
EasyLanguage for TradeStation

Contents
CHAPTER: 1 - The Language of Strategic Trading ... 3
What is a Trading Strategy? ..4
What is EasyLanguage? ..5

Scanning the data on a chart ... 5
Reserved Words ... 7
Price Data ... 7
Statements .. 9
Skip words .. 9
Punctuation ... 10
Summary .. 10

Exercises and Review ..11
Review .. 11
Exercises .. 11

CHAPTER: 2 - Your First Trading Strategy ... 13
Using the PowerEditor ...14
Comparisons and Conditions ...14

Simple Expressions .. 14
If…Then ..14
Buy/SellShort ..16
Calculations ..18

Compound Expressions .. 19
Condition Variables ...20
AND - OR ...20

More About Variables ...21
True/False and Numeric ... 22
Declaring Your Own Variables .. 22

EasyLanguage Dictionary ..23

ii Learning to Use EasyLanguage
Categories and data types ... 23
What is a Function? ... 24
Using a Function .. 25
 Inputs ... 27

Using Inputs ... 27
Multiple Conditions and Actions .. 28

Begin…End .. 28
Types of Orders ... 30

This Bar on Close ...30
Next Bar at Market ..30
Or higher (same as Buy-Stop and SellShort-Limit) ..30
Or lower (same as Buy-Limit and SellShort-Stop) ...31
Points ...31
Big Points ..32
Quantity ..32

Order Conditions .. 32
Exercises and Review ... 34

Review ... 34
Exercises .. 35

CHAPTER: 3 - More About Writing Trading Strategies 37
Defining Your Trading Rules .. 38

Set-up and entry ... 38
Set-up ..38
Entry ...38

When to exit and why… .. 39
Money Management .. 40
Entry Orders ... 40

Creating a position ...41
Reversing a position ...41
Buy/SellShort ..41

Exit Orders .. 42
Closing a Position ...42
Sell/BuyToCover ..42

Multi-data Strategies .. 43
Custom Functions ... 44
Exercises and Review ... 47

Review ... 47
Exercises .. 47

CHAPTER: 4 - Creating Indicators and Studies .. 49
Understanding the Flow .. 50

Indicators .. 50
Studies .. 51

ShowMe ...51
PaintBar ..52
ActivityBar ...53
ProbabilityMap ..53

Reading Data .. 53

Contents iii
Your First Indicator .. 54
Plot statement ... 54
Style and Scaling ... 55

Writing Studies and Alerts .. 57
Writing a ShowMe Study .. 57
Writing a PaintBar Study ... 59
Writing Alerts .. 60

Using Inputs ... 61
Exercises and Review .. 62

Review ... 62
Exercises .. 62

CHAPTER: 5 - More About EasyLanguage ..63
Advanced Grammar and Data Types ... 64

Qualifiers ... 64
Text Values .. 64

Advanced Structures ... 65
If…Then…Else .. 65
Loops ... 66

For…Begin ...66
While…Begin ...67

Series Functions ... 68
More About Variables .. 68

Arrays .. 68
Additional Resources .. 69

TradeStation Help .. 69
EasyLanguage Support .. 69

Exercises and Review .. 70
Review ... 70
Exercises .. 70

CHAPTER: 6 - ShowMe the Strategy ..73
ShowMe and PaintBar Studies ... 74

Key Reversal ShowMe - Previous Bar ...74
Key Reversal ShowMe - Lowest Function ...75
Key Reversal ShowMe - An Input ..76

The Strategy Please ... 77
Key Reversal Strategy ...77

Summary ... 78
Exercises and Review .. 79

Review ... 79
Exercises .. 79

CHAPTER: 7 - Crossing Over ..81
Indicators and Strategy Elements .. 82

Single Line Moving Average Indicator ... 82
Entry Strategy Based On Single Line Moving Average .. 83

iv Learning to Use EasyLanguage
Two Line Moving Average Indicator .. 84
Entry and Exit Strategies Based on Two Line Moving Average 85

Multiple Exit Strategies ... 86
Summary ... 87
Exercises and Review ... 88

Review ... 88
Exercises .. 88

CHAPTER: 8 - Counting On Functions .. 89
The Function of Functions .. 90

GetAverage Price Function .. 90
Looks Can Be Deceiving ... 92

GetHighest Function .. 92
Summary ... 94
Exercises and Review ... 95

Review ... 95
Exercises .. 95

CHAPTER: 9 - Filtering Adds Flexiblity ... 97
Understanding Strategy Elements ... 98

Momentum Long Entry Strategy ... 98
Filtering A Strategy .. 99

Time Filter ... 100
Summary ... 101
Exercises and Review ... 102

Review ... 102
Exercises .. 102

APPENDIX A: - Answers to Exercises ... 103
CHAPTER 1 - Answers ... 103
CHAPTER 2 - Answers ... 103
CHAPTER 3 - Answers ... 105
CHAPTER 4 - Answers ... 107
CHAPTER 5 - Answers ... 107
CHAPTER 6 - Answers ... 109
CHAPTER 7 - Answers ... 110
CHAPTER 8 - Answers ... 110
CHAPTER 9 - Answers ... 111

APPENDIX B: - User Functions .. 113

APPENDIX C: - Reserved Words .. 121
ActivityBar Study .. 121
Alerts and Commentary ... 121
Backward Compatibility .. 122
Colors ... 123

Contents v
Comparison and Loops .. 123
Compiler Directives ... 124
Data Information / Fundamental .. 124
Data Information/General .. 124
Date and Time .. 126
Declaration ... 126
DLL .. 127
Math and Trig .. 128
Messaging .. 129
Multimedia ... 129
Output .. 129
Plotting ... 129
ProbabilityMaps ... 130
Product Information ... 130
Skip Words ... 130
Strategy Orders .. 131
Strategy Performance ... 131
Strategy Position .. 132
Strategy Properties ... 133
Text Drawing ... 133
Text Manipulation .. 133
Trendline Drawing ... 134

vi Learning to Use EasyLanguage

EasyLanguage for TradeStation
I N T R O D U C T I O N

Getting Started with TradeStation EasyLanguage
The purpose of this book is to help you learn the basics of EasyLanguage and explain how
to make use of this powerful language for creating your own trading strategies and
analysis techniques using familiar terminology and simple logical statements. Please
note this book is not intended to be a reference manual but is designed to be an
introduction to EasyLanguage and its many uses.

Before proceeding, it’s important that you have a working knowledge of the trading
process and of TradeStation 6. The following assumptions have been made regarding the
focus of this book:

You are familiar with TradeStation and its features.

You have trading experience and understand the basic technical analysis concepts
used by TradeStation’s built-in analysis techniques and commonly used strategy
components.

You are aware of the existence of additional sources of information (see
“Additional Resources” on page 83).

We recommend that you read the chapters and perform the exercises in the order
presented. As you proceed through the book, you should try out the examples using the
sample data supplied with the product. This will ensure that you’re properly introduced
to the topics as they are needed and that your EasyLanguage learning experience will be
both enjoyable and rewarding.

2 EasyLanguage for TradeStation

EasyLanguage for TradeStation
C H A P T E R 1

The Language of Strategic Trading
This chapter introduces you to EasyLanguage and to some of the fundamental concepts
associated with the analysis of charted data. This includes a discussion of how
EasyLanguage processes instructions, and describes basic grammar and punctuation
rules that apply to EasyLanguage.

The information in this chapter assumes that you have an understanding of the basic
purpose and functionality of TradeStation. Since the topics in this chapter establish a
foundation for the use of any EasyLanguage application in TradeStation, you may find
that it’s worth reviewing them even if you don’t plan to immediately write your own
strategies, functions, or analysis techniques.

In This Chapter

What is a Trading Strategy? 4

What is EasyLanguage? 5

Exercises and Review11

4 What is a Trading Strategy? EasyLanguage for TradeStation
What is a Trading Strategy?
In TradeStation, a trading strategy consists of a set of objective rules that are used to
describe when to buy and sell stocks, bonds, commodities, or other trading instruments.
While most traders have some rules that guide their trading activities, these ‘rules’ are
frequently based on subjective elements, such as intuition and emotion. The purpose of
strategy trading is to be able to create a set of rules based on measurable factors, to verify
that the rules work when applied to historical data, and to automate the rules so that your
buying and selling decisions are based on an objective trading methodology.

It’s important to point out that TradeStation itself is not a trading strategy, but, rather, it
is a sophisticated software tool that helps you implement trading strategies of your own
design. TradeStation’s many powerful charting, analysis, and data collection features are
all designed to help you refine your trading rules and develop your own strategies.

You’ll be using EasyLanguage to define the rules that reflect your trading ideas, and
you’ll be using TradeStation to test and automate the strategies you create. As you
automate your trading strategy with TradeStation, entry and exit orders are displayed on
a chart based on the ideas you’ve developed (Figure 1-1).

One of the primary benefits that comes from developing your own trading strategy with
EasyLanguage is the simple fact that you must write your rules down in a clear and
concise manner. This helps eliminate ambiguous and inconsistent practices that every
trader needs to guard against. In addition, creating a set of objective based rules can
greatly reduce the negative effects that often come from emotional decision making.

Another advantage to strategic trading with TradeStation is that you are able to back-test
your strategy on historical price data, which lets you know how your rules would have
performed under changing conditions. After all, planning ahead and being ready to act
are what strategic trading is all about. And, by automating your trading with a tested
strategy, you’ll have more time to spend doing research and developing new trading
ideas.

As you proceed through the following chapters, you’ll be exposed to a variety of
approaches and examples that can help you develop your own trading ideas.

Figure 1-1. A trading strategy producing entry and exit orders.

CHAPTER 1: The Language of Strategic Trading What is EasyLanguage? 5
What is EasyLanguage?
Since TradeStation, and the computer it runs on, can’t read your mind (not yet at least),
the trading rules for your trading strategy need to be written in a form that both you and
TradeStation can understand. EasyLanguage was developed by TradeStation
Technologies especially for this purpose.

EasyLanguage is a simple, but powerful, computer language for producing objective
rules and calculations that are used to create trading and technical analysis tools. By
combining common trading terminology with simple decision statements, EasyLanguage
makes it easy for you to write your own trading rules and actions in a clear and
straightforward manner. TradeStation reads your EasyLanguage statements, evaluates
them based on the price data that has been collected, and performs the specified actions.

EasyLanguage is designed so that traders can write their ideas in plain English, using
trading terms and phrases with which they are already familiar. For example, compare
the following two statements of the same trading idea regarding your favorite stock - the
first as if you had jotted the idea down on paper and the second as it might appear in
EasyLanguage.

As jotted down on a piece of paper:

“if the close is greater than the high of 1 day ago, then buy 100 shares at market”

As written in EasyLanguage:

if the Close > the High of 1 day ago then

 Buy 100 shares next bar at market ;

Not much difference, right?

So, while this example may not represent the most sophisticated trading idea, you can see
that EasyLanguage truly does allow you to make your instructions very readable. In the
next chapter, you’ll be learning much more about how to write EasyLanguage
instructions that perform desired trading actions based on your ideas.

In addition to letting you develop trading strategies, EasyLanguage is also used to create
your own custom analysis techniques or functions. Or, if you choose, you can copy and
modify any of the hundreds of built-in analysis techniques, functions, and commonly
used strategy components that are part of TradeStation.

The important thing to remember is that EasyLanguage is not only the language of
TradeStation, it’s the language of strategic trading!

Scanning the data on a chart
Before you can understand how to write a trading strategy or analysis technique in
EasyLanguage, it’s important to review exactly how EasyLanguage operates.

In TradeStation, a chart typically consists of numerous bars built from price data
associated with a specified symbol. Each bar summarizes the prices for a trading interval,

6 What is EasyLanguage? EasyLanguage for TradeStation
most commonly a time period such as five minutes or one day, and includes values such
as the open, high, low, and closing prices for the period. Other bar data such as the traded
volume and the date/time of the bar’s close is also available.

Since one of the primary purposes of EasyLanguage is to look at price data from one bar
and compare it to data from other bars, you need to understand how your EasyLanguage
procedure (indicator, ShowMe, trading strategy, etc.) reads the price data from a chart.

In this simple one line trading strategy:

if the Close > High of 1 bar ago then Buy next bar at market;

you are instructing EasyLanguage to compare the closing price of one bar with the high
price of another and to generate a buy order when the close is greater than the high. This
comparison is made on the closing price of every bar in the chart, each time looking at
the high price from the bar before.

Even though your EasyLanguage analysis technique is applied to a chart filled with bars,
the process used to evaluate the data on the chart is always the same. Remember, a chart
is simply a visual representation of a period of trading history for a symbol, where
individual bars represent trading intervals. Each bar contains basic price data (prices,
volume, date, etc.) that was saved from a datafeed. To evaluate your chart, EasyLanguage
turns back the clock and starts reading the price data from the first bar in the chart just as
it appeared from the datafeed when that bar was created. In terms of your EasyLanguage
procedure, this is now the current bar. The EasyLanguage statements in your procedure
are always evaluated relative to the current bar. On the first bar, there are no previous
bars and the comparison in the example above cannot be true. When your procedure is
done evaluating the bar, EasyLanguage steps forward in time to the next bar, making it
the current bar on which the statements in your procedure are evaluated.

