

➢ Code the backend handler

show node <node-name> protocol isis

int

isis_show_cli_tree(param_t *param) {

{

// write protocol CLI hiérarchie here

static param_t isis_proto;

init_param(&isis_proto, CMD, "isis", isis_show_handler, 0, INVALID, 0, "isis protocol");

libcli_register_param(param, &isis_proto);

set_param_cmd_code(&isis_proto, CMDCODE_SHOW_NODE_ISIS_PROTOCOL);

}

return 0;

}

static int

isis_show_handler(param_t *param,

ser_buff_t *tlv_buf,

op_mode enable_or_disable){

printf(« blah blah … »)

return 0;

}Prototype in tcpip_stack/Layer5/app_handlers.h

Register isis_config_cli_tree()in

tcpip_stack/nwcli.c

1

2

3

4

6 Rebuild project, run and press . (dot)

See your new CLIs must appear5 # define in isis_cmdcodes.h

tcp-ip-stack> $ show node R0 pro isis

Parse Success.

ISIS Protocol : Disabled

CLI returned

Network Protocol Development → Do not use Printf for show command output

Network Protocol Development → Configuring Interfaces

➢ Until now we have learnt how to configure and unconfigure the protocol which is a device level

configuration

➢ Let’s us implement a similar config CLI to enable disable protocol on an interface of a device i.e

Example of interface level configuration

config node <node-name> [no] protocol isis interface all

• Must enable/disable protocol (alloc/free isis_intf_info) on all interfaces of a device

config node <node-name> [no] protocol isis interface <if-name>

• Must enable/disable protocol (alloc/free isis_intf_info) on a specified interface only

Note : Disabling the protocol on a device must disable protocol on all interfaces also

Enabling the protocol on a device must not enable protocol at interface level, user should

do it manually through above new CLIs

Network Protocol Development → Packet types

➢ Let’s design our own packet formats for the sake of keeping protocol implementation not go over

complicated and not invest time in things not worth enough

ISIS Pkt Types

ISIS Hello Pkts ISIS LSP Pkts

Dst Mac Info [46 - 1500] FCS (4)ethernet_hdr_t -> Src Mac Pkt type

6B 6B 2B 46-1500B 4B

ff:ff:ff:ff:ff:ff FCS (4)ethernet_hdr_t -> 0:0:0:0:0:0 131 x Pkt data

#define ISIS_ETH_PKT_TYPE 131 // (Randomly chosen, no logic)
X values :
#define ISIS_PTP_HELLO_PKT_TYPE 17 // as per standard
#define ISIS_LSP_PKT_TYPE 18 // as per standard

New File : tcpip_stack/Layer5/isis/isis_const.h

6B 6B 2B 46-1498B 4B2B

Protocol Development →Working with Ethernet Header

➢ Now that we know that ISIS both pkt types are ethernet pkts, we need to learn to work with APIs

Provided by TCP/IP stack library to work with ethernet pkts

> Malloc a new pkt memory space

> updating MAC addresses

> Getting payload pointer

> Updating FCS (= 0)

> Freeing the pkt memory

Getting Started with the Routing Protocol Development → Pkt Registration

➢ ISIS protocol runs as application process in application layer, so it has to tell Data link layer that –

“Hey, if you ever recv ISIS Hello or LSP pkt, handover it to me, they are mine, it is only me who
Understand them” .

This is called protocol registration for control packets. We usually use sockets to achieve this. In production, an API is provided

which wrap all socket complexities and all appln need to do is to invoke the API to express interest in specific packet types.

➢ The TCP/IP Stack whenever recvs some packets, it checks if there is any application interested in processing these packets

Physical Layer

Data Link Layer

Network Layer

A1 A2 …

eth1

eth2

eth3
eth4

Two Step Process :

1. Pkt classification rule

2. Install the rule in L2 Or L3

➢ ISIS protocol runs as application in application layer, so it has to tell Data link layer that –

“Hey, if you ever recv ISIS Hello or LSP pkt, handover it to me, they are mine, it is only me who
Understand them” .

This is called protocol registration for control packets. We usually use sockets to achieve this. In production, an API is provided

which wrap all socket complexities and all appln need to do is to invoke the API to express interest in specific packet types.

➢ The TCP/IP Stack whenever recvs some packets, it checks if there is any application interested in processing these packets

New File : tcpip_stack/Layer5/isis/isis_pkt.h|.c

Write an API in isis_pkt.c :

bool

isis_pkt_trap_rule (char *pkt, size_t pkt_size) ;

Where : pkt - pointer to start of ethernet hdr

pkt_size – size of pkt (ethernet hdr + ethernet payload + FCS)

The fn returns true if this is ISIS pkt else false.

