
©
M

aril
yn

Davis,
2007-2

013

ELSE.PY Lab 2:Branching and Looping 1

Lab 02
Branching
and
Looping

• if, elif, and else
• while and another else
• Iterating with a for loop

• Counting loop with range
• Relational and logical operators

• tuples

else.py�
1 #!/ usr/bin/env python
2 """ Demonstrates if/elif/else and while/else."""
3
4 number = 25
5
6 if number < 10:
7 print number , 'is small '
8 elif number >= 1000:
9 print number , 'is big '

10 else:
11 print number , 'is medium '
12
13 if 10 < number < 50: # "and" is assumed
14 print " number is in"
15 # Alternate syntax since 2.5 -- all one line but less readable .
16 print number , "is",
17 print "small" if number < 10 \
18 else "big" if number >= 1000 \
19 else " medium "
20 # else can also occur in a loop
21 div = 2
22 while div * div <= number :
23 if number % div == 0:
24 print number , 'is divisible by ', div
25 break
26 div += 1
27 else:
28 print number , "is prime"

$ else.py
25 is medium
number is in
25 is medium
25 is divisible by 5



©
M

aril
yn

Davis,
2007-2

013

2 Lab 2:Branching and Looping RANGE

range — Built-in Function

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(2, 11, 2)

[2, 4, 6, 8, 10]

>>> range(10, 0, -1)

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

>>>

range([start=0,] almost_end[, increment=1])

All the same:

range(10)

range(0, 10)
range(0, 10, 1)



©
M

aril
yn

Davis,
2007-2

013

COUNTING_LOOP.PY Lab 2:Branching and Looping 3

counting_loop.py�
1 #!/ usr/bin/env python
2 """ Demonstrates a for loop """
3
4 for num in range(5):
5 print num , "* 2 =", num * 2

OUTPUT:
$ for_loop.py
0 * 2 = 0
1 * 2 = 2
2 * 2 = 4
3 * 2 = 6
4 * 2 = 8 Relational Operators in Python:

< means less than

> means greater than

<= means less than or equal

>= means greater than or equal

== means equal

! = means not equal

Logical Operators:

and means and

or means or

not means not



©
M

aril
yn

Davis,
2007-2

013

4 Lab 2:Branching and Looping LAB

Lab 02 – Exercises:

1. How would you produce the following using the range operator?

[3, 6, 9, 12]
[-10, 100, 210]
[-1, -3, -5, -7]

2. Write a script to produce this output using range and for:

10 9 8 7 6 5 4 3 2 1 BLASTOFF!!!

3. Try this in the interpreter:

>>> for ch in "Howdy":
... print ch
... <-- Here, hit the return key to

finish the indented block

>>> for num in (2, 4, 16):
... print num
...

Strings and comma-separated objects, as well as many other Python objects, can be
iterated with the for and in.

If the comma-separated objects are not wrapped with [] or {}, but may be wrapped
with (), they are called tuples.

If the comma-separated objects are wrapped with [] or {}, they are other collection
objects with terrific facilities, and we’ll study them soon. And try this:

for thing in (2, "hat", (0, 1)):
print thing

A tuple can contain any sort of object, even nested tuples.

4. Use a for loop and a tuple of strings to produce:

Hi ya Manny!
Hi ya Moe!
Hi ya Jack!

Do it without duplicating any code or data to maximize robustness.



©
M

aril
yn

Davis,
2007-2

013

LAB Lab 2:Branching and Looping 5

5. (Optional) Write a script that produces this pattern:

*
* * *

* * * * *
* * * * * * *

* * * * * * * * *
* * * * * * * * * * *

* * * * * * * * * * * * *
* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * *

Can you find an easier way? Hint: Have another look at exercise Lab1.2.

6. (Optional) Print the decimal equivalent of a binary string. Test with "1011".

Binary string: 1011
Decimal equivalent: 11

Try it using a for-loop and a while-loop.

Then, (not optional), use the help facility at the interpreter prompt to learn about the
built-in function int:

>>> help(int)

Only read a few lines until you discover the Pythonic way to do this exercise.



©
M

aril
yn

Davis,
2007-2

013

6