Typically, an EasyLanguage procedure includes a number of statements, each of which
can result in an action such as plotting a line on the chart or generating a buy/sell short
order. After all of the statements in the EasyLanguage procedure are processed for the
current bar, the price data from the next bar is read and the procedure is run again using
the new prices. This continues, across the chart from left to right, until all of the prices
from all of the bars on the chart have been read. The result is that, for a 500 bar chart, the
EasyLanguage procedure runs a total of 500 times, once on each bar.

For example, look at the chart in Figure 1-2, consisting of bars A through H, where the
indicator “_HiLoPlot” has been applied. Each line of the indicator, numbered 1 through
5, is evaluated on every bar, starting with the price data from bar A, then from bar B, etc.,
across all of the bars in the chart. Even though you may not understand the EasyLanguage

CHAPTER 1: The Language of Strategic Trading What is EasyLanguage? 7
statements at this time, it’s important to know that each statement is evaluated, in order,
for every bar.

Reserved Words
In EasyLanguage, just like any other language, words have meanings and are combined
into statements using some type of grammatical structure. Punctuation marks are used to
signify the end of each statement and to separate phrases within each statement. The basic
vocabulary of EasyLanguage consists of a set of reserved words, each having a specific
purpose, such as to compare and evaluate expressions, to specify display or trading
actions, and to reference values. In the following chapters you’ll learn more about these
words and how to use them to build your analysis techniques.

Price Data
The ability to evaluate price data is one of the most important elements of EasyLanguage.
As a result, a number of reserved words exist in EasyLanguage that refer to the price data
available from each bar. The words typically match the common trading term for the

Figure 1-2. Evaluating bars from left to right.

8 What is EasyLanguage? EasyLanguage for TradeStation
same value, such as Open, High, Low, Close, or Volume. Table 1-1 lists some of the most
frequently used price data values:

Table 1-1. Frequently used reserved words for price data.

For example, the reserved data word Close refers to the closing price of the bar currently
being evaluated by the EasyLanguage procedure. Remember that your EasyLanguage
procedure is applied to each bar on the chart, from left to right, and that the ‘current bar’
is always the bar on which your procedure is running. If your procedure is running on the
7th bar of the daily chart, the High reserved word contains the high price for the 7th day
of trading on the symbol being charted.

Since trading decisions are rarely made on just one bar’s worth of price information,
EasyLanguage makes it easy to get price data from any bar older than the current bar by
simply adding the phrase ‘of N bars ago’ after the appropriate reserved word.

For example, the EasyLanguage expression ‘Low of 1 bar ago’ refers to the low price of
the previous bar (relative to the bar currently being evaluated by EasyLanguage). In a
similar example, if your EasyLanguage procedure is running on the 12th bar of your
chart, the expression ‘Volume of 3 bars ago’ refers to the charted symbol’s volume from
the 9th bar, or 3 bars back from the current bar. The alternate method for referring to data
from a previous bar is to use square brackets ‘[N]’ after the reserved word – such as,
Open[2] to refer to the opening price from 2 bars ago.

In order to remain efficient when analyzing charts containing hundreds or thousands of
bars, EasyLanguage contains a special setting called MaxBarsBack that is used to
identify how many previous bars of price data an EasyLanguage procedure can reference.

For example, if you write an EasyLanguage procedure that uses a 14-bar moving average,
your procedure needs to have at least 14 bars of data to perform its calculations. By
setting MaxBarsBack to 14, in this case, your procedure would wait until 14 bars have
passed (from left to right) to be sure that enough data is available to calculate the 14-bar
moving average for the current bar. EasyLanguage would do the same for each current
bar throughout the rest of the chart.

The rule is that MaxBarsBack must be equal to or greater than the largest value needed
to perform the analysis. For example, if you are calculating an index based on 60 days of
price data, then you’ll require that MaxBarsBack be set to 60 or greater.

Data Word Abbreviation Description

Open O First available price for the bar

High H Highest price within the bar

Low L Lowest price within the bar

Close C Last available price for the bar

Date D Date of the last trade within a bar

Time T Time of the last trade within a bar (in 24 hour format)

Volume V Total volume of trades within the bar

OpenInt I (Open Interest) Total number of open contracts

CHAPTER 1: The Language of Strategic Trading What is EasyLanguage? 9
To make it easy on both the developer and end-user, most EasyLanguage analysis
techniques automatically calculate the MaxBarsBack value. This is done by selecting the
Auto-detect option under the heading ‘Maximum number of bars study will reference’
on the General tab of the Format [Analysis Technique] dialog box. In the Auto-detect
mode, EasyLanguage evaluates all of the data references in your procedure and
automatically sets the optimal value for MaxBarsBack. For more information, search the
TradeStation Help for the phrase Maximum number of bars.

Statements
Those EasyLanguage reserved words that perform comparisons, carry out associated
actions, and control other program operations are called statements.

These include the If-Then structure, the Plot statement, and variable declaration
statements. Just like a sentence represents a complete thought in the English language,
an EasyLanguage statement represents a complete instruction that results in some
program action. You’ll be introduced to all of the basic EasyLanguage statements later
in this book.

Skip words
To make EasyLanguage read more like English, another group of reserved words called
skip words are provided. These optional words, such as the, at, on, and from, can be
included in a statement or expression.

 For example, the following:

if Close > High[1] then Buy next bar at market;

could also be written using skip words to make it appear more readable:

if the Close > the High of 1 bar ago then

 Buy on the next bar at the market;

Be aware that, while making your EasyLanguage instructions easy to read, skip words
perform no action within the actual program. In other words, they are ignored when the
procedure is run. Whether you use skip words at all is a matter of personal preference.

The following is a list of skip words:

Table 1-2. Skip Words.

a by of the
an does on was
at from place

based is than

10 What is EasyLanguage? EasyLanguage for TradeStation
Punctuation
While sentences in the English language are separated from one another using a period
(.), EasyLanguage uses the semicolon (;) to mark the end of each statement. Statements
can be very simple, such as:

Plot1(High, ”HighPlot”) ;

or more complex multi-line expressions like this:

if the Close > High of 1 bar ago + (High - Low) / 2 and

Average(Volume, 3)[1] < Volume then Buy next bar at market;

Even though the second example includes several calculations and conditional
expressions, both examples are valid statements that start with a statement reserved word
and end with a semicolon (;). In addition to the end-of-statement punctuation mark, there
are several other punctuation symbols shown in these examples. Because these symbols
hold a special meaning in EasyLanguage, they are also considered reserved words.
You’ll be using these often when writing in EasyLanguage.

Table 1-3 lists the punctuation marks used in EasyLanguage.

Table 1-3. EasyLanguage punctuation marks.

Summary
While there are many more reserved words and symbols in EasyLanguage, the important
thing to remember is that they all perform a specific role and must be used according to
the rules that are defined for the language.

During the next several lessons you’ll learn all about these rules and how to write your
own EasyLanguage instructions based on these reserved words and statements.

Symbol Name Description

 ; Semicolon Ends a statement

() Parentheses Groups values that should be calculated together

 , Comma Separates items in a list, such as parameters used with
functions

“ “ Quotation marks Used to indicate text items

[] Square brackets References price data from previous bars and array
elements

{ } Curly brackets Used to write comments about the operation of your
EasyLanguage statements

CHAPTER 1: The Language of Strategic Trading Exercises and Review 11
Exercises and Review

Review
Trading Strategies consist of a set of rules and actions, written in EasyLanguage, that
produce entry and exit orders based on your own trading ideas.

EasyLanguage is the language of strategic trading. Using common trading terminology,
it lets you evaluate market conditions and produce trading actions.

Reserved words in EasyLanguage include all statements, skip words, and punctuation
marks.

Bars on a chart are evaluated from left-to-right, and EasyLanguage procedures look at
every bar.

Exercises
(Answers are contained in Appendix A)

I. Match each numbered word with its correct definition. Write the matching letter next to
the word’s number.

II. Mark the following either True or False (T or F).

1. EasyLanguage only evaluates a bar when the price changes.
2. All EasyLanguage reserved words are statements.
3. Bars are evaluated from left to right.
4. Skip words automatically jump to the next statement.

1. Reserved Words A. Ignored during execution
2. Statement B. Indicator, Study, or Strategy
3. MaxBarsBack C. The Language of Strategic Trading
4. Price Data D. Runs on each bar
5. Skip Word E. Basic vocabulary of EasyLanguage
6. Semicolon F. A complete EasyLanguage instruction
7. Procedure G. Number of bars ago that can be referenced
8. Analysis Technique H. Ends a statement
9. EasyLanguage I. Values associated with each bar

12 Exercises and Review EasyLanguage for TradeStation

EasyLanguage for TradeStation
C H A P T E R 2

Your First Trading Strategy
In this chapter you’ll learn how to convert simple trading rules into EasyLanguage
statements in order to create trading strategies. You will be introduced to the construction
and use of conditional expressions to make comparisons that notify you when to place a
trade. In the process, you’ll learn about variables, functions, and other EasyLanguage
components that make your strategy more flexible and easier to understand.

Since the material in this chapter builds on a general understanding of the vocabulary and
punctuation of EasyLanguage, it is recommended that you read the previous chapter and
complete the exercises at its end. We also assume that you are familiar with the Chart
Analysis window and price data.

In This Chapter

Using the PowerEditor 14

Comparisons and Conditions 14

More About Variables 21

EasyLanguage Dictionary 23

What is a Function?................................ 24

Using a Function 25

Inputs..27

Multiple Conditions and Actions28

Types of Orders................................30

Exercises and Review34

14 Using the PowerEditor EasyLanguage for TradeStation
Using the PowerEditor
The PowerEditor is a full-featured editor for creating and modifying EasyLanguage
instructions. In addition to providing common word-processing features for editing your
EasyLanguage procedures, it includes specialized features that color-code the various
elements of your statements and automatically check your work for proper syntax.

While it is fairly simple to use, if you are not familiar with the behaviors of PowerEditor,
you should read about it in the TradeStation Help before continuing with the following
material.

Comparisons and Conditions
One of the essential ingredients of a trading strategy is the ability to respond to price
changes in the market and to perform a trading action (e.g., buy, sellshort, and/or exit)
based on your trading ideas. An EasyLanguage trading strategy looks at the data from
each bar in a chart and, typically, compares the current bar’s price data with that from
previous bars.

In this section you’ll learn how to translate trading ideas into rules and comparisons so
that EasyLanguage can perform the desired trading actions.

Simple Expressions
The first step in translating your ideas into EasyLanguage is to create one or more ‘rules’
that test for pre-determined market conditions. When the conditions that make up the rule
are judged to be true, EasyLanguage performs the trading action you specify.

If…Then
The most commonly used EasyLanguage instruction for making comparisons is the
If…Then statement. The condition to compare is stated following the word If and the
action to be taken follows the word Then. A condition can be a simple comparison of two
values or can be a complex combination of multiple calculations and conditions.

The following simple example tests to see if the current bar’s closing price is greater than
the high price of the previous bar:

if Close of this bar > High of 1 bar ago then

Buy next bar at market ;

... and results in a buy order when the condition is true.

In the example above, the section between the words If and Then is called a conditional
expression that consists of the values separated by a relational operator. Don’t let the
names scare you! A relational operator is nothing more than a symbol or phrase that
specifies how to compare the first value with the second in a conditional expression.
EasyLanguage tests the values against one another, and if they match the stated
comparison, then the condition is said to be true.

CHAPTER 2: Your First Trading Strategy Comparisons and Conditions 15
For example, the condition (highlighted in grey):

... is true if the high price of the current bar equals the high of one bar ago.

Likewise, the conditional expression (highlighted in grey):

... is true if the current bar’s closing price is greater than its opening price.

The second part of the If…Then structure consists of an ACTION which represents any
valid EasyLanguage statement. The condition must be true for the action statement
following the word Then to be evaluated by EasyLanguage.

Table 2-1 contains a list of the basic EasyLanguage relational operators and the
condition each represents:

Table 2-1. Relational Operators.

In addition to the basic relational operators, EasyLanguage also provides another pair of
operators that are useful for comparing prices, or moving averages for example, that cross
one another. The Crosses Over and Crosses Under relational operators (Table 2-2)
compare prices on the current bar and those of the previous bar to see how they have
changed. You’ll be using this type of comparison in a later example.

Table 2-2. Additional relational operators.

if High = High of 1 bar ago then ACTION ;

if the Close is > the Open then ACTION ;

Operator Meaning

= Equal to

<> Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Operator Meaning

Crosses Over
 or
Crosses Above

X Crosses Over Y
True when X is greater than Y on the current bar after
being less than or equal to Y on the previous bar

Crosses Under
 or
Crosses Below

X Crosses Under Y
True when X is less than Y on the current bar after being
greater than or equal to Y on the previous bar

16 Comparisons and Conditions EasyLanguage for TradeStation
Buy/SellShort
In a trading strategy, some of the most common actions are the statements Buy and
SellShort which are used to enter a trading position for your selected symbol.

For example, in the following:

if the Close is > the Open then Buy next bar at market ;

a buy order would be generated if the current bar closes above the open (making the
condition true).

Similarly, in the following:

if the Open is > Close then SellShort next bar at market ;

a sellshort order would be generated if the bar’s open is above its close.

You’ll learn more about entry orders later in this chapter. For now, all you need to worry
about is that you can place a buy or sellshort order as a result of a condition being true.