Update Makefile and compile the project

Physical Layer

Data Link Layer

Network Layer

A1 A2 …

eth1

eth2

eth3
eth4

Getting Started with the Routing Protocol Development → Pkt Registration

Getting Started with the Routing Protocol Development → ISIS Pkt Registration

isis_pkt.c / isis_pkt.h

void

isis_pkt_recieve(void *arg, size_t arg_size) {

}

/* Register for interested pkts */

tcp_stack_register_l2_pkt_trap_rule(

node, isis_pkt_trap_rule, isis_pkt_recieve);

/* De-Register for interested pkts */

tcp_stack_de_register_l2_pkt_trap_rule(

node, isis_pkt_trap_rule, isis_pkt_recieve);

 Call when protocol is enabled on device

 Call when protocol is disabled on device

Step
2

Install the Rule in underlying TCP/IP Stack Subsystem

Getting Started with the Routing Protocol Development → logging

Logging Internal Traces

➢ Inserting printfs are fundamental to debugging, replacement still not found !

➢ TCP/IP Stack library provides facility to insert traces in the code to ease debugging

➢ During development, you are encouraged to insert as many traces as you feel necessary

➢ Traces will be your best friend to help troubleshoot the issues !!

➢ Generally - Do not insert traces in the packet recv or sent path, if you do then enable/disable them using CLI

➢ For Error Msg, you can directly write to console using printf, no need to trace error msgs

Getting Started with the Routing Protocol Development → Conclusion

➢ So far, we have accomplished :

➢ How to configure the protocol using config CLI

➢ How to display protocol state using show CLI

➢ How a protocol can do pkt (un)registration

➢ Until now we were trying to setup the protocol as

per the TCP/IP stack library ecosystem

➢ Now , we are in a position that we can start the core

development of core protocol internal logic

➢ Notification for Interface events is still pending which

we shall pick up in the midst of protocol development

along the way ..

➢ From Next section, let start the development of Ist phase of the

protocol – Adjacency Management

1. Adjacency Management (Each device know its neighbours)

• Sending and Receiving hello packets periodically

• Update neighborship state machine

2. Building Link State Database (Each device internally creates a view of

topology - Graph)

• Building Link State packets

• Flooding link state packets

• Build a Graph – a view of network topology

3. Running SPF algorithm (Dijkstra) on LSDB

• Process the LSDB through the algorithm

• Compute Results and store

• Algorithmically challenging

4. L3 Route Calculations

• Use Results of 3 to compute final L3 routes and update Routing

Table

• Algorithmically challenging

Network Protocol Development → Phase 1 : Adjacency Mgmt

➢ Let’s start with the implementation of phase 1 of the protocol – Adjacency Mgmt

➢ Adjacency Means Neighborship

➢ You know your neighbors only when you start exchanging some greeting words with them, talk to them

➢ ISIS protocol need to send periodic hellos packets to its nbr device

(Many Network protocols does this – OSPF, BGP, PIM etc)

➢ ISIS Hello packets contain information about the self-device and interface out of which the pkt is egressing

➢ Adjacency Mgmt works is a three-step process :

➢ Send out Hello packet

➢ Process Hello Packet

➢ Extract information from Hello packet and store/update nbrs information

Hello Packet Content

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1 R2

R1-eth0 Hello

R2-eth1 Hello

Content of R1-eth0 Hello pkt :

1. Rtr ID

2. Hostname

3. IP Address

4. Ifindex

5. Hold-time

6. Metric Value

11.1.1.2/24

eth2

11.1.1.1/24

eth1

R3

Lo : 122.1.1.3/32

R
2
-e

th
2
 H

e
llo

R
3
-e

th
1

H
e
llo

Network Protocol Development → Phase 1 : Adjacency Mgmt

Content of

R2-eth1 Hello pkt :

1. 122.1.1.2

2. R2

3. 10.1.1.2

4. 60 (ifindex)

5. 5 (hold time)

6. 10 (cost)

Content of

R1-eth0 Hello pkt :

1. 122.1.1.1

2. R1

3. 10.1.1.1

4. 50 (ifindex)

5. 5 (hold time)

6. 10 (cost)

Adjacency Formation

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1 R2

R1-eth0 Hello

R2-eth1 Hello

Content of R1-eth0 Hello pkt :

1. Rtr ID

2. Hostname

3. IP Address

4. Ifindex

5. Hold-time

6. Metric Value

11.1.1.2/24

eth2

11.1.1.1/24

eth1

R3

Lo : 122.1.1.3/32

R
2
-e

th
2
 H

e
llo

R
3
-e

th
1

H
e
llo

Network Protocol Development → Phase 1 : Adjacency Mgmt

Content of

isis_adjacency_t:

1. 122.1.1.2

2. R2

3. 10.1.1.2

4. 60 (ifindex)

5. 5 (hold time)

6. 10 (cost)

7. uptime

8. state

Content of

isis_adjacency_t :

1. 122.1.1.1

2. R1

3. 10.1.1.1

4. 50 (ifindex)

5. 5 (hold time)

