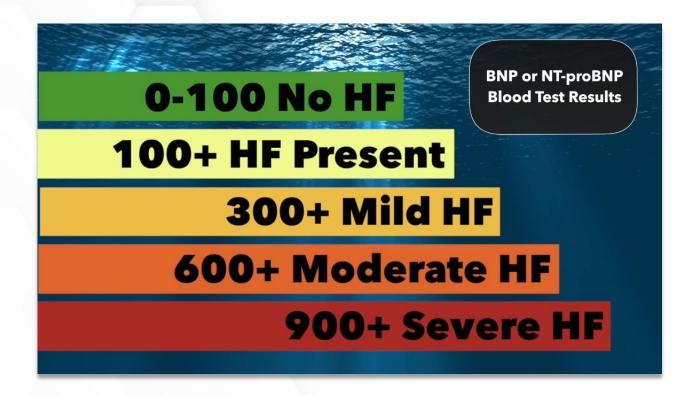
Heart Failure Assessment

Acute Decompensation


- Compensated Heart Failure:
 - a. Symptoms are well-controlled
 - b. No signs of fluid overload
 - c. Cardiac output is sufficient for metabolic needs
- 2. Decompensated Heart Failure:
 - a. Symptoms of heart congestion present
 - b. Signs of fluid overload present
 - c. Cardiac output is insufficient to meet metabolic needs

Acute Decompensation Assessment: Symptoms for Both Right- and Left-Sided Heart Failure

- 1. Sudden weight gain
 - a. First sign of fluid overload
 - b. Definition of sudden weight gain:
 - i. 2 pounds in 1 day (or)
 - ii. 5 pounds in 1 week
- 2. Symptoms of poor cardiac output
 - a. Tired and S.A.D. Symptoms:
 - i. Tired
 - ii. Syncope (lightheaded, dizzy, faint, orthostatic hypotension)
 - iii. **Angina**
 - iv. **Dyspnea**
- 3. Signs of poor cardiac output:
 - a. Central cyanosis
 - i. Tongue or lips are blue
 - ii. Associated with inadequate oxygenation and is a SERIOUS symptom
 - More serious than peripheral cyanosis (where hands/feet are blue)
 - iii. Indicates that oxygen levels are < 80%

4. Elevated BNP blood test

- a. When the ventricles are overstretched due to blood volume overload, BNP messengers are released from the ventricles
 - i. BNP messengers tell the brain to tell the kidneys to get rid of extra fluid
 - ii. Kidney then release sodium and water to reduce volume overload
- b. BNP messengers work well during compensated heart failure
- c. BNP become less effective during decompensated heart failure
- d. During decompensated heart failure, blood test will show very elevated BNP levels

Decompensation Assessment: Specific to <u>Left-Sided Heart Failure</u>

- 1. Congestion in the LEFT side of the heart will cause back-up congestion in the pulmonary vasculature
- 2. Symptoms will be pulmonary related
- 3. Pulmonary congestion signs and symptoms:
 - a. **Dyspnea**
 - i. Different types:
 - Dyspnea on exertion
 - Orthopnea (shortness of breath when lying flat)
 - Paroxysmal Nocturnal Dyspnea (wakes up feeling like they are suffocating)
 - Dyspnea at rest
 - ii. Dyspnea is progressive:
 - Dyspnea starts with shortness of breath with just exertion and progresses to shortness of breath at rest
 - b. Crackle sounds in lungs
 - c. Hypoxia
 - d. Non-productive cough

Decompensation Assessment: Specific to Right-Sided Heart Failure

- 1. Congestion in the RIGHT side of the heart will cause congestion in the venous system
- 2. Right-sided heart failure causes an increase in central venous pressure
- 3. The superior and inferior cavas feel this volume overload and have a difficult time returning blood to the heart
 - a. Superior vena cava congestion leads to Jugular Vein Distention (JVD):
 - Normal jugular veins:
 - The jugular vein should look flat/"invisible" when patient is supine with head of bed at a 45 degree angle
 - ii. Congested jugular veins:
 - The jugular veins bulge/"visible" when patient is supine with head of bed at a 45 degree angle
 - Jugular vein distention (JVD) is a sign of increased central venous pressure due to reduced blood return to the heart
 - b. Inferior vena cava congestion leads to lower extremity **Edema:**

- Congestion in the inferior vena cava will congest the preceding veins in the legs
- ii. Gravity causes the volume overload to pool in the legs
- iii. Volume overload in the veins puts pressure on the vessels, causing them to leak fluid to surrounding tissue
- iv. Congestive Heart Failure (CHF) edema will always be bilateral in both legs
 - Unilateral edema is indicative of a *different* medical problem, not fluid overload from congestive heart failure (CHF)
 - CHF edema spreads evenly to BOTH legs, so it is BILATERAL edema, not unilateral or just in one leg
- v. A 10lb weight gain is 5L of fluid and precedes visible edema
- vi. Assessing edema:
 - Press firmly for 5 seconds over dorsum of the feet, shins, and behind medial malleolus
 - Grade edema on a 5-point scale from 0 to 4
 - ♥ 0 = no edema