Now it’s your turn. Periodically, you’ll be asked to create an example of an
EasyLanguage procedure in the PowerEditor and apply it to a chart. This will help you
become familiar with the process of editing EasyLanguage instructions and running
them.

The first example you’re going to create is a strategy. Typically, a strategy is based on a
set of rules that determines when and how to enter or exit a trade. In this example, the
strategy is based on the idea that you want to buy whenever a symbol closes above the
previous bar’s high, indicating upward price activity. Since the price data you’ll be using
in this chapter is for a daily stock, this strategy will generate a buy order when the stock
closes higher than yesterday’s high.

In TradeStation, use the File - New menu sequence, click on the EasyLanguage tab, and
select Strategy to create a PowerEditor Strategy Document. Give it the name _CloseUp,
and for our purposes select (None) for the template. (Note: You’ll use the underscore
character in front of the name for most examples in this book so that they’ll appear at the
top of the list when selecting them). You should now have a blank window titled
TradeStation EasyLanguage PowerEditor - Strategy: _CloseUp.

Type the following statement into the PowerEditor window:

if Close of this bar > High of 1 bar ago then

Buy next bar at market ;

Example 2-1. Strategy named _CloseUp.

Notice that the color of words change as you type. For example, reserved words appear
in one color, skip words in second color, and other words in a third color. Using this
feature can help you identify misspelled or incorrect words in addition to making your
EasyLanguage instructions more readable.

CHAPTER 2: Your First Trading Strategy Comparisons and Conditions 17
Before continuing, make sure that you remembered to type the semicolon at the end of
the statement.

Now, click the Verify button from the PowerEditor toolbar.

After a few seconds, a Verification successful message should appear in the middle of
your screen. Your EasyLanguage strategy is now ready to go. If you made any entry
mistakes, an error message would appear (error messages can be viewed in the Verify
tab of the EasyLanguage Output Bar.

In TradeStation, create a Chart Analysis window to this new workspace using symbol
MSFT (Microsoft). Set the chart interval to Daily and the Days Back value to 500. For
more information on this procedure, search the Help Index.

From the chart, use the Insert - Strategy menu sequence. Add the strategies named
_CloseUp and TimeExit (Bars) LX to the chart using all the default settings.

Note: The TimeExit (Bars) LX strategy closes out a long position after 5 days so that
you can see many occurrences of the example order.

Now, you should see up arrows with the word Buy underneath (Figure 2-1) pointing to
bars after a Close price is greater than the previous bar’s High.

If you look closely, you’ll notice that the buy arrow and price marker (pointing to the
bar’s opening price) appear on the bar after the condition is met. That’s because your
order said to buy on the next bar at the market price (assumed to be the Open). Also,
notice the Time label five bars after each buy. That’s the exit strategy TimeExit (Bars) LX
closing out your long position after five days. You may also notice quite a few bars that
do not have buy arrows, even though the Close was greater than the previous High.
That’s because the default setting for a strategy is to allow only one position at a time in

Figure 2-1. Strategy _CloseUp and TimeExit (Bars) LX .

18 Comparisons and Conditions EasyLanguage for TradeStation
a particular direction. You can modify this action by changing the Position Limits
settings on the General tab of the Format Strategy dialog box. For more information,
search the TradeStation Help.

The following example is a variation of the previous strategy:

if Close > High[1] then Buy next bar at market ;

Example 2-2. Strategy named _CloseUp2.

It performs exactly the same comparison, but uses a more concise syntax. Note the use
of the square brackets to specify 1 bar ago and that the skip words have been removed.
Try creating a new strategy named _CloseUp2, type in the new statement above, and
verify the strategy. Then, create another Chart Analysis window and apply the strategy
to your chart. You should see exactly the same Buy and Exit markers on your chart, since
strategy _CloseUp2 performs the same comparison as _CloseUp.

Calculations
In the previous example, the values being compared are individual bar prices
(Close and High) which are EasyLanguage reserved words. However, values can also be
the result of calculations on either side of the relational operator.

In EasyLanguage, mathematical operators perform addition, subtraction, multiplication,
and division on a set of values. The symbols for these operators are:

Table 2-3. Mathematical operators.

For example, to determine the range of a bar (which is the difference between the bar’s
highest and lowest price) you would subtract the Low price from the High. Therefore, the
expression for the current bar’s range would look like this:

High - Low

which would be stated in English as “the High minus the Low.” And the expression for
the range of a previous bar would be:

High[1] - Low[1]

and would read “the High of 1 bar ago minus the Low of 1 bar ago.”

How would you calculate a value equal to 50% of the previous bar’s range? In English
you might say “take the previous bar’s High minus the Low and divide by 2.” You might
be tempted to write it in EasyLanguage as: High[1]-Low[1]/2. However, you’d be wrong!
Remember that the value you want is 50% of the difference between the prices and not
the High minus 50% of the Low. In EasyLanguage, and most other computer
applications, multiplication and division are performed before addition and subtraction.

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

CHAPTER 2: Your First Trading Strategy Comparisons and Conditions 19
Therefore, you need to control the order of calculations through the use of parentheses
because a parenthetical calculation is performed before all others. In the last example, the
correct EasyLanguage expression would be:

(High[1] - Low[1]) / 2

where the subtraction within the parentheses is done before the division, resulting in the
proper value.

Now, let’s get back to creating another strategy where a buy orders are generated if the
Close is greater than the previous bar’s High plus 50% of the previous bar’s range (the
calculation you just developed).

Your new strategy will look like this:

In the PowerEditor, open the Strategy file named _CloseUp2 and insert the highlighted
portion from above. Save the revised strategy as _CloseUp3. Then, in TradeStation, apply
the strategies _CloseUp3 and TimeExit (Bars) LX to your sample chart (Figure 2-2).

Compound Expressions
In the previous section, you were introduced to simple expressions, which consist of a
single comparison. Regardless of the complexity of the calculations expressed on either
side of a relational operator, a simple expression only compares two values. In this
section, you’ll learn about compound expressions that contain multiple comparisons.

Example 2-3. Strategy named _CloseUp3.

if Close > High[1] + (High[1]- Low[1])/2 then

Buy next bar at market ;

Figure 2-2. Strategies _CloseUp3 and TimeExit (Bars) LX.

20 Comparisons and Conditions EasyLanguage for TradeStation
Condition Variables
In the last example, you may have noticed that the If…Then statement was starting to get
hard to read because the calculation was getting longer. EasyLanguage offers a solution
…you can give the condition a name and save its true/false value for later use. For your
convenience, EasyLanguage reserves the names Condition1 through Condition99 for this
purpose. All you need to do is assign an expression to the ConditionN variable and use
the variable in the If…Then statement. For example, the following two lines:

Condition1 = Close > High[1] + (High[1] - Low[1]) / 2 ;

if Condition1 then Buy next bar at market ;

are exactly the same as the single statement below:

if Close > High[1] + (High[1] - Low[1]) / 2 then

Buy next bar at market;

Notice that the If...Then statement in the first example is much easier to read. You’ll learn
more about variables and assignment statements later in this chapter.

AND - OR
Often, it is desirable to combine multiple comparisons in a statement. For example,
building on the previously created strategy, you may want to buy based on an increase in
the Volume of trades in addition to a higher price.

In EasyLanguage, you can combine several conditions in an If…Then statement. The
reserved words, AND and OR are used to create a compound expression. For example,
in the following:

if Condition1 and Condition2 then Buy next bar at market;

the compound expression is true if both the first condition AND the second condition are
true. If either Condition1 or Condition2 is false, the entire compound expression is false.

Just the opposite is true for the OR reserved word. In the following example:

if Condition1 or Condition2 then Buy next bar at market;

the compound expression is true if either the first condition OR the second condition is
true. If both Condition1 and Condition2 are false, the entire compound expression is
false.

When creating a compound expression with both the AND and OR reserved words, you
need to use parentheses to organize the terms of the expression so that the conditions are
evaluated in the proper order. For example, the following statement:

if Condition1 and Condition2 or Condition3 then

Buy next bar at market ;

is unclear because it has two possible combinations that make it true. See if you can
figure them out.

CHAPTER 2: Your First Trading Strategy More About Variables 21
To make the previous example clear, you need to use parentheses. Here are the two
possible valid combinations:

if (Condition1 AND Condition2) or Condition3 then

 Buy next bar at market ;

and

if Condition1 and (Condition2 or Condition3) then

 Buy next bar at market ;

Take a moment to make sure that you understand how these differ before you try to use
multiple conditions in a compound expression.

Now, back to work.

For the next example, you’ll be creating a strategy that buys into the market based on the
combination of two ideas. The first idea is based on the previously developed strategy
where you tested to see if the current bar’s close was greater than the previous bar’s high
by at least 50% of the bar’s range. The second idea is to test whether the trade volume on
the current bar is greater than the previous bar’s volume by at least 50%. You want to
generate a buy order when both conditions occur.

Create a new strategy named _CloseUpAndVolumeUp and enter the following
EasyLanguage instructions:

Condition1 = Close > High[1] + (High[1] - Low[1]) / 2 ;

Condition2 = Volume > Volume[1] * 1.5 ;

if Condition1 and Condition2 then Buy next bar at market ;

Example 2-4. Strategy named _CloseUpAndVolumeUp.

The first condition is the same as the one you developed in the previous _Closeup3
strategy and tests for a price rise. The second condition is used to test for an increase in
the level of trading activity. When both conditions are true, a buy order is generated. In
this simple example, you clearly see how one idea can be used to confirm another, which
demonstrates an important principle in strategy development.

Now, apply this strategy to your sample chart (along with TimeExit (Bars) LX) and
observe the buy orders.

More About Variables
Variables are used to save values that you will use later in your procedure to help make
your EasyLanguage instructions easier to read and understand. To do this in
EasyLanguage, you use an assignment statement, which begins with a variable name
followed by an equal sign and a value or expression to be saved.

22 More About Variables EasyLanguage for TradeStation
True/False and Numeric
When you perform a comparison in EasyLanguage, the result is a true/false value. In the
previous section, you learned about assigning a true/false value to a ConditionN variable
for use in an If…Then statement.

You can also assign, or save, the numeric result of a calculation to a variable in exactly
the same way. The reserved words Value1 through Value99 are available for this purpose.
For example, in the following:

Value1 = (High[1] - Low[1]) / 2 ;

the numeric result of the calculation to the right of the equal sign is saved as Value1. If
you use Value1 in another expression, such as:

Close > High[1] – Value1 ;

the number saved as Value1 in the previous assignment is used in the calculation.

Remember, a ConditionN variable is used to save a true/false value, and a ValueN
variable is used to save a numeric value. These reserved variables are automatically
initialized to false for Condition1 through Condition99 and to 0 for Value1 through
Value99.

Declaring Your Own Variables
In addition to using the standard EasyLanguage variable names (ConditionN and ValueN)
to save true/false and numeric values, you can create your own variable names. Instead
of trying to remember the difference between Value2 and Value43 in a calculation, you
could use more meaningful names such as FiveBarHigh or UpDayCount for your saved
values.

Before you can assign a value to your own variable, EasyLanguage must know its name.
This is done using a variable declaration statement. The reserved word “Variable” is
used to declare the name of a variable. As part of the declaration, you must include the
initial value for the variable within the parentheses following its name. Based on the
initial value you declare, the type of the variable will be either numeric or true/false. For
example, the following:

variable: BarRange(0) ;

variable: PriceUp(False) ;

declares two variables, one named BarRange and the other named PriceUp. The first
variable is numeric, since its initial value is the number “0”, and the second variable is
true/false, since its initial value is the condition “False.” In addition to being used to
specify the type of variable, the initial value also sets the starting value of the variable
for the first bar.

You can also use the reserved words “Var” or “Variables” instead of “Variable” to begin
the declaration statement. Also, instead of using separate declarative statements for each
variable, you can use a single declaration statement to declare a number of variables at
the same time by separating the names with commas, such as:

CHAPTER 2: Your First Trading Strategy EasyLanguage Dictionary 23
variables: BarRange(0), PriceUp(False), BuyPrice(50) ;

Remember, each declaration statement must end with a semicolon.

In the last strategy that you created, a part of the calculation included the value of a bar’s
range (the High minus the Low). The following strategy uses a numeric variable named
PrevBarRange to save the previous bar’s range and use it in a calculation:

variable: PrevBarRange(0) ;

PrevBarRange = High[1] - Low[1] ;

if Close > High[1] + PrevBarRange / 2 then

 Buy next bar at market;

Now, here’s another strategy that does exactly the same thing as above, but with one
important change that shows the real power of EasyLanguage:

variable: BarRange(0) ;

BarRange = High - Low ;

if Close > High[1] + BarRange[1] / 2 then

 Buy next bar at market ;

Notice that the variable BarRange is assigned the value of the current bar’s range.
However, the If…Then comparison refers to the value of the previous bar’s range by
nature of the “[1]” following the variable’s name. That’s right, even variables that you
create can reference values from previous bars!

EasyLanguage Dictionary
Instead of having to remember hundreds of reserved words, you can use the built-in
EasyLanguage Dictionary, accessable from the PowerEditor, to look up and paste them
into your procedure. The EasyLanguage Dictionary also includes information about any
parameters and data types (numeric, true/false, etc.) that are associated with the word.