6. 10 (cost)

7. uptime

8. state

Adjacency is a data structure maintained per interface which stores nbrs

Information reachable through that interface

Adjacency State

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt

Content of

isis_adjacency_t:

1. 122.1.1.2

2. R2

3. 10.1.1.2

4. 60 (ifindex)

5. 5 (hold time)

6. 10 (cost)

7. uptime

8. state

 State of Adjacency is either : DOWN, INIT or UP

 When Ist Hello pkt is recvd on an interface :

 Create an adjacency on intf in down state

 When IInd Hello pkt is recvd on an interface :

 If Adj is in down state, move it to INIT state

 When IIIrd Hello pkt is recvd on an interface :

 If Adj is in INIT state, move it to UP state

 When no hello pkt is recvd for hold_time sec on intf

 If Adj is in UP state, move it to down state and delete

it after some time if hellos still do not come

 If Adj is in down state already, delete it

 In order to implement Adjacency mgmt Logic,

we need to first design the Adjacency State Machine

Timers In General

Network Protocol Development → Phase 1 : Adjacency Mgmt

 Timers, help in scheduling the events to be performed in future after some definite period of time

 Timers are used extensively in Networking Development

 Protocol uses Timers for various purposes :

 Deleting Stale Data structures

 Fire Algorithm/Computation

 Send packets periodically

 TCP/IP Stack library provides us TIMER sub library to be used for our development

 Using Timers is somewhat a standard procedure, API signatures differs from company to company but underlying

concept/requirement is same

 We shall discuss Timer APIs when we shall be using Timers in our code

Adjacency Timers

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt

Content of

isis_adjacency_t:

1. 122.1.1.2

2. R2

3. 10.1.1.2

4. 60 (ifindex)

5. 5 (hold time)

6. 10 (cost)

7. uptime

8. state

9. timer_event_handle *delete_timer;

10. timer_event_handle *expiry_timer;

 Adjacency object is managed by Two timers :

 Delete timer

 = 5 sec

 Delete the Adjacency permanently

 Expiry timer

 = hold time

 Change the Adj state from UP/INIT to DOWN state

 Start the delete timer

Uptime : time elapsed since

Adjacency moved from init

To UP State

In other words, it is a time since

Adjacency has been in UP state

You don’t have to run any timer

for this :

1. Store the time stamp when adj move to UP state

2. Subtract current system time with stored time stamp

Implementation Steps in this section

Network Protocol Development → Phase 1 : Adjacency Mgmt

1. Hello packet format

2. Cook up hello packets from Node & Interface data

3. Send out hello packets periodically out of protocol enabled interfaces

4. Stop hello packets when protocol is disabled on interface

5. Receiving Hello packets by recipient node

6. Processing Hello packets

7. Creating Adjacency Objects from Hello pkt processing

8. Enhancing show command to display Adjacency

9. Timer managing the Adjacency Object

10. Updating Hellos as a result of generic intf config change by admin

11. Adjacency State Machine (Separate Section After above)

Hello Pkt format

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1 R2

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt→ Hello Packet Format

ISIS Protocol packets are

formatted as TLVs (Type Length Value)

Refer to Appendix D to learn about TLV

• What is TLV ?

• What are benefits

• APIs to work with TLVs

• Interview Ques

• Cheat Sheet . . .

TYPE = 1

LENGTH = 32

“Abhishek Sagar”

TYPE = 2

LENGTH = 64

www.csepracticals.com

TYPE = 3

LENGTH = 8

52437

T

L

V

1B

1B

32B (Variable..)

byte *temp = tlv_buffer_insert_tlv(

byte *buff,

uint8_t tlv_no,

uint8_t data_len,

byte *data);

byte *temp = tlv_buffer_insert_tlv(

buff,

4,

16,

01010101010….);
buff

TYPE = 4

LENGTH = 16

01010101010….

TLV APIs – Inserting a new TLV

1B

1B

16B
temp

byte *

tlv_buffer_insert_tlv(byte *buff, uint8_t tlv_no,

uint8_t data_len, byte *data){

*buff = tlv_no;

*(buff+1) = data_len;

memcpy(buff + TLV_OVERHEAD_SIZE, data, data_len);

return buff + TLV_OVERHEAD_SIZE + data_len;

}

#define TLV_OVERHEAD_SIZE 2

TYPE = 1

LENGTH = 32

“Abhishek Sagar”

TYPE = 2

LENGTH = 64

www.csepracticals.com

TYPE = 3

LENGTH = 8

52437

T

L

V

1B

1B

Variable..

tlv_buff

TYPE = 4

LENGTH = 16

01010101010….