 - → +2 = 4mm depression and skin rebounds in a few seconds
 - +3 = 6mm of depression and skin rebounds in 4-10 seconds
 - → +4 = 8mm of depression and skin rebounds in 11-20 seconds
- vii. Fluid can also congest digestive organs and the liver
 - Can cause abdominal distention
 - Symptoms:
 - ▼ Abdomen feels full
 - Nausea
 - ♥ Poor appetite
- c. Nocturia is another symptom of right-sided congestive heart failure
 - i. Nocturia: awakening to urinate 2 or more times during the night
 - ii. Cardiac output slightly improves during sleep because of the elimination of gravity when laying down
 - Blood volume return to heart increases
 - Kidneys then receive more blood volume and then able excrete some of the excess

EKG Changes

- 1. Cardiac remodeling changes electrical pathways
- This can cause electrical changes in ECG waves

Atrial Enlargement ECG Changes

- 1. The p-wave represents electricity moving through the left and right atrial simultaneously
- 2. Left atrial enlargement:
 - a. Notched p-waves in lead II
- 3. Right atrial enlargement:
 - a. Tall and peaked p-waves

Ventricular Hypertrophy

- 1. The QRS represents electricity moving through the left and right ventricles simultaneously
- Left ventricular hypertrophy (left ventricle wall is thick):
 - a. Tall and deep QRS waves
 - b. Best detected in leads V1 through V6
 - c. To calculate:
 - i. Measure the DEEPEST QRS wave in V1 or V2
 - ii. Measure the TALLEST QRS wave in V5 or V6
 - iii. **If the combined measurement is MORE than 35mm** (35 small boxes), **then the patient has left ventricular hypertrophy**

Heart Failure Testing

- 1. Gold standard for diagnosing and evaluating heart failure is an echocardiogram
 - a. Ultrasound of the heart
 - b. Gives information about the:
 - i. Heart shape
 - ii. Heart size
 - iii. Heart motion
 - iv. Blood flow through heart chambers
 - v. Measures ejection fraction of left ventricle
- 2. TTE: Transthoracic Echocardiogram
 - a. Most common type of echocardiogram used
 - b. Transducer is on top of the chest wall
 - c. Non-invasive

Heart Failure Classifications (Staging Progression)

Classifying Heart Failure

- Classifying heart failure helps determine which treatments and interventions are needed
- 2. Two main methods that physicians use:
 - a. New York Heart Association method (most popular)
 - b. American Heart Association method

New York Heart Association

- 1. Most popular method
- 2. Assesses patient's functional capacity
 - a. Classification is based on a patient's symptoms
 - b. How does heart failure affect this person?
- 3. 4 Classes:
 - a. Class I: ASYMPTOMATIC
 - i. No limitations of physical activity
 - ii. No symptoms
 - b. Class II: Moderate Exertional Symptoms
 - i. Symptoms with major activity
 - ii. No symptoms at rest
 - c. Class III: Minimal Exertional Symptoms
 - i. Symptoms with minor activity
 - ii. No symptoms at rest
 - d. Class IV: Always Symptomatic
 - i. Symptoms at rest
 - ii. No relief ever
- 4. A patient can go up or down between classes as they improve with interventions

American Heart Association

- 1. 4 stages:
 - a. Stage A:
 - i. Patient is at risk for heart failure
 - ii. Risk factors:
 - Hypertension
 - Genes
 - Diabetes
 - Obesity
 - Hyperlipidemia
 - iii. Goal: reduce and control modifiable risk factors
 - b. Stage B:
 - i. Some cardiac remodeling
 - ii. No symptoms yet
 - iii. Goal: prevent further remodeling with medications
 - c. Stage C:
 - i. Symptoms of heart failure
 - Dyspnea is usually first symptom
 - ii. Goal: control symptoms
 - iii. This is the stage that a patient is receiving aggressive medical treatments like medications and an ICD if their ejection fraction is less than 35%
 - d. Stage D:
 - End-stage
 - ii. Treatments are no longer helpful
 - Patient doesn't stabilize with treatment
 - iii. Patient options:
 - Heart transplant (best long term solution)
 - LVAD (Left Ventricular Assist Device)
 - Palliative care
 - Symptoms will still be treated for patient comfort, not cure
 - This is not hospice care, which withdraws treatment and prepares the patient for their death
 - Palliative care continues to treat symptoms for comfort
 - iv. Cardiac Cachexia
 - Unintentional and severe weight loss from end-stage heart failure
 - Loss of muscle mass
 - A very, very bad sign and means poorer prognosis

2. Stages are progressive, unlike the NYHA stages

a. When a patient progresses to new stage, there is no return to the previous stage