Categories and data types
Reserved words in the EasyLanguage Dictionary are organized by category to make it
easy to locate a particular word. Simply click on a category name (in the left portion of
the EasyLanguage Dictionary window) to see the associated words under that category.
Click on a word (in the right portion of the window) to see a brief description of its

24 What is a Function? EasyLanguage for TradeStation
meaning. For a detailed description, click the Definition button in the lower left corner
of the EasyLanguage Dictionary dialog box (Figure 2-3).

For example, select the category “Strategy Position” and click on the word
“BarsSinceEntry” to see its meaning. To insert the word into your EasyLanguage
procedure, click the OK button.

Try looking up several words in the same category, such as “MarketPosition” and
“EntryPrice." Then paste them into your procedure. Notice that the word and its
parameters appear in the PowerEditor.

In upcoming examples, you’ll be using EasyLanguage words, such as MarketPosition,
that provide status about your strategy or order. These and many more values can be
found in the EasyLanguage Dictionary and in the TradeStation Help.

What is a Function?
Up to this point, you’ve created strategies that use comparisons and calculations based
on individual prices such as Close or the High of 2 bars ago. In the world of trading,
however, it’s very common to base your ideas on a range of prices, such as the average
High of the last 10 bars, or on the value of a common analysis calculation, such as the
Relative Strength Index (RSI). To support this, EasyLanguage lets you refer to secondary
calculations, called functions, that can be used in comparisons and calculations much like
variables. Each function has a name and returns a value based on some underlying
calculation.

EasyLanguage includes a large number of built-in functions, including common trading
indexes and price calculations. Much like with reserved words, functions can be accessed
from the EasyLanguage Dictionary. For example, one such function returns the highest

Figure 2-3. EasyLanguage Dictionary.

CHAPTER 2: Your First Trading Strategy Using a Function 25
value of a particular price across a range of bars. You specify the price you want to test
and the number of bars back you want to test as follows:

Value1 = Highest(Close, 5) ;

The values enclosed in parentheses are called parameters. The Highest function has two
parameters; the first specifies what price to look at and the second indicates how many
bars back to test. In this example, Highest looks for the highest Close price over the last
5 bars so that it can be assigned to variable Value1.

Although it is used much like a variable, a function has three important differences:

1. A function does not have to be declared.

2. You cannot assign a value to a function. A function returns a value
based on calculations that are defined when the function is created.

3. The same function can be referenced from many different trading
strategies and analysis techniques. You’ll learn more about this in
future examples.

In addition to the large library of standard functions, EasyLanguage also lets you write
your own functions based on calculations and parameters that you define. This powerful
feature allows you to create your own custom library of functions that might include the
most popular new market index or a set of time tested calculations that you’ve been
trading with for years. You’ll learn more about writing your own functions in a later
chapter.

Using a Function
Now, let’s look at writing a strategy that uses a function.

This strategy will look for the start of an uptrend, such as when a fast moving average
(short time-frame) crosses over a slow moving average (long time-frame), and will place

26 Using a Function EasyLanguage for TradeStation
an order to buy. You’ll use the Average function from the EasyLanguage Dictionary
along with the Cross Over relational operator as the basis for your comparison.

Create a new strategy named _MovAvgUp and type the following statement:

if Average(Close, 9) crosses over Average(Close, 18) then

Buy next bar at market ;

The Average function requires two parameters; the first is the price (open, high, close,
etc.) and the second is the number of days back on which to calculate the average. In this
example, Average is used to calculate both the fast moving average (9 days) and the slow
moving average (18 days) of the closing prices on your chart. When the fast moving
average value crosses over the slow, a buy order will be placed at the market price for the
next bar.

After you verify your strategy, apply _MovAvgUp and TimeExit (Bars) LX to your sample
chart (Figure 2-5) and you should see a buy order arrow near the start of each up trend.

Figure 2-4. Chart with indicator showing Fast and Slow Moving Averages.

Slow Moving Average

Fast Moving Average

CHAPTER 2: Your First Trading Strategy Inputs 27
In fact, because it is based on the fast moving average, the buy order will appear
approximately 9 bars after the trend starts.

 Inputs
Instead of using fixed values for the fast and slow moving average lengths in the
_MovAvgUp strategy, wouldn’t it be nice if you could change these values at the time you
apply a trading strategy to a chart. Well, you’re in luck, because EasyLanguage lets you
do just that!

The Input statement allows you to declare a named value that can be changed when you
apply the strategy or analysis technique to a chart. You can use Inputs in the strategy you
just created to allow the number of days for the fast and slow moving average to be
changed by the user instead of using the fixed values of 9 and 18.

Using Inputs
Go back and open the previously created strategy _MovAvgUp. Make the following
EasyLanguage changes so that the strategy looks like this:

inputs: FastLen(9), SlowLen(18) ;

if Average(Close, FastLen) Crosses Over Average(Close, SlowLen)

then Buy next bar at market ;

Much like when declaring a variable, you declare the name of each input along with its
initial value (in parentheses). Now you can use the named values in your calculations just
as you would the number. In this case, FastLen replaces the number 9 in the first average
and SlowLen replaces the number 18 in the second average.

Using the File - SaveAs menu sequence, create a new strategy named _MovAvgLength.
Go back to your chart and apply the strategies _MovAvgLength and TimeExit (Bars) LX
to your chart. This time, notice that under the Inputs column on the Format Strategy
dialog box there are values for the strategy _MovAvgLength. By selecting the strategy

Figure 2-5. Strategies _MovAvgUp and TimeExit (Bars) LX on a chart with the Mov Avg 2 Lines indicator.

28 Multiple Conditions and Actions EasyLanguage for TradeStation
and clicking the Inputs button, you can change the values of FastLen and SlowLen
(Figure 2-6). For more information on formatting inputs, see the TradeStation Help.

In addition to increasing the flexibility of your strategy, inputs allow you to use the
optimization feature to determine the optimal values for each input. For more
information, search the TradeStation Help.

Multiple Conditions and Actions
Earlier, you learned how the If…Then statement is used to perform an action whenever a
condition is true, such as:

if Close > High[1] then Buy next bar at market ;

But what if you want to have EasyLanguage perform more than one action when a
condition is true, such as generating a buy order and changing the value of a variable?

Begin…End
The reserved words Begin and End let you perform multiple actions with an If…Then
statement. In EasyLanguage, a group of statements bounded by the words Begin…End is
called a block statement. For example, the following strategy:

Figure 2-6. Format Strategy Inputs dialog box

CHAPTER 2: Your First Trading Strategy Multiple Conditions and Actions 29
variable: CountTheBuys(0) ;

Condition1 = Close > High[1] + Range[1] ;

if Condition1 then

 begin

 Buy next bar at market ;

 CountTheBuys = CountTheBuys + 1 ;

 end ;

...evaluates the condition and, if true, places a buy order and increments (adds one to) a
variable that counts the number of buys placed by this strategy. You can include any
number of statements between Begin and End. The statements are only executed if the
condition is true. If the condition is false, EasyLanguage skips to the word End and then
continues. Also, note that it’s common practice to indent the individual statements in a
block, but it is not required. The indents simply make it easier to read and understand that
the block is processed based on the If condition.

Frequently, you’ll want to have one condition evaluated only after another is true. For
example, you might want to check if you have a position in the market before evaluating
an exit condition. The concept of combining one or more If…Then within another
If…Then is called nesting. In the following:

variable: BarCounter(0) ;

if MarketPosition <> 0 then

 begin

 BarCounter = BarCounter + 1 ;

 if Close < Close[1] then

 begin

 Sell next bar at market ;

 BuyToCover next bar at market ;

 end ;

 end;

the first If condition is true if you have a position in the market from a previous buy or
short sell. If the first is true, the following occurs: 1) the variable BarCounter is
incremented, and, (2) the second If compares the current close with that of the previous
bar and exits long and short if the condition is true. If either the first or second conditions
are false, no action is taken. You can nest as many If…Then conditions as you choose.

Note: The reserved word MarketPosition is used to check the trade position for a bar
on your chart. A value of 1 indicates that you are in a long position, a value of -1
indicates a short position, and 0 means that you are flat. Refer to the EasyLanguage
Dictionary or search the TradeStation Help.

30 Types of Orders EasyLanguage for TradeStation
Types of Orders
Up to this point, you’ve seen examples of buy, sellshort, and exit statements used in
simple strategies that generate orders at the close of the bar being evaluated (which is the
default for EasyLanguage). In this section you’ll learn more about how EasyLanguage
generates different types of orders, including stop and limit orders.

A Buy statement establishes a long position (regardless of the current position), a
SellShort statement establishes a short position (regardless of the current position), and
a Sell or BuyToCover statement liquidates an existing position (either long or short
respectively).

One of the most important things to understand about TradeStation and EasyLanguage is
that orders are always generated at the close of the current bar and “sent” either at the
close of the current bar or on the next bar.

Note: In the context of paper trading, “sent” means you recieved that target price. In
an actual trading contaxt, “sent” means that you will be prompted to place, modify or
cancel the strategy generated order.

This Bar on Close
Orders are evaluated at the close of a bar and, by default, the orders are placed using the
bar’s closing price. You can also add the phrase ‘this bar on close’ after a Buy, SellShort,
Sell, or BuyToCover to do the same thing. For example:

if Condition1 then Buy this bar on Close ;

Next Bar at Market
A market order is placed at the price of the next available trade (the market price). For
example, if you are charting daily bars, the following:

if Condition1 then SellShort next bar at market;

order to sell short would be “sent” at the open of the next day using the opening market
price. Of course, there is no guarantee what the market price of the next trade might be,
so an ‘at market’ order could result in a trade at a price higher or lower than desired.

Or higher (same as Buy-Stop and SellShort-Limit)
Instead of relying on the market price, you can write a statement that places an order if
the next trade is at a price equal to the specified price or Higher. Depending on whether
you want to buy or sell short, EasyLanguage automatically generates the proper stop or
limit order based on your target price. For example,

if Condition1 then Buy next bar at 45 or higher ;

... generates a buy stop order for a price of 45 or greater, while:

if Condition1 then SellShort next bar at 68 or higher ;

CHAPTER 2: Your First Trading Strategy Types of Orders 31
... places a sell short limit order if the market trades at or above a price of 68.

It’s important to understand that an or Higher order is “sent” only when the specified
price condition is met during actual trading on the next bar. If the target price is not
reached, the order is not “sent”.

Note: Even though you’ve used or Higher to make your EasyLanguage easier to read
and understand, when actually placing the order with your broker you’ll need to use
the appropriate Buy-Stop or Sell-Limit terminology.

Or lower (same as Buy-Limit and SellShort-Stop)
You can also write a statement that places an order if the next trade is at a price equal to
the specified price or lower. EasyLanguage automatically generates the proper stop or
limit order based on your target price depending on whether you want to buy or sell short.
For example,

if Condition1 then Buy next bar at 33 or lower ;

... generates a buy limit order for a price of 33 or less, while:

if Condition1 then SellShort next bar at 42 or lower ;

...places a sell short stop order if the market trades at or below a price of 42.

Remember, the or Lower order is “sent” only when the specified price condition is met
during actual trading starting on the next bar. If the target price is not reached, the order
is not “sent”.

Note: Even though you’ve used or Lower to make your EasyLanguage easier to read
and understand, when actually placing the order with your broker you’ll need to use
the appropriate Buy-Limit or Sell-Stop terminology.

Points
Instead of needing to specify an absolute buy or sell short price when using or Higher
and or Lower, you can place an order that will be “sent” only when the price on the next
bar changes in the specified direction. A convenient way to do this is to add 1 point to a
current bar value and let TradeStation calculate the next higher price based on the
symbol’s minimum movement. A point represents the smallest increment on the Price
Scale for the symbol within TradeStation, while the minimum movement is the fewest
number of points allowed for trading the symbol.

For example, the following buy order will be “sent” as soon as the price on the next bar
exceeds the high of the current bar by any amount:

if Condition1 then
Buy next bar at High + 1 point or higher ;

32 Types of Orders EasyLanguage for TradeStation
It’s important to note that the reserved word point in TradeStation refers to the decimal
portion of a price and is typically set to 1/1000 (0.001) for stocks for maximum accuracy
in calculations. For more information about price values, search the TradeStation Help.

Big Points
While the price for a stock symbol typically represents the value of each share in dollars,
this is not necessarily true for other types of issues such as options and futures. For
example, if we look at the S&P500 futures contract, a one integer (full point) change in
price is valued at $250. The EasyLanguage reserved word BigPointValue is used to
represent the number of dollars associated with a one integer (full point) change in a
symbol’s price. Even though you don’t typically write entry orders in dollars, it’s useful
to understand the relationship between a symbol’s price and the real value of the
underlying asset. For example, the following buy order will be “sent” as soon as the price
on the next bar meets or exceeds the high of the current bar plus one full integer or
BigPoint:

if Condition1 then

Buy next bar at High + 1 stop;

Note: The digit "1" by itself implies one full integer point (a BigPoint) where in the
previous example "1 point" referred to a fractional point.