TLV APIs – Searching a TLV & Iterating TLV Buffer

1B

1B

16B

• We may need to search a particular TLV in

a TLV buffer

byte*

tlv_buffer_get_particular_tlv(

byte*tlv_buff, /*Input TLV Buffer*/

uint32_t tlv_buff_size, /*Input TLV Buffer Total Size*/

uint8_t tlv_no, /*Input TLV Number*/

uint8_t *tlv_data_len) { /*Output TLV Data len*/

byte tlv_type, tlv_len, *tlv_value = NULL;

ITERATE_TLV_BEGIN(tlv_buff, tlv_type,

tlv_len, tlv_value, tlv_buff_size){

if(tlv_type != tlv_no) continue;

*tlv_data_len = tlv_len;

return tlv_value;

} ITERATE_TLV_END(tlv_buff, tlv_type,

tlv_len, tlv_value, tlv_buff_size);

*tlv_data_len = 0;

return NULL;

}

tlv_
b

u
ff_

size

ISIS Pkt Hdr Format

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1 R2

R1-eth0 Hello

R2-eth1 Hello

Eth hdr ISIS PKT Hdr ISIS TLV Section FCS

Ethernet payload

Hello Pkt Fmt :

Network Protocol Development → Phase 1 : Adjacency Mgmt→ ISIS Pkt Hdr Format

#pragma pack (push,1)

typedef struct isis_pkt_hdr_{

isis_pkt_type_t isis_pkt_type;

uint32_t seq_no;

uint32_t rtr_id;

isis_pkt_hdr_flags_t flags;

} isis_pkt_hdr_t;

#pragma pack(pop)

isis_pkt.h

Hello Pkt Preparation

Network Protocol Development → Phase 1 : Adjacency Mgmt→ Hello Packet Format

byte *

isis_prepare_hello_pkt (interface_t *intf, size_t *hello_pkt_size);

Supporting APIs :

1. TLV_OVERHEAD_SIZE – TLV Overhead

2. NODE_NAME_SIZE – Max name length of node name

3. ETH_HDR_SIZE_EXCL_PAYLOAD – Sum of length of all fields of Eth hdr except payload (= 18 B)

4. tcp_ip_get_new_pkt_buffer () – malloc a new pkt buffer

5. tcp_ip_free_pkt_buffer() – free a pkt buffer

6. layer2_fill_with_broadcast_mac() – Fill mac address array with ff:ff:ff:ff:ff:ff

7. GET_ETHERNET_HDR_PAYLOAD – get ptr to start of ethernet payload from ethernet hdr ptr

8. NODE_LO_ADDR(node_ptr) – Get Node’s Loopback address/Rtr ID

9. tcp_ip_covert_ip_p_to_n() – Convert IP Address from A.B.C.D to integer

10. tcp_ip_covert_ip_n_to_p() – Convert IP Address from Integer to A.B.C.D format

11. tlv_buffer_insert_tlv() – Insert a new TLV into TLV buffer

12. SET_COMMON_ETH_FCS() – Update FCS value in FCS field of eth hdr

 By the end of Phase 1, we Would be knowing all type of APIs the library provides us to work with

 In development env, it takes several months to get familiar with all libraries, infrastructures, tools etc for an engineer

 You change a job and you need to redo it all again. But as you grow experienced, you get quicker to adjust to new

environment

isis_pkt.h/.c

Implementation Steps in this section

Network Protocol Development → Phase 1 : Adjacency Mgmt

1. Hello packet format

2. Cook up hello packets from Node & Interface data

3. Send out hello packets periodically out of protocol enabled interfaces

4. Stop hello packets when protocol is disabled on interface

5. Receiving Hello packets by recipient node

6. Processing Hello packets

7. Creating Adjacency Objects from Hello pkt processing

8. Enhancing show command to display Adjacency

9. Timer managing the Adjacency Object

10. Updating Hellos as a result of generic intf config change by admin

11. Adjacency State Machine (Separate Section After above)

 Appendix E

 Timers allow us to Fire events (computation) in future after some definite period of time

 Repeated or Just once

 Timers runs as separate threads

 When Timer Expires, Events is fired (Computation is triggered)

 Example :

 Sending out periodic packets

 Delete Stale Data structures

 Perform computation after scheduled time

 How Timer Works ?

Appln

wheel_timer_t *wt =

init_wheel_timer(60, 1, TIMER_SECONDS);

start_wheel_timer(wt);

Starting a Timer Clock (separate thread)

Start

ticking

wt

 How Timer Works ?

Appln

wheel_timer_elem_t *wt_elem=

timer_register_app_event (

wt,

foo,

(void *)mem,

mem_size,

n * 1000, // in millisec, multiple of 1000

0); // 1 for repeat

Event Registration

ticking

Suppose the appln wants to trigger fn foo() with

arg mem whose size is mem_size after n seconds from now

foo()

mem

mem_size

When clock hits the slot,

foo(mem) is invoked by timer

Common Error : Appln must not free mem while the event is scheduled with timer On mem

(Memory Corruption)

foo() must be of prototype

typedef void (*app_call_back)(void *arg, uint32_t sizeof_arg);

wt

wt_elem

 How Timer Works ?

