Algebra 1A
Unit 3: Functions
Assignment 7: Patterns and Arithmetic Sequences

## Vocabulary

| Word | My own description | Illustration/Example |
| :--- | :--- | :--- |
| Arithmetic <br> Sequence |  |  |
| Common <br> Difference |  |  |
| Sequence |  |  |

## Arithmetic Sequences

An arithmetic sequence is a $\qquad$ of numbers where the $\qquad$ is the same between each number and the next/previous number.

Choose one of the two options to correctly complete the sentence:
In other words, to get the next number in an arithmetic sequence, you ( add or subtract / multiply or divide ) by the same number each time. This number is called the $\qquad$ _.

To find the common difference, just $\qquad$ one term from the one before it.

## Examples:

What is the common difference in the pattern $11,19,27,35, \ldots ?$

1) Choose two terms that are next to each other: $\qquad$ and $\qquad$
2) Subtract the second term from the one before it:
$\qquad$ - $\qquad$ = $\qquad$ $\leftarrow$ common difference
3) Double check that the pattern works for the other numbers (repeat steps 1 and 2 with different sets of two "neighbor" numbers.
$\qquad$ - $\qquad$ $=$ $\qquad$ $\leftarrow$ common difference
$\qquad$ - $\qquad$ = $\qquad$ $\leftarrow$ common difference
Did you get the same number each time? If so, it's an arithmetic series and the number you found is the common difference!

## Extending Arithmetic Sequences

To find out what comes next, $\qquad$ the common difference to the last term. You can keep doing this as many times as you need to.

## Example:

What are the next three terms in the pattern $4,7,10,13, \ldots . ?$

1) Find the common difference
$\qquad$ - $\qquad$
$\qquad$ $\leftarrow$ common difference
2) What is the last term? $\qquad$
3) Add the common difference to the last term:
$\qquad$ $+$ $\qquad$ = $\qquad$ $\leftarrow$ next term (\#1)
4) Do this as many times as you need to (in this example, you need the next three terms)
$\qquad$ $+\quad=$ $\qquad$ $\leftarrow$ next term (\#2) $+$ $\qquad$ $\leftarrow$ next term (\#3)

## Equations for Extending Sequences

Common difference * the term position - first term = term value

## Example:

What is the twentieth term in the pattern $3,7,11,15, \ldots$ ?

1) Find the common difference:
$\qquad$ - $\qquad$ = $\qquad$ $\leftarrow$ common difference
2) What is the term position? 20
3) What is the first term? $\qquad$
4) Plug it into the pattern:
$\qquad$ * 20 $\qquad$ $=$ $\qquad$ $\leftarrow$ 20th term

## Let's Review

Before continuing, make sure you understand the main points of this lesson.

- One type of math pattern is an arithmetic sequence.
- In an arithmetic sequence, each term is separated from the previous term by a common difference. For example, even terms are separated by a common difference of two.
- You can extend a pattern by adding the common difference to the last known term.
- You can write equations to describe a pattern. A sequence equation will include multiplying the term number by the common difference, and then adding or subtracting a constant.
- Using a sequence equation, you can find the $n^{\text {th }}$ term of a pattern.