Quantity
If you do nothing else, orders are placed for the number of Fixed Units as shown on the
General tab of the Format Strategy dialog box. If you want to generate an order for a
specified number of contracts or shares, you would add a number before the word
‘shares’ or ‘contracts’ in your order statement. For example, the following:

if Condition1 then SellShort 100 shares at 66 or higher;

places a sell short order for 100 shares if any trade occurs on the next bar for a price of
66 or greater, while this example:

if Condition1 then Buy 12 contracts next bar at market;

will place a buy order for 12 contracts at the market price of the next trade.

Note: In EasyLanguage, the reserved words Shares and Contracts are synonomous.
They both refer to the number of items to purchase in a given trade. In other words, no
attempt is made to distinguish between them when a buy order is generated so that you
can use either word in a strategy to trade any type of symbol or market.

Order Conditions
In summary, instead of placing a simple buy or sell short order at the close of the current
bar, you can instruct TradeStation to place the order at the opening market price, or any
price that is equal to or higher/lower than a specified price, by using additional phrases

CHAPTER 2: Your First Trading Strategy Types of Orders 33
in your order statement. You can also specify how many shares/contracts to buy or sell
short if you don’t want to use the default value specified for your strategy.

34 Exercises and Review EasyLanguage for TradeStation
Exercises and Review

Review
Relational Operators are used in conditional expressions to compare values. The result
of such a comparison is either true or false.

If…Then statements are used to perform an action when a simple or complex conditional
expression is true.

Precedence of calculations is controlled through the use of parentheses. Operations
enclosed within parentheses are calculated first, followed by multiplication or division,
addition or subtraction, and relational comparisons.

Variables declarations must be performed before using a variable in a calculation
except for EasyLanguage’s built-in ValueN and ConditionN values.

EasyLanguage Dictionary can be used to paste any reserved word or function into a
procedure.

Inputs are used to specify values in a procedure. Inputs are passed as parameters along
with a function call or are set using the Inputs tab of an analysis technique.

Orders are processed at the close of the current bar. The four types of orders include:
Close orders, Market orders, Or Higher orders, and Or Lower orders.

Market orders buy or sell short at the price of the next available trade. Market orders put
in prior to the open of the next bar will be at the next bar’s opening price.

Or Higher orders are placed as Stop orders when buying and Limit orders when selling
short.

Or Lower orders are place as Stop orders when selling short and Limit orders when
buying.

Close orders are placed at the close of the current bar (strategy default).

CHAPTER 2: Your First Trading Strategy Exercises and Review 35
Exercises
(Answers are contained in Appendix A)

I. Mark the following either True or False (T or F).
1. Strategies are always complex EasyLanguage procedures.

2. Functions and variables return values.

3. The following is a numeric expression: Value1 + Value2 = Value3.

4. If…Then statements are used only in trading strategies.

5. Orders are always placed on the next bar.

6. A variable can be declared more than once in a procedure.

7. You can assign a value to any variable or input.

II. Identify each statement’s type using the letters below:

1. Condition1 = High > High[1] ;

2. if Close < Close[1] then Buy next bar at market ;

3. variable: BuyPrice(0), SellPrice(0) ;

4. Value10 = (Close[1] + Close[2]) / 2;

5. if Volume > Volume[1] then
 begin
 Value5 = Close[1] ;
 MyPrice = Close;
 end;

6. inputs: Price(0), Length(5);

7. if Close > Close[1] then Plot1(High, “UpClose”);

8. SlowAvg = Average(Close[1], 9);

A. Conditional statement

B. Declaration statement

C. Assignment Statement

36 Exercises and Review EasyLanguage for TradeStation
III. Write EasyLanguage statements for the following.
1. If today’s high is greater than yesterday’s close, buy 100 shares of a stock at tomor-

row’s open.

2. Buy as soon as the next bar’s price is greater than today’s high.

3. When the current bar closes up from the previous day’s high, buy 25 shares at a
price of $45 or higher.

4. When a stock’s close is higher than yesterday’s by 2 percent, you want to sell
another 100 shares.

5. If you are in a long position and today’s high is lower than yesterday’s close, then
you want to exit your position.

EasyLanguage for TradeStation
C H A P T E R 3

More About Writing Trading Strategies
In this chapter you’ll learn how to develop your ideas into complete strategies that
combine multiple entry and exit conditions. You will also be introduced to the use of
price data from more than one market. Finally, you’ll learn more about customizing
functions to take advantage of already developed ideas.
In addition to reading the topics and examples in this chapter, it is recommended that you
complete the exercises and review questions at the end of the chapter.

In This Chapter

Defining Your Trading Rules................. 38

Exit Orders ... 42

Multi-data Strategies 43

Custom Functions.............................44

Exercises and Review47

38 Defining Your Trading Rules EasyLanguage for TradeStation
Defining Your Trading Rules
As an experienced trader, you probably already have ideas that you’d like to develop into
trading strategies based on your observations, readings, and research. The power of
TradeStation and EasyLanguage is that you are provided with a comprehensive set of
tools for creating and optimizing strategies based on these ideas. Tools that let you 1)
observe trend changes on your charts, 2) develop entry and exit orders that respond to
identifiable trading patterns, and 3) historically test your ideas to increase the tradability
of your strategy. In the end, you want your trading strategies to reliably follow your rules
and be consistently profitable over time.

Set-up and entry
A key step in developing a trading strategy is to understand when and why you’re
entering the market, and how to do it. One popular method for doing this is called set-up
and entry. The idea behind set-up and entry is to evaluate the market potential before
actually placing an order. While it may not apply to all strategies, the set-up and entry
concept is well proven and might help you uncover new possibilities for your trading
rules.

Set-up
The set-up is used to identify conditions that must be present before making a decision
to enter the market. The set-up looks at when you should think about entering a trade but
does not actually place the trade. In essence, it’s telling you to get ready to enter because
the conditions could be right for a trade.

For example, in a trend-following strategy, a set-up would evaluate a change in market
direction, such as when the fast moving average crosses over the slow moving average,
or when the ADX indicates an increased trend strength. When your set-up proves to be
true, you enter a kind of “entry mode” where you start looking for another set of
conditions that will actually place the trade.

Although it’s possible to place trades based solely on set-ups, this may not be in your best
interest. For example, you wouldn’t want to trade every time the market changes
direction since that could result in many false trades that would cost you a lot of money
in commissions alone.

Be aware that the actual comparison used to identify a set-up condition should be based
on the type of strategy and market for which it’s designed. For example, are you looking
for a trend reversal, a swing in support or resistance, or perhaps a large gap in a volatile
market? The set-up conditions needed for each of these markets might be quite different.

Entry
An entry represents the condition or conditions that will cause the actual trade to be
placed once the rules for the set-up have been met. An entry condition confirms the
direction of the set-up and determines how the order should be placed. In other words,
once a set-up has placed you in “entry mode”, the entry is the event that will actually pull
the “trigger” and place the trade. It’s quite common to use more than one entry condition
with a given set-up. After all, you wouldn’t want to miss the big move just because one

CHAPTER 3: More About Writing Trading Strategies Defining Your Trading Rules 39
specific entry condition wasn’t true. For example, if your set-up gives you an uptrend
signal and your only entry rule was to buy if a particular key reversal bar pattern occurs,
you would miss other trading opportunities that might be equally valid entry conditions.

One of the important factors when developing entry rules is that, when all of your entries
are combined, they should capture every price move for which they are designed, based
on the matching set-up. In general, they should also confirm the direction indicated by
the set-up before placing the trade.

Much like with set-ups, you could trade with just entry conditions, but using both
together may provide a much stronger signal that can help eliminate the less profitable
trades. Also, using the combination of set-up and entry lets you focus on defining your
rules in a more objective way.

An example of a Buy order that uses a set-up and entry might be as follows:

if FastAvg crosses above SlowAvg and Close > Open then

Buy next bar at market ;

where the fast moving average crossing over the slow moving average identifies the start
of a trend (the set-up) and the Close > Open confirms the upward direction (the entry)
before a buy order is placed for the next bar. In this example, the set-up is the first
condition and the entry is the second.

Be aware that you can also use a conditional order as part of your entry strategy. For
example, in the following:

if _CloseUps(3) then Buy next bar at High or higher ;

a buy stop (or Higher) order is generated after three consecutive bars close above their
open (the set-up). The buy stop order is actually the entry condition since it states that the
order can be triggered only if the next bar’s price reaches or exceeds the current bar’s
High, thereby confirming the set-up. By the way, you’ll learn how the _CloseUps()
function works later in this chapter.

While there are limitless set-up and entry combinations, the important thing to remember
is that your entry condition should confirm the direction of your set-up condition before
generating a trade. Again, the set-up makes sure that the gun is pointing in the right
direction and the entry pulls the trigger to actually fire at the target.

When to exit and why…
Just as important as knowing when to enter a position is knowing when to exit a position.
Not only when, but why. For example, if the conditions that got you into the market are
valid, then when those conditions change, it may be time to get out. Or, you may simply
want to exit after being in the market for a fixed number of days. In any case, it’s
recommended that you think about how and why to exit so that you have a clear and
repeatable set of rules.

40 Defining Your Trading Rules EasyLanguage for TradeStation
For example, here are several possible exit scenarios:

• Conditions are changing and you want to take a profit.
• Your profit target was reached.
• You want to minimize a loss.
• The market is becoming too volatile.

Let’s take a moment to expand on the thought process you might go through when
creating an exit order to minimize a loss. At the moment you enter any trade, you should
decide how much you’re willing to give up if the trade doesn’t go in your favor. In order
to avoid losses greater than this amount, you might want to place a stop loss order with
your broker. Later, you’ll see how to write similar orders as part of a strategy.

Remember, planning your exits is as important as planning your entry strategy. For a
strategy to be successful, you need to give careful thought to each exit condition, since
having a clear exit plan can help protect you from indecision in trading situations where
seconds can translate into dollars.

Money Management
Beyond simply entering and exiting the market, you should give some thought to how
you want your trading strategy to help manage your money. In essence, how much will
each trade cost and how much do you want to risk.

One way of doing this is to use multiple trades to increase your long or short position by
adding or subtracting shares/contracts based on trend strength signals. This is called
pyramiding and it allows you to add or subtract shares from an established position in
separate trades. In this way, you limit how much you’re going to risk on each trade while
increasing your position as long as conditions are favorable or decreasing your holdings
as conditions weaken.

Another money management technique is to use stop orders, which are designed to lock
in gains while providing a safeguard against rapid market changes. This involves
deciding how many dollars or percentage points you are willing to lose from your current
position and adjusting the stop price with each trade so you can get out of your position
if the market moves below/above that price. This is designed to allow you to keep the
majority of your profits while quickly getting you out of the market when it goes against
you.

Entry Orders
You’ve already worked with examples of simple entry orders in the previous chapter. In
this section, you’ll be learning about writing more sophisticated orders and how to use
them to build complete trading strategies.

Entry orders are used to create a market position if none exists, or to reverse an existing
position. Typically, a trading strategy should have at least one entry order and at least two
exit orders (one for capturing profits and another for limiting losses).

CHAPTER 3: More About Writing Trading Strategies Defining Your Trading Rules 41
Creating a position
In EasyLanguage, you use buy and sell short orders to establish an entry position or add
to an existing position.

• A Buy statement creates a long entry position.
• A SellShort statement creates a short entry position.

If you are not in the market, a Buy order places you in a long position and a SellShort
order places you in a short position.

Orders that include either a Buy or SellShort statement are considered entry orders.

Reversing a position
Buy and SellShort statements also are used to reverse your market position. For example,
if you are already in the market with a long position, a SellShort statement actually closes
out the position (goes flat) and then, as part of the same trade, places a sell short order.
The reverse is true when you are short and use a Buy statement; EasyLanguage first
closes out the short position and then goes long.

The important thing to remember about Buy and SellShort statements is that they always
keep you in the market, either by reversing an existing position or by creating a new
position. You can’t be both long and short at the same time on a given chart.

Buy/SellShort
Up to this point, the sample entry orders that you created consisted of a single buy
statement. It’s quite possible to have multiple entry orders in a strategy that buy and sell
short based on different rules. To keep things straight, you can name each buy or sell
short statement by adding a name in parentheses after the reserved words Buy or
SellShort as in the following examples:

Each of these examples generates an order based on a different condition and will display
its order name next to the buy or sell short arrow on your chart, making it easy to see
which order was generated.

if Volume > Volume[1] then
Buy ("Volume up") 100 shares next barat market ;

if Close < Open then
SellShort ("Down Bar") next bar at 48 or lower ;

if Close > High[1] then Buy ("Higher close") next bar at market;

42 Exit Orders EasyLanguage for TradeStation
More importantly, you can exit a particular trade by referencing its name in the
appropriate Sell or BuyToCover statement. For example, the following buy statement:

if Close > High[1] then Buy ("CloseUp") next bar at Open ;

might have a matching exit order:

if Close < Low[1] then
Sell from entry ("CloseUp") next bar at market ;

that exits the trade “CloseUp” but doesn’t affect other open trades having a different
name.

Also, if you specify a number of shares to buy or sell short, you can increase or decrease
your position without completely closing it out.

Exit Orders
An exit order is the opposite of an entry order and is used to close out a market position.
Unlike a traditional investor who might enter the market and stay, a trader typically needs
to think about entering the market to catch a move while also planning how and when to
exit. For example, it’s quite common for a trader to buy into a trending market and exit
later when a profit target is met, even though the initial trend is continuing. And the
opposite is also true, where a trader might anticipate a movement in the market that fails
to develop, and decide to exit with a limited loss.