Appln

void *mem =

wt_elem_get_and_set_app_data(wt_elem, 0);

timer_de_register_app_event(wt_elem);

free(mem); // if appln wishes to

Event De-Registration

ticking

Suppose the appln wants to cancel the already scheduled event with timer

foo()

mem

mem_size

When clock hits the slot,

foo(mem) is invoked by timer

wt

wt_elem

 How Timer Works ?

 Other Helpful Timer APIs

void

timer_reschedule(wheel_timer_elem_t *wt_elem,

int new_time_interval);

ticking

foo()

mem

mem_size
int

wt_get_remaining_time(wheel_timer_elem_t *wt_elem);

char*

hrs_min_sec_format(unsigned int seconds);

Network Protocol Development → Phase 1 : Adjacency Mgmt→ Hello Pkt Transmission Timer

void

isis_start_sending_hellos(interface_t *intf);

void

isis_stop_sending_hellos(interface_t *intf);

 Setup a timer to send Hello packets out of the

Interface periodically (hello_interval)

 wheel_timer_t *wt =

node_get_timer_instance(node);

 byte *hello_pkt = isis_prepare_hello_pkt(intf,

&hello_pkt_size);

 Use timer_register_app_event() to schedule

periodic hellos

 Do opposite !

 Let’s code straightaway !

To Send out the pkt out of interface :

int

send_pkt_out (char *pkt, uint32_t pkt_size,

interface_t *intf);

return -1 if unsuccessful

return pkt_size if success

Network Protocol Development → Phase 1 : Adjacency Mgmt→ Hello Pkt Debugging

➢ TCP/IP Stack library has a tcpdump equivalent utility which can print the pkts ingressing/egressing on an interface of a device

➢ Let’s call this utility as packet capture utility (pcap)

➢ This pcap utility works at just above physical layer of tcp/ip stack implementation

➢ We demonstrated this utility in Packet Capture and Debugging Lecture under section Schooling – Get familiar with TCP/IP Stack library.

➢ Pls recap if required

➢ Currently, pcap utility do not know how to read and print ISIS Hello packets.

➢ Application (isis protocol) has to convey the debugging infra of tcpip/stack library how to read and print ISIS protocol packets

➢ Steps involved :

TCP/IP Stack Library debugging infra will use isis_print_hello_pkt() fn to log the packets in log files.

I hope you completed the assignment !

API to use :

nfc_register_for_pkt_tracing (ISIS_ETH_PKT_TYPE, isis_print_pkt);

where isis_print_pkt () is of type : typedef void (*nfc_app_cb)(void *, size_t);

ff:ff:ff:ff:ff:ff FCS (4)ethernet_hdr_t -> 131 ISIS PKT

6B 6B 2B 46-1500B 4B
0:0:0:0:0:0

type

Implementation Steps in this section

Network Protocol Development → Phase 1 : Adjacency Mgmt

1. Hello packet format

2. Cook up hello packets from Node & Interface data

3. Send out hello packets periodically out of protocol enabled interfaces

4. Stop hello packets when protocol is disabled on interface

5. Receiving Hello packets by recipient node

6. Processing Hello packets

7. Creating Adjacency Objects from Hello pkt processing

8. Enhancing show command to display Adjacency

9. Timer managing the Adjacency Object

10. Updating Hellos as a result of generic intf config change by admin

11. Adjacency State Machine

Network Protocol Development → Phase 1 : Adjacency Mgmt→ Processing Hello Packets

➢ ISIS protocol has installed the trap rule with TCP/IP Stack library

➢ All packets in which ethernet frame encapsulates protocol 131 shall be trapped to ISIS appln

void

isis_pkt_recieve(void *arg, size_t arg_size) {

/* Receive Hello / LSP Packets */

}

➢ ISIS as an application has to process its control packets – LSPs or Hellos

isis_process_hello_pkt(node_t *node,

interface_t *iif,

ethernet_hdr_t *hello_eth_hdr,

size_t pkt_size);

isis_process_lsp_pkt(node_t *node,

interface_t *iif,

ethernet_hdr_t *lsp_eth_hdr,

size_t pkt_size);

Network Protocol Development → Phase 1 : Adjacency Mgmt→ Processing Hello Packets

static void

isis_process_hello_pkt(node_t *node,

interface_t *iif,

ethernet_hdr_t *hello_eth_hdr,

size_t pkt_size);

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)
Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

void

isis_update_interface_adjacency_from_hello(

interface_t *iif,

byte *hello_tlv_buffer,

size_t tlv_buff_size);

R2

Implementation Steps in this section

Network Protocol Development → Phase 1 : Adjacency Mgmt

1. Hello packet format

2. Cook up hello packets from Node & Interface data

3. Send out hello packets periodically out of protocol enabled interfaces

4. Stop hello packets when protocol is disabled on interface

5. Receiving Hello packets by recipient node

6. Processing Hello packets

7. Creating Adjacency Objects from Hello pkt processing

8. Enhancing show command to display Adjacency

9. Timer managing the Adjacency Object

10. Updating Hellos as a result of generic intf config change by admin

11. Adjacency State Machine

Implementation Steps in this section

Network Protocol Development → Phase 1 : Adjacency Mgmt

1. Hello packet format

2. Cook up hello packets from Node & Interface data

3. Send out hello packets periodically out of protocol enabled interfaces

4. Stop hello packets when protocol is disabled on interface

5. Receiving Hello packets by recipient node

6. Processing Hello packets

7. Creating Adjacency Objects from Hello pkt processing

8. Enhancing show command to display Adjacency

9. Timer managing the Adjacency Object

10. Updating Hellos as a result of generic intf config change by admin

11. Adjacency State Machine

Adjacency Timers

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt

Content of

isis_adjacency_t:

1. 122.1.1.2

2. R2

3. 10.1.1.2

4. 60 (ifindex)

5. 5 (hold time)

6. 10 (cost)

7. uptime

8. state

9. timer_event_handle *delete_timer;

10. timer_event_handle *expiry_timer;

 Adjacency object is managed by Two timers :

 Delete timer

 When Started : Started when Adj move to DOWN state

 Duration : = 5 sec

 Action : Delete the Adjacency permanently

 Cancelled : when Adj move out of DOWN state Or Deleted by

Admin Action (proto disabled on intf)

 Refreshed : Never

 Expiry timer

 When Started : When Adj move to INIT/UP state

 Duration : = hold time

 Action : Move the Adj to DOWN state and start delete timer

 Cancelled : When Adj is Deleted by Admin Action (proto

Disabled on intf)

 Refreshed : When “good” hello pkt arrives

Note : Expiry and Delete Timers are mutually exclusive, only one runs at any given point of time

R2

Adjacency Deletion

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt

Ques : Suppose Adjacency exist on interface eth0 of Device R1 in up state. Now, Suppose the

protocol running on device R2 crashed. How is the Adj on eth0 on Device R1 is deleted ?

Ans :

1. Adj R1-eth0 stays in UP state for hold-time sec.

2. Expiry timer of Adj fires when hold-time sec elapsed

3. Adj is moved to DOWN state, delete timer is triggered

4. After 5 sec, Delete timer fires and delete the Adj

R2

Adjacency Timers

Network Protocol Development → Phase 1 : Adjacency Mgmt

Note : Timers are mutually exclusive, only one runs at any given point of time

APIs :

static void

isis_adjacency_start_delete_timer(

isis_adjacency_t *adjacency);

static void

isis_adjacency_stop_delete_timer(

isis_adjacency_t *adjacency);

static void

isis_adjacency_start_expiry_timer(

isis_adjacency_t *adjacency)

static void

isis_adjacency_stop_expiry_timer(

isis_adjacency_t *adjacency);

static void

isis_adjacency_refresh_expiry_timer(

isis_adjacency_t *adjacency);

isis_adjacency.c

Once We implement these APIs , we shall be in position to start the

Implementation of adjacency state transition

 Adjacency object is managed by Two timers :

 Delete timer

 When Started : Started when Adj move to DOWN state

 Duration : = 5 sec

 Action : Delete the Adjacency permanently

 Cancelled : when Adj move out of DOWN state Or Deleted by

Admin Action (proto disabled on intf)

 Refreshed : Never

 Expiry timer

 When Started : When Adj move to INIT/UP state

 Duration : = hold time

 Action : Move the Adj to DOWN state and start delete timer

 Cancelled : When Adj is Deleted by Admin Action (proto

Disabled on intf)

 Refreshed : When “good” hello pkt arrives

Network Protocol Development → Phase 1 : Adjacency Mgmt

Show command Enhancement :

Enhance show node <node-name> protocol isis to display Adjacencies Expiry & Delete timers, along with Uptime in hrs:min:sec format

APIs to be used :

wt_get_remaining_time()

hrs_min_sec_format()

isis_show_adjacency() to be enhanced

Adjacency State Transition Diagram

Network Protocol Development → Phase 1 : Adjacency Mgmt

Down Init

When : good hello pkt recvd

Action :

update adj state

isis_adjacency_stop_delete_timer()

isis_adjacency_start_expiry_timer()

Up

When : good hello pkt recvd

Action :

update adj state

isis_adjacency_refresh_expiry_timer()

Update uptime

When : Expiry timer Fired

Action :

update adj state

isis_adjacency_start_delete_timer()

isis_adjacency_stop_expiry_timer()

When : good hello pkt recvd

Action :

isis_adjacency_refresh_expiry_timer()

When : Expiry timer Fired

Action :

update adj state

isis_adjacency_start_delete_timer()

isis_adjacency_stop_expiry_timer()