In general, there are two basic reasons to exit a position. One is to take a profit and the
other is to minimize a loss. It’s recommended that you consider both reasons and use at
least two exit conditions to accomplish these objectives in your strategies.

Closing a Position
In EasyLanguage, you use Sell and BuyToCover orders to close out a position (go flat).

• An Sell statement exits from a long position.
• An BuyToCover statement exits from a short position.

If you are not in the market, the Sell or BuyToCover statements are ignored by
TradeStation.

Sell/BuyToCover
Just like their entry counterparts, the Sell and BuyToCover statements can place orders of
any of the four basic types (see Types of Orders in Chapter 2). By default, orders are
placed at the close of the current bar. For example:

if Condition1 then Sell this bar on Close ;

places an order to sell at the closing price of the current bar. In addition, if you don’t
specify a number of contracts or shares, a Sell or BuyToCover statement closes all trades
for the matching type. In the above example, Sell closes out all long trades at the close of
the bar.

CHAPTER 3: More About Writing Trading Strategies Multi-data Strategies 43
Similarly, if you wanted to buy to cover a short position at the market price of the next
trade, you would write:

if Condition1 then BuyToCover next bar at market ;

If you allow multiple open trades in your strategy, you can specify the number of shares
or contracts to close by including “N shares” or “N contracts” after the exit order word,
where N is the number of contracts to close for each open trade. Be aware that this will
close N shares/contracts from each entry. For example, assume that your strategy had
generated four previous buy orders with five contracts per order. In this case, the
following exit statement:

if Condition1 then Sell 2 contracts this bar on Close;

would close out two contracts from each of the four long trades at the close of the current
bar. This would leave you with three open contracts in each of the long trades.

If you want to close out just two contracts from the first open trade, you would write the
following:

if Condition1 then Sell 2 contracts Total this bar on Close;

In this example, you would end up with three open contracts from the first long entry and
five open contracts in the remaining two long trades.

Another way to use an exit order is to place a stop or limit exit order at the same time you
establish the matching trade. For example, if your trade involves going long 200 shares
on a stock worth $120 per share (a trade value of $24,000), you might decide that you
only want to risk a maximum of 10% of the trade value (or $2400) if the market price
decreases. When you place your Buy order, you would also place a Sell Stop order at the
share price less 10% ($108 in this case). This way, if the stock price falls below your loss
limit price, an order will be sent to exit the position. Here is what the EasyLanguage
statements for both the Buy and Sell might look like:

inputs: OrderPrice(Close), RiskLoss(.10) ;

if High > Highest(High, 5)[1] then

 begin

 Buy 200 shares on next bar at OrderPrice stop ;

 Sell on next bar at OrderPrice * (1 - RiskLoss) or lower ;

 end ;

Notice the use of inputs to make the strategy more flexible by allowing you to set the
price and risk value at the time you apply the strategy to a chart.

Multi-data Strategies
A multi-data strategy makes use of TradeStation’s powerful ability to reference price and
trade information from more than one data stream. For example, let’s say that you want
to compare a stock’s price to the overall exchange index before making a buy or sell

44 Custom Functions EasyLanguage for TradeStation
decision. If you add the symbol for a stock and the symbol for its exchange index to your
chart, you can refer to either data stream from EasyLanguage. Typically, the charted
stock will be Data1 and the index will be Data2. In the example below:

Condition1 = Close of Data1 > Close[1] of Data1 ;

Condition2 = Low of Data2 < Low[1] of Data2 and

 Close of Data2 > Close[1] of Data2 ;
if Condition1 and Condition2 then

 Buy next bar at market ;

Condition1 is true if the current bar’s close is greater than the previous bar for the main
symbol (Data1) and Condition2 is true if a key reversal up occurs in the index (Data2).
In other words, if the stock price is up and the index is reversing up from the previous
bar, then buy.

By adding the phrase “of DataN” after a function, you can make it refer to prices from
the specified data stream, such as:

Value1 = Average(Close, 10) of Data2 ;

to get the 10-bar moving average of the closing price from the data stream applied as
Data2.

You can just as easily compare one stock or commodity against another, compare market
indexes, or look at the relationship between groups of issues. EasyLanguage allows you
to reference up to 50 data streams on a single chart, including the main data stream
(Data1) and 49 additional streams (Data2 through Data50 respectively). However, one
word of caution. You must be sure that you properly assign the correct symbol to the
desired DataN channel.

Custom Functions
Although there are dozens of functions built into TradeStation, you may find a need to
change a function or create your own. Once you understand how functions operate, you’ll
discover that it’s also easy to make your own custom functions based on those included
in the EasyLanguage Dictionary. You can easily copy the contents of these functions and
make your own variations that can be used in any strategy, indicator, or analysis
technique.

Let’s say that you’re developing an entry order based on the close being greater than the
open for the previous 3 bars. One way to do this might be to declare a true/false variable
and write a multiple condition If…Then to test each bar like this:

variable: CloseUp(False) ;

CloseUp = Close > Open ;

if CloseUp[1] and CloseUp[2] and CloseUp[3] then

Buy next bar at market ;

CHAPTER 3: More About Writing Trading Strategies Custom Functions 45
But what if you wanted to perform the same test over the past 5 bars, or the last 10? The
If…Then statement would get much too long and hard to read. The solution is to write a
custom function that is true when a condition of your choosing occurs on each of the last
N bars. This is easier than you might think. The EasyLanguage Dictionary already
includes a function called CountIf(condition,length) that counts the number of times a
condition occurs over a specified number of bars. For example, CountIf(Close>Open,10)
would return a value of 3 if the condition Close>Open happened 3 times during the last
10 bars.

So let’s go back to the previous example. We’ll write a function, based on CountIf, that
is true when a specified condition occurs on each of the previous N bars. First, we need
to write a comparison that tests whether the condition Close>Open occurs 3 times during
the last 3 bars. The EasyLanguage for this would be:

if CountIf(Close > Open, 3) = 3 then ACTION ;

When a condition occurs three times over the past three bars, it is the same as saying that
the condition occurred on each of the last 3 bars (the current bar and the previous two).

But, remember, we want to create a function that tests for the occurrence of our condition
for any number of previous bars. In the previous chapter, you learned about the idea of
using inputs to pre-set values before running a procedure. This is especially important
when writing a function. The parameters included after the function’s name become
inputs that are used in the function’s calculations and comparisons. Inputs within a
function do not have any initial value, but you must indicate the type of value that each
input represents (numeric, true/false, string). The function will require a numeric length
for its input like this:

inputs: Length(Numeric) ;

where Length is the number of consecutive occurrences that will make the function true.
Note that the data type (numeric) of an input and its matching parameter must be the
same.

Now, when you replace the length value in the previous comparison with the new input,
you get:

 if CountIf(Close > Open, Length) = Length then ACTION ;

where input Length replaces the number 3 in both the CountIf parameter and to the right
of the equal sign.

Now, create a new function named _CloseUps. Hint: In the New Function dialog box,
select TrueFalse under Return Type. Type the following EasyLanguage statements:

input: Length(Numeric) ;
if CountIf(Close > Open, Length) = Length then

_CloseUps = True
Else

_CloseUps = False ;

Example 3-1. Function _CloseUps.

46 Custom Functions EasyLanguage for TradeStation
Verify the function. Notice that, based on the condition, True or False is assigned to the
name of the function (_CloseUps in this case). This becomes the value of the function
and is always set by assigning an expression to the function’s name.

Now, create a new strategy named _CloseOpen and enter the following EasyLanguage
statement:

if _CloseUps(3) then Buy next bar at market;

Verify the strategy. This strategy places a buy order when 3 consecutive bars close higher
than they open. Remember, you could also replace the value "3" with an Input to make
your strategy more flexible.

Finally, apply both the _CloseOpen and TimeExit (Bars) strategies to your sample chart
and observe the Buy orders following each three-bar pattern where the close is greater
than the open (Figure 3-1).

The custom _CloseUps function you created for the _CloseOpen entry order can also be
used in any analysis technique where you need to test whether the condition occurs over
the previous N bars. Once it’s developed and proven, a function is a powerful tool that
may help make your EasyLanguage expressions easier to read and less prone to errors.

While creating your own functions is not difficult, it may not be necessary for you to ever
write one because the standard EasyLanguage Dictionary already includes a wide variety
of usable trading functions. To learn more about EasyLanguage and functions, it may be
useful to go into the PowerEditor and look at the EasyLanguage instructions for some of
the built-in functions. Also, additional reference material about functions can be found
by searching the TradeStation Help.

Figure 3-1. Strategy _CloseOpen.

CHAPTER 3: More About Writing Trading Strategies Exercises and Review 47
Exercises and Review

Review
Setup and Entry is a trading methodology that is based on the idea of using a setup to
establish an “entry mode” before actually using an entry to “trigger” the placement of an
order.

An Entry Order is a TradeStation procedure that is used to establish a long or short
position using the EasyLanguage words Buy and SellShort.

An Exit Order is a TradeStation procedure that closes out an open position. The reserved
word Sell closes out a long position and BuyToCover closes out a short position.

Stops are used to generate exit orders (stop or limit orders) that are designed to minimize
risk or capture profits when prices move. Risk avoidance stops are sometimes referred to
as Protective Stops.

Multi-data Strategies use more than one data stream for comparison and calculations.

Functions allow you to easily reference commonly used calculations. A large number of
built-in functions are in the EasyLanguage Dictionary. Users can also create their own
custom functions.

Exercises
(Answers are contained in Appendix A)

I. Mark the following either True or False (T or F).

1. Set-up and Entry are two standard signals in TradeStation.

2. A Buy statement enters a long position.

3. A SellShort statement exits the market.

4. The phrase Sell 2 Contracts closes out 2 contracts from each long trade.

5. A multi-data strategy looks at data from more than one chart at a time.

6. Multi-data strategies cannot place a buy order.

7. A trailing stop is used to exit from a trade after a specified number of days.

8. Every strategy must have an entry and an exit.

9. The default value for inputs in a function is different than for a study.

48 Exercises and Review EasyLanguage for TradeStation
II. Identify each order type using the letters below:

1. BuyToCover this bar at Close ;

2. if Close > High[1] then Buy next bar at market ;

3. if Volume < Volume[1] then SellShort this bar on Close;

4. if Average(Price, FastLen) crosses over Average(Price, SlowLen) then
Buy this bar at Close ;

5. if MarketPosition <> 1 then Sell next bar at PBase * (1 - Pcnt) stop ;

6. if Close > Close[1] then Buy next bar at 100 or lower ;

7. if Close > Open then
 begin
 Buy next bar at market ;
 Sell next bar at Close * .90 stop ;
 end ;

8. if _CloseUps(3) then Buy 50 shares next bar at market ;

A. Enter Long Position C. Close Out Long Position
B. Enter Short Position D. Close Out Short Position

EasyLanguage for TradeStation
C H A P T E R 4

Creating Indicators and Studies
In this chapter, you’ll learn how to use EasyLanguage to develop indicators and studies.
You will be introduced to the plot statement and to the use of charting for data analysis.
Finally, you’ll gain additional practice in translating trading ideas into EasyLanguage
instructions.

The material and examples in this chapter cover the data analysis side of developing your
trading ideas. To gain additional experience, it’s a good idea to complete the exercises
and review questions.

In This Chapter

Understanding the Flow 50

Your First Indicator 54

Writing Studies and Alerts 57

Using Inputs61

Exercises and Review62

50 Understanding the Flow EasyLanguage for TradeStation
Understanding the Flow
An important skill in developing trading ideas is the ability to visually identify trends and
patterns on a chart. The more you can identify relationships between prices and bars, the
easier it becomes to create your own trading rules and the EasyLanguage conditions used
to evaluate them.

In addition to letting you develop trading strategies and functions, EasyLanguage also
allows you to create other types of analysis techniques, such as indicators and studies. By
plotting graph lines, text, and other symbols on a chart, you can use indicators and studies
to help you see patterns that reveal market activity and trends.

Indicators
An indicator is the general name for an EasyLanguage analysis technique that calculates
and displays values based on price data changes for each bar.

For example, an indicator might draw reference lines or symbols on top of a chart, such
as the Mov Avg 2 Lines indicator (Figure 4-1) which plots lines for both the fast and slow
moving average.

Figure 4-1. Indicator Mov Avg 2 Lines.

Slow Moving Average

Fast Moving Average

CHAPTER 4: Creating Indicators and Studies Understanding the Flow 51
Another style of indicator plots information beneath your bar chart, such as the Volume
indicator (Figure 4-2) which shows a histogram of the trade volume for each bar.

Studies
A study is a special type of analysis technique that plots information on a chart in a
specific format. The different types of studies included with TradeStation are: ShowMe,
PaintBar, ActivityBar, and ProbabilityMap. Each has a distinctive appearance and
purpose.

ShowMe
A ShowMe study places a marker above or below any bar that matches the conditions
stated in the ShowMe procedure. Unlike a typical indicator that draws a continuous line
on or below a set of price bars, a ShowMe only marks the bars matching a specific

Figure 4-2. Indicator Volume histogram.