Delete

When : Proto Disabled on Intf

Or

Delete Timer Fires

Action :

isis_adjacency_stop_delete_timer()

Free Adj object

When : Proto Disabled on Intf

Action :

isis_adjacency_stop_expiry_timer()

Free Adj object

When : Proto Disabled on Intf

Action :

isis_adjacency_stop_expiry_timer()

Free Adj object

void

isis_change_adjacency_state(

isis_adjacency_t *adjacency,

isis_adj_state_t new_adj_state);

Not

Exist

When : good hello pkt recvd

Action :

isis_adjacency_start_delete_timer()

Implementation Steps in this section

Network Protocol Development → Phase 1 : Adjacency Mgmt

1. Hello packet format

2. Cook up hello packets from Node & Interface data

3. Send out hello packets periodically out of protocol enabled interfaces

4. Stop hello packets when protocol is disabled on interface

5. Receiving Hello packets by recipient node

6. Processing Hello packets

7. Creating Adjacency Objects from Hello pkt processing

8. Enhancing show command to display Adjacency

9. Timer managing the Adjacency Object

10. Adjacency State Machine

11. Updating Hellos as a result of generic intf config change by admin

Interface Config Processing

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt

➢ Let R1-th0 Hello packet contains a value of TLV ISIS_TLV_IF_IP as 10.1.1.1

➢ Now admin changes the config on the device R1 :

config node R1 interface eth0 ip-address 10.1.1.5 24

➢ Appln protocol (ISIS) must react to this config change and update hello packet content

➢ Soln : Protocols must listen to interface generic config change events from lower layers of TCP/IP stack

➢ Companies built a separate process which manages interface generic configurations. It could be user space appln or

Kernel module. Such a process pushes the config change to all user space applications when a config change event occurs

Interface Config Processing

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt

Physical Layer

Data Link Layer

Network Layer

Application Layer

eth1

eth2

eth3
eth4

LIBCLI

Library

Intf

Mgr

Module

☺

➢ Let us see how an appln protocol can register with TCP/IP stack library for interface events

➢ In production also, All applications need to do similar registration with Intf Mgr Module during initialization

20.1.1.1/24

eth2

20.1.1.2/24

eth3

Lo : 122.1.1.1/32

Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Network Protocol Development → Phase 1 : Adjacency Mgmt

➢ Complete Sequence of Events :

1. Adj is in UP state at both ends

2. User changes ip address on R1-eth2 to 20.1.1.5/24

3. R1 updates new IP Address in its Hello packet

4. R2 sees a hello pkt but with IP = 20.1.1.5 which is different from what it had in its adjacency

object (= 20.1.1.1) . This is IP-mismatch

5. On IP-mismatch R2 does the following :

5.1 update adjacency object with new IP 20.1.1.5

5.2 transition adj state from UP/INIT to DOWN Immediately

5.3 Rely on subsequent hello packets from R1 to recycle adjacency state back to INIT to UP

Interface Config Processing

R2

Network Protocol Development → Protocol Shutdown

config node <node-name> no protocol isis

• Must disable the protocol completely on a node

• All ISIS Data Structures must be freed

• Node level

• interface level

• Free Adjacency

• Free Periodic Hello Timer

• check_and_delete isis_intf_info

• check_and_delete isis_node_info

• Enhance isis_de_init(node_t *node) function

• Keep Revisiting isis_de_init API to shut-down ISIS features which we shall be implementing in future

• Guidelines for shutting down the protocol :

• Delete the child objects first

• Then delete the parent objects

• Free parent objects using check_delete() APIs

• Follow Bottom-Up approach for object deletion

F
re

e
 in

 B
o

tto
m

-u
p

 O
rd

e
r

Core Network Development – Phase 2

➢ We will be going to implement a simplified Routing Protocol in this course

➢ Routing protocol chosen – Interior gateway protocol (IGP , ex OSPF, ISIS)

➢ Don’t know about it – don’t worry, we shall cover theory first before any implementation

➢ A typical IGP (link state) protocol functionality is divided into 4 distinct parts :

1. Adjacency Management (Each device know its neighbours)

• Sending and Receiving hello packets periodically

• Update neighborship state machine

2. Building Link State Database (Each device internally creates a view of topology - Graph)

• Building Link State packets

• Flooding link state packets

• Build a Graph – a view of network topology

3. Running SPF algorithm (Dijkstra) on LSDB

• Process the LSDB through the algorithm

• Compute Results and store

• Algorithmically challenging

4. L3 Route Calculations

• Use Results of 3 to compute final L3 routes and update Routing Table

• Algorithmically challenging

We shall be going to implement all 4 parts in this course series

Along the journey we shall implement various sub-features within the protocol

Adjacency Mgmt

Building Link state

Database

Running SPF

Algorithm

L3 Route Calculations

Network Protocol Development → Phase 1 : Mini Project

IP Address MAC Intf

10.1.1.1/24

eth0 (MAC1)

10.1.1.2/24

eth1 (MAC2)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R2

R1’s ARP Table

R1

IP Address Gateway Ip OIF

100.1.1.1/32 10.1.1.2 eth0

R1’s Routing Table

Soln : Let R1 installs ARP entries for all its neighbors in its ARP table even when there is no traffic

Problem Statement

Network Protocol Development → Phase 1 : Mini Project

Implement a Feature Layer 2 Mapping

➢ Prerequisite : Understand ARP

➢ ARP learning is triggered by the traffic (ARP Resolution)

➢ Traffic, at high ingress rate may get dropped when ARP resolution is in progress

➢ Solution : We can have ARP resolved already for each interface of a device using ISIS protocol

➢ Procedure :

➢ As soon as Adjacency Goes up on an interface I:

➢ Fetch Mac and intf IP from Adjacency object on an interface I

➢ Populate ARP entry using below API

bool arp_entry_add (node_t *node, char *ip_addr,

mac_add_t mac, interface_t *oif, uint16_t proto);

➢ As soon as Adjacency goes down :

➢ Delete the ARP entry for the Interface IP Address present in this Adjacency object

using below API :

void arp_entry_delete (node_t *node, char *ip_addr, uint16_t proto);

10.1.1.1/24

eth0 (50)

R2-eth1 Hello

Content of

isis_adjacency_t:

1. 122.1.1.2

2. R2

3. 10.1.1.2

4. <mac>

4. 60 (ifindex)

5. 5 (hold time)

6. 10 (cost)

7. uptime

8. state

9. timer_event_handle *delete_timer;

10. timer_event_handle *expiry_timer;

R1

Network Protocol Development → Phase 1 : Mini Project

➢ Result :

➢ ARP entry is inserted when ISIS Adjacency goes UP on an interface

➢ ARP entry is deleted when Adjacency goes DOWN on the interface

➢ ARP entry should get updated when IP Address on an interface is changed by admin

➢ Corresponding ARP entry should get deleted if protocol is disabled on an interface I

➢ Behavior should be enabled by default

➢ conf node <node-name> no protocol isis layer2-map

IP Address MAC Intf

10.1.1.2 MAC(R2-eth1) eth0

10.1.1.1/24

eth0 (50)

10.1.1.2/24

eth1 (60)

Lo : 122.1.1.1/32 Lo : 122.1.1.2/32

R1

R1-eth0 Hello

R2-eth1 Hello

Content of

isis_adjacency_t:

1. 122.1.1.2

2. R2

3. 10.1.1.2

4. MAC(R2-eth1)

4. 60 (ifindex)

5. 5 (hold time)

6. 10 (cost)

7. uptime

8. state

9. timer_event_handle *delete_timer;

10. timer_event_handle *expiry_timer;

R2

R1’s ARP Table

Network Protocol Development → Phase 1 : Mini Project

/* Return True if layer 2 mapping is enabled, else return false */

bool

isis_is_layer2_mapping_enabled (node_t *node);

/* Enable layer2 mapping config, return 0 on success, -1 on failure */

int

isis_config_layer2_map (node_t *node);

/* Disable layer2 mapping config, return 0 on success, -1 on failure */

int

isis_un_config_layer2_map (node_t *node);

/* install ARP entry in ARP table when Adjacency goes up, return true on success else false*/

bool

isis_update_layer2_mapping_on_adjacency_up (isis_adjacency_t *adjacency);

/*Remove arp entry from ARP table when Adj goes down, return true on success else false */

bool

isis_update_layer2_mapping_on_adjacency_down (isis_adjacency_t *adjacency);

isis_layer2map.h / isis_layer2map.c

APIs to be written

typedef struct isis_node_info_ {

…

/* Layer 2 Mapping */

bool layer2_mapping;

…

} isis_node_info_t;

Network Protocol Development → Phase 1 : Mini Project

TestCases :

1. Should be enabled by default

2. All Layer 2 mapping on a node should get deleted on disabling protocol on a node

3. All Layer 2 mapping on a node should get re-added back on re-enabling the disabled protocol

4. A Layer 2 mapping on a node should get deleted when adj on an interface goes down Or deleted

5. A Layer 2 mapping on a node should get re-added back when adj on an interface goes up

6. clear node <node-name> protocol isis adjacency should delete all ISIS Adjacencies + All Layer 2 mapping,

but as adjacencies are re-formed again, layer 2 mapping must install back to ARP table

7. Layer 2 mapping on local node should get deleted when

1. Local interface is shut down (instantly)

2. Remote peer interface is shutdown (due to Adj time out)

8. Local Layer 2 mapping must get updated when nbr intf ip address is changed

20.1.1.1/24

eth2

20.1.1.2/24

eth3

50.1.1.1/24

eth8

50.1.1.2/24

eth9

R1 R2 R3

cross_link_topology()