52 Understanding the Flow EasyLanguage for TradeStation
condition. For example, you might use a ShowMe to mark every inside bar, as in the
following example (Figure 4-3):

An inside bar is one that could fit ‘inside’ the previous bar, or where the bar’s High is
less than the previous High and the bar’s Low is greater than the previous Low. Notice
how the circle above each bar calls attention to this condition without the cluttered
appearance associated with some indicators.

PaintBar
A PaintBar study changes the color of bars that match a stated condition. For example,
the Momentum Increasing PaintBar (Figure 4-4) colors each bar where the momentum is
increasing. Although most PaintBar studies color the entire length of a bar, it’s possible
to color only a selected portion of a bar.

Figure 4-3. ShowMe study Inside Bar.

Figure 4-4. PaintBar study Momentum Increasing.

CHAPTER 4: Creating Indicators and Studies Understanding the Flow 53
ActivityBar
An ActivityBar study is designed to let you actually look at the trades that make up a bar
by extending colored or shaded “activity bars” to either side of the vertical price bar. For
example, in the ActivityBar study named Price Distribution (Figure 4-5), you can see
how prices developed during the trading period of each bar.

ProbabilityMap
The ProbabilityMap study (Figure 4-6) lets us view potential price changes using
probability calculations derived from the symbol’s recent trading history. For example,
you can extend a chart into the future to get an idea of the direction of potential price
movement.

Reading Data
Just like with trading strategies, an indicator or study looks at the price data for each bar
on the chart, starting from the left and moving to the right (refer to Chapter 1, Overview).
In EasyLanguage, the current bar is the name given to the bar that your procedure is

Figure 4-5. ActivityBar study Price Distribution.

Figure 4-6. ProbabilityMap study.

54 Your First Indicator EasyLanguage for TradeStation
currently evaluating. On each bar, EasyLanguage reads the current bar’s price data and
typically compares it with data from previous bars.

In EasyLanguage, the closing price for the current bar is written as Close while the same
price from the previous bar (one bar ago) is Close[1]. For example, if you wanted to
perform some action when the current bar’s close is greater than the high of the previous
bar, you would write:

if Close > High[1] then ACTION ;

which reads “if the closing price of the current bar is greater than the high price of one
bar ago, then perform a designated action.”

For indicators and studies, the action is to plot a line or symbol at some location on a chart
or grid. The following sections describe the differences between these analysis
techniques and their plotting formats.

Your First Indicator
Writing indicators involves many of the EasyLanguage skills that you already used when
creating trading strategies. Unlike strategies, indicators do not place orders, but they do
have the ability to display multiple plots on your chart based on price calculations and
comparisons.

Plot statement
The plot statement is used in indicators and studies to draw lines and text on a chart. The
simplest form consists of a value to be plotted. In EasyLanguage, the plot statement looks
like this:

Plot1(High) ;
Value

The Value parameter is plotted using your choice of continuous lines, histogram bars, or
other symbols. The appearance of your plot (color, thickness, etc.) can be changed using
the settings under the Style and Color tabs on the Format Indicator dialog box. A plot
statement can optionally include a Text Field that helps identify the plot on the Style and/
or Color tabs.

Plot1(High, "My Plot Name") ;

Value Text Field (optional)

You can have as many as four plot statements (Plot1 through Plot4) in your procedure.

CHAPTER 4: Creating Indicators and Studies Your First Indicator 55
Now, let’s write a simple indicator that plots a line between the closing price of each bar.
Create a new Indicator named _Close, then type the following EasyLanguage
instruction:

Plot1(Close) ;

Example 4-1. Indicator _Close.

Verify your indicator.

Switch back to your sample chart and use the Insert – Indicator menu sequence to select
the _Close indicator you just created, then click OK. From the Format Indicator dialog
box, click the Scaling tab and make sure that the Scale Type is set to Same As Symbol.
This instructs TradeStation to plot the indicator on top of the bars on your chart. Click
OK to apply the indicator to your chart, and observe the line drawn between the close of
each bar. It should look something like this:

Style and Scaling
The style options control the visual characteristics of an analysis technique (color, line
type and style, weight, etc.) while the scaling options determine where the analysis
technique will be plotted relative to the primary symbol chart (overlaid on the bars,
beneath the bars, etc.). You can change the style and scaling of your analysis technique
at the time you apply it to a chart, or you can set the default properties of your analysis
technique as you create it.

Let’s try creating another indicator and learn how to change the default style and scaling
properties. Create a new Indicator named _Volume, and type in the following
EasyLanguage statement:

Plot1(Volume) ;

Example 4-2. Indicator _Volume.

Figure 4-7. Simple Indicator _Close.

56 Your First Indicator EasyLanguage for TradeStation
Verify your new _Volume indicator.

While the PowerEditor window is still active, use the Format - Properties menu
sequence to display the Indicator Properties dialog box. Click the Chart Style tab and
select Histogram as the line Type. Observe the change in appearance of the sample plot
at the bottom of the dialog box (see Figure 4-8). Also, on the Scaling tab, make sure that
the Scale Type is set to Screen so that your plot appears in a subgraph beneath your bar
chart. For reference, look at the options on the other tabs to become familiar with the
default appearance of your analysis technique.

After you’re done setting the properties, click OK. Switch back to your sample chart and
apply it the indicator _Volume. The indicator should appear beneath your chart as shown
in Figure 4-9.

Figure 4-8. Indicator Properties.

CHAPTER 4: Creating Indicators and Studies Writing Studies and Alerts 57
If you didn’t remove the previous _Close indicator, it may still be on your chart as well.

But don’t worry, you can combine multiple indicators on a chart without any difficulty.
By the way, to remove an indicator or study from your chart, click on it (observe the
square selection markers) and then press the DELETE key.

Writing Studies and Alerts
In addition to writing your own indicators, you can also create custom ShowMe,
PaintBar, ActivityBar, and ProbabilityMap studies. Even though they all plot
information on a chart, they each do it in a different way. For example, indicators
typically plot the same type of information from bar to bar, such as a continuous moving
average line or a histogram showing each bar’s volume. On the other hand, a ShowMe or
PaintBar study commonly marks selected bars based on the result of a conditional
expression. In this way, studies are similar to trading strategies, except that studies do not
place orders. Finally, ActivityBar and ProbabilityMap studies make use of additional
plotting functions beyond the basic plot statement and require a more advanced
understanding of EasyLanguage.

Writing a ShowMe Study
A ShowMe study places a marker on a bar based on a conditional expression. It is
common to use ShowMe studies to visually identify key price events in preparation for
using the idea in a trading strategy. For example, you might use a ShowMe to mark each
bar that is preceded by a series of up closes for a specified number of days. Or, a ShowMe
could mark each inside bar, where the high is less than the previous high and the low is
greater than the previous low.

By default, the plot statement for a ShowMe study draws a marker at the specified price
(typically the bar’s high for upward movement and the low for downward movement).
You can change the plot style and color for a ShowMe using tabbed items in the
Properties dialog box.

Figure 4-9. Indicator named _Volume.

58 Writing Studies and Alerts EasyLanguage for TradeStation
Now, let’s create a ShowMe study that marks a bar that is preceded by three bars that
closed higher than they opened. Create a new ShowMe file named _3UpCloses. Type the
following EasyLanguage instructions:

Variable: UpClose(False);

UpClose = Close > Open ;

if UpClose[1] and UpClose[2] and UpClose[3] then

Plot1(High) ;

Example 4-3. ShowMe study _3UpCloses.

Verify the ShowMe study. Go to your sample TradeStation chart and apply the ShowMe
named _3UpCloses to your data. Observe that each marked bar follows three up closes.

You could also have written the above ShowMe using the _CloseUps function that you
created in the previous chapter. The following EasyLanguage statement does exactly the
same thing as the several statements listed above:

if _CloseUps(3)[1] then Plot1(High, "3UpCloses") ;

Note: Look at the use of the “[1]” (of 1 bar ago) after the _CloseUps function. This
instructs the function to test for 3 consecutive occurrences of Close>Open starting
with the previous bar. If you eliminate the “[1]” from the statement, the test would
include the current bar and the previous 2 bars (still a total of 3 consecutive bars).

Although both of the above examples are valid, the _CloseUps variation gives you more
flexibility since you can easily use inputs for the function’s parameters and have a
ShowMe that can look for a number of different conditions. The resulting EasyLanguage
statements for the new ShowMe named _ShowCloseUp would look like:

inputs: Length(3) ;

if _CloseUps(Length)[1] then

Plot1(High, "_ShowCloseUp") ;

Example 4-4. ShowMe study _ShowCloseUp.

Create a ShowMe named _ShowCloseUp using the above statements. Apply it to a chart
and observe that it produces exactly the same plot as the _3UpCloses example. However,
the new ShowMe lets you change the length when it’s applied to a chart, making it much
more flexible.

CHAPTER 4: Creating Indicators and Studies Writing Studies and Alerts 59
Writing a PaintBar Study
A PaintBar study changes the appearance of a bar based on a conditional expression.
PaintBar studies make is easy to visually identify a series of bars that share a common
characteristic.

Instead of using a single plot statement to mark a bar, the PaintBar study uses a pair of
plot statements to indicate the color or style change on a bar. The first plot specifies
where to start painting the bar and the second plot specifies where to stop painting the
bar. For example, the following pair of plots:

if Condition1 then

 Begin

 Plot1(High, "Start_High") ;

 Plot2(Low, "End_Low") ;

 End ;

paints the entire length of each bar (from the High price to the Low price) where
Condition1 is true. You could just as easily paint only a part of the bar, from the close to
the open, for instance. You can change the plot style and color for a PaintBar using
tabbed items in the Properties dialog box.

Now, let’s create a PaintBar study that marks a series of bars that are trending up based
on the fast moving average being greater than the slow moving average. Create a new
PaintBar file named _BullAvgs. Type the following EasyLanguage instructions:

variables: FastAvg(0), SlowAvg(0) ;

FastAvg = Average(Close, 9) ;

SlowAvg = Average(Close, 18) ;

if FastAvg > SlowAvg then begin

Plot1(High, "BarHigh") ;

Plot2(Low, "BarLow") ;

end ;

Example 4-5. PaintBar study _BullAvgs.

Verify the PaintBar study. Go to your sample TradeStation chart and apply the PaintBar
named _BullAvgs to your data. Observe the marked bars. Now, apply the Mov Avg 2

60 Writing Studies and Alerts EasyLanguage for TradeStation
Lines indicator to your chart and notice that the PaintBar study has marked all bars that
are part of the upward trending cycle (see Figure 4-10).

In the previous EasyLanguage example, notice the use of the block reserved words
Begin…End as part of the If…Then statement. Remember, this allows EasyLanguage to
perform more than one action if the condition is true.

Writing Alerts
An alert is another type of action that an indicator or study can perform. Instead of
drawing a line or symbol on a chart, an alert displays an ‘alert’ message box on your
monitor and sends an alert summary message to the Message Center. For example, when
a pair of moving average lines cross, an alert could be generated informing you of the
cross over condition.

Alerts are triggered based on the last bar in the chart. That means that an alert message
will be produced whenever a specific alert condition is true for the last bar in the chart.
In the following example:

if Close > High[1] then Alert ;

an alert message will appear whenever the close of the last bar is greater than the high of
the previous bar. However, if the last bar closes lower than the previous bar’s high, no
alert is generated even if the condition might have been true on previous bars since alerts
are only valid for the last complete bar on a chart.

When writing and using alerts, you need to be sure that the Enable Alert box is checked
on the Alerts tab of the Format [Analysis Technique] dialog box when you apply an
indicator or a study to your chart. You can also set this property when you create the
indicator/study by changing the Properties from the PowerEditor.

Figure 4-10. PaintBar study _BullAvgs along with the Mov Avg 2 lines indicator.

CHAPTER 4: Creating Indicators and Studies Using Inputs 61
Using Inputs
As you create your own indicators and studies, you should think about the idea of using
inputs for values that you might want to change when you apply the indicator and study
to your chart. For example, with an indicator that uses a pair of moving averages, you
could use inputs to set the number of bars on which to calculate both the fast and the slow
averages. This increases the flexibility of your analysis techniques by letting the user set
the input values when applying them to a chart.

Let’s make an indicator based on one that you created earlier. Go back to the indicator
you created earlier named _Volume. You’re going to add a second plot that shows the
moving average for the volume over the past N bars. You’ll be using the Average
function from the EasyLanguage Dictionary. In addition, you’ll use an input to set the
number of days on which to compute the average. Change your EasyLanguage statements
to read:

inputs: Length(10) ;

variable: AvgVol(0) ;

AvgVol = Average(Volume, Length) ;

Plot1(Volume, "VolumeBars") ;

Plot2(AvgVol, "AvgVol") ;

Example 4-6. Indicator _VolumeAvg.

Use the File - Save As menu sequence and give your new indicator the name
_VolumeAvg. Verify the indicator. Switch to your sample chart and insert the new
indicator. The new indicator plots a histogram of the volume and also includes a plot of
the 10-day average volume (see Figure 4-11).

Since you used an input for the length of the average in the _VolumeAvg indicator, you
can change the value of Length from the Inputs tab on the Format Indicator dialog box
whenever you insert the indicator.

Figure 4-11. Indicator _VolumeAvg.

62 Exercises and Review EasyLanguage for TradeStation
Exercises and Review

Review
Analysis Technique is an EasyLanguage procedure used to analyze price data. All
indicators, studies, and trading strategies are considered analysis techniques.

ShowMe is a particular type of study that places a marker above or below a bar that
matches one or more conditions. ShowMe studies are best at identifying occurrences
such as a key reversal or a moving average crossover.

PaintBar is a type of study that changes the color or style of bars matching a set of
conditions. PaintBar studies are best at identifying modes such as a group of bars that are
part of an uptrend.

ActivityBar is an EasyLanguage study type that builds a set of secondary bars to the right
or left of a bar so that you can see trading activity within a bar.

ProbabilityMap is a type of study that allows you to observe probable price changes
based on recent history.

The Plot statement draws lines and symbols on a chart at designated price points. It is
used in indicators and studies.

An Alert statement produces an on-screen message when a particular price event occurs
and places a corresponding entry in the tracking center.

Exercises
(Answers are contained in Appendix A)

I. Mark the following either True or False (T or F).
1. An indicator is not an analysis technique.

2. A ShowMe study changes the color of a bar based on a condition.

3. All indicators and studies must include a plot statement.

4. Alerts occur when a condition is true on any bar.

5. A PaintBar study uses at least two plot statements to draw on a chart.

6. Line styles and scaling must be set at the time an analysis technique is applied to a
chart.

EasyLanguage for TradeStation
C H A P T E R 5

More About EasyLanguage
In this chapter, you’ll learn more about the power and flexibility of EasyLanguage.
You’ll be introduced to additional terms and data types that increase the sophistication
of your strategies and analysis techniques.
Many of the features described in this section are for advanced users but should be of
interest to all. It is recommended that you complete the exercises and review questions
at the end of the chapter to get the most out of this material.

In This Chapter

Advanced Grammar and Data Types 64

Advanced Structures 65

More About Variables 68

Additional Resources69

Exercises and Review70

64 Advanced Grammar and Data Types EasyLanguage for TradeStation
Advanced Grammar and Data Types
In the previous chapters you learned the basic vocabulary and structure of EasyLanguage.
Now it’s time to take a quick look at some advanced features.

Qualifiers
Whenever you use a price value, such as Close or High, in a calculation or comparison
it is assumed that you are referring to the prices associated with the primary data stream,
or Data1. This default operation of EasyLanguage makes simple instructions easier to
read and understand. However, if you are working with multi-data charts and analysis
techniques, you can also refer to prices from another data stream by using the data
qualifier “of xxx” after each price value. For example, you might want to place a buy
order if the closing price from two different data streams has increased from the previous
bar:

Condition1 = Close of Data1 > Close[1] of Data1 ;

Condition2 = Close of Data2 > Close[1] of Data2 ;

if Condition1 and Condition2 then

Buy next bar at market ;

Remember, each data stream can reference prices for each bar in the stream for a total of
MaxBarsBack.

In addition to the qualifiers for Data1 through Data50 (of Data1…of Data50) there is a
separate qualifier for ActivityBar data (of ActivityData). For more information on
multiple data streams, see the TradeStation Help.

Text Values
In addition to the two basic data types (numeric and true/false), EasyLanguage also has
limited support for text values (also known as a text string in computer jargon). A text
string is a series of characters within quotation marks as follows:

variables: MyString1(""), MyString2("") ;

MyString1 = "A series of characters " ;

MyString2 = "or words" ;

It’s important to note that you must initialize a variable using a string (such as a pair of
quotation marks) before it can be assigned a text value.

EasyLanguage allows you to combine text strings for use within Print statements or in
messages by using the plus (+) operator. In this example:

MyString3 = MyString1 + MyString2 ;

the variable MyString3 will contain a single text string “A series of characters or words”
made up from the two phrases in MyString1 and MyString2.

CHAPTER 5: More About EasyLanguage Advanced Structures 65
The ability to build text strings is useful with the Print or Commentary statements.
Sending text to the Print Log or to the Commentary window helps when debugging
(troubleshooting) your indicators, studies, and strategies. It allows you to see actual
written values that can help track down errors in your conditions or calculations.

For example, you could create a text string and use the Print statement to send it to the
Print Log along with other price information, such as the symbol name, using a Print
statement like this:

variable: MyText("");

MyText = "My stock symbol is: " ;
Print(MyText, GetSymbolName) ;

The resulting Print Log entry would read:

My stock symbol is: MSFT

You can also send text to a file or the printer. For more information, see the TradeStation
Help.

Advanced Structures

If…Then…Else
Since a standard If…Then statement performs an action only when the condition is true,
there are times when you might want to perform an alternate action when the condition
is false. In that case, you would use the If…Then…Else statement which, in English, reads
“if a condition is true, then perform an action, or else do a different action.”

For example, you might want to buy if the current bar closes up and sell if it doesn’t, as
in this strategy:

if Close > Close[1] then

Buy 20 shares next bar at market

else

Sell 10 shares next bar at market ;

You can perform multiple actions after either the Then or Else portion of the statement
by using the block Begin…End words before and after your action instructions. An
example of the block form of the If…Then…Else would be:

if Close > High[1] then

 begin

 Value1 = 10 ;

 Condition1 = true ;

 end

else

66 Advanced Structures EasyLanguage for TradeStation
 begin

 Value1 = 20 ;

 Condition1 = false ;

 end ;

Notice that there are no semicolons after the words Begin and no semicolon after the first
End. That’s because these are considered part of the complete If…Then…Else statement.
If you put a semicolon in the wrong place, you will get a verification error message as a
reminder.

Loops
In trading, you may want to perform operations on a range of values, such as calculating
the average price for the last 10 bars. In fact, that’s exactly what many EasyLanguage
functions do by ‘looping’ through a series of repetitive calculations. There are two
EasyLanguage statements that can be used for this purpose. The first of these is the
For…Begin statement that loops for a specified number of times, and the second is the
While…Begin statement that loops as long as a condition remains true.

For…Begin
The purpose of a For…Begin loop is to perform a set of actions a specified number of
times. A counter variable is used to count the number of steps through the loop based on
the starting and ending values that appear after the equal sign. The EasyLanguage
statements that appear between the Begin…End reserved words are processed each time
through the loop.

Look at the following general example:

for Value1 = 0 To 5

 begin

 ACTIONS

 end ;

The first time through the For loop, the value of the counter variable (Value1) is set to 0
and the statements (ACTIONS) between Begin and End are processed. When the bottom
of the loop is reached, EasyLanguage moves back to the top of the loop, increments the
value of the counter variable (Value1), and performs the ACTIONS again. In the above
example, the loop would be executed 6 times using counter values of 0, 1, 2, 3, 4, 5.

To make a backward counting For...Begin loop, replace the word To with the word
DownTo as in the following example:

variable: MyValue(0) ;
for MyValue = 5 DownTo 1

 begin
 ACTIONS ;
 end ;

CHAPTER 5: More About EasyLanguage Advanced Structures 67
the ACTIONS in this loop will be executed 5 times with MyValue containing values
starting with 5 and ending at 1.

The counter variable may be either a built-in variable (Value1 through Value99) or any
user declared numeric variable.

While…Begin
The While…Begin loop is used to execute a block of statements an indefinite number of
times. If the condition following the word While is true, the statements between
Begin…End are processed. When the End is reached, EasyLanguage returns to the top of
the loop and tests the condition again. The loop repeats as long as the condition following
the word While remains true.

It’s important to understand that a While…Begin loop has the potential of running
indefinitely. As long as the condition is true, the statements in the loop will be processed.
Therefore, it’s important that you use a condition that changes from true to false to avoid
getting an application error. Also, be aware that if the condition starts out false, the
statements in the loop will never be processed.

Now, let’s write an indicator that uses a While…Begin loop to calculate the week-to-date
trade volume. Create an indicator named _VolumeWeek and type the following
EasyLanguage instructions:

variable: DaysAgo(0), TotalVolume(0) ;

TotalVolume = Volume ;

DaysAgo = 1 ;

while DayOfWeek(Date) > DayOfWeek(Date[DaysAgo])

 begin

 TotalVolume = TotalVolume + Volume[DaysAgo] ;

 DaysAgo = DaysAgo + 1 ;

 end ;

Plot1(TotalVolume) ;

Example 5-1. Indicator _VolumeWeek.

The TotalVolume variable holds the total volume for the week and the DaysAgo variable
is used to reference previous bars. We use the DayOfWeek function to get a numeric value
for each week day, where Monday is 1 and Friday is 5. As long as the current bar’s day
is greater than any previous bar, the loop adds the previous bar’s volume to the total. For
example, on Thursday, the current bar’s day value is 4 and the loop adds the volume for
Wednesday (3), Tuesday (2), and Monday (1) of the same week. The condition is false
when the previous bar’s day value is 5 which means that the loop has reached Friday of
the prior week.

68 More About Variables EasyLanguage for TradeStation
Now, verify the indicator and apply it to your sample chart in TradeStation using a
Histogram format style. The resulting indicator shows increasing volume bars for each
day during a week (Figure 5-1).

Series Functions
A series function is an advanced type of function that refers to itself within its
calculations. The capability to reference a previous value makes it quite easy to create a
function that maintains a running total. For example, in this simple one-line function:

VolTotal = VolTotal[1] + Volume ;

the current bar’s volume is added to the total that was calculated by the function on the
previous bar (VolTotal[1] is its value 1 bar ago).

While this might seem complicated at first, it’s possible because of the way that
EasyLanguage lets you refer to data from previous bars. This type of calculation is also
called recursive because it refers to itself over and over again. It is best used only by
experienced EasyLanguage developers.

More About Variables

Arrays
While a regular variable stores a single value (either numeric or true/false), an array lets
you store multiple values under the same name. When you declare an array, you must
specify the maximum number of elements (values) that can be stored, and an initial value
for all of the elements. Use square brackets to specify the number of array elements and
parentheses for the initial value of each element. For example, the following statement:

Array: Prices[3](0) ;

Figure 5-1. Indicator _VolumeWeek .

CHAPTER 5: More About EasyLanguage Additional Resources 69
declares an array named Prices that will contain 3 elements, each of which has an initial
value of zero. When used in calculations, each array element is referenced by adding the
element number after the array as follows:

Prices[1]= 100 ;

Prices[2]= 200 ;

Prices[3]= 300 ;

...where element 1 is assigned a value of 100, element 2 becomes 200, and element 3
stores 300. Arrays are often used in loops to store related values across a range of bars.
In fact, EasyLanguage price data values such as Close and Volume are actually a type of
array, where the element number refers to the “number of bars ago.”

Additional Resources
While this book provides you with a general introduction to using EasyLanguage, it is
not intended to be a complete reference manual. To help you get the most out of
EasyLanguage, a variety of additional resources are available.

TradeStation Help
The TradeStation Help provides documentation on the purpose and use of the
EasyLanguage functions and analysis techniques as well as instructions on applying
strategies, studies, and indicators to your TradeStation charts. It contains a detailed
explanation of each built-in indicator, study, and strategy.

EasyLanguage Support
To assist customers in learning how to use EasyLanguage to accomplish specific goals,
the EasyLanguage Support Department offers written answers to questions that are
submitted by e-mail, fax, or standard mail. For example, if you are having problems
understanding a particular calculation or comparison, the EasyLanguage Support
Department can provide you with a plain language explanation of the approach along
with sample EasyLanguage statements. You can reach the EasyLanguage Support
Department at the e-mail address:

EasyLanguage@TradeStation.com

The EasyLanguage Support Department is not equipped to create custom studies or
strategies and does not troubleshoot EasyLanguage procedures written by you or third-
party sources.

70 Exercises and Review EasyLanguage for TradeStation
Exercises and Review

Review
A Qualifier is used to specify an alternate data source (Data1...Data50) for standard
price values such as Close, Open, OpenInt, etc. By default, these price values assume
Data1.

Strings are a data type used to store text.

If...Then...Else statements perform one action when a condition is true and an alternate
action when the same condition is false.

For...Begin is a loop that performs a set of actions a specified number of times based on
the value of a counter.

A While...Begin loop repeatedly performs actions for as long as the controlling condition
is true.

Series refers to an advanced type of function that refers to previous values of itself within
its calculations.

An Array is a special type of variable that allows you to store a series of values under
the same name and to use a number (an index) to tell them apart. Arrays are often used
with loops to store values based on successive calculations that use a counter as an index
number. Because EasyLanguage allocates space for each index number, avoid declaring
an array larger than necessary.

Exercises
(Answers are contained in Appendix A)

I. Mark the following either True or False (T or F).
1. A qualifier is used to a change the data source.

2. Values in an array cannot be changed.

3. An If…Then…Else statement is a type of loop.

4. A While…Begin loop is only executed when a condition is true.

5. An array must have at least 10 elements.

6. The counter variable in a For…Begin loop is always incremented by 1.

7. An array index can be a variable.

8. With If…Then…Else, an action is taken when a condition is true or false.

CHAPTER 5: More About EasyLanguage Exercises and Review 71
II. Identify what type of structure is described using the letters below:

1. You want to count the number of bars that closed higher than they opened over the
past 10 bars.

2. An action is performed only when a condition is true.

3. The same action is repeated as long as the close is greater than a bar ago.

4. One action is performed when High < High[1] and another when High > High[1].

5. A moving average is calculated over the last 7 bars.

6. A buy signal is generated after 3 days of an up trend.

A. For…Begin

B. While…Begin

C. If…Then

D. If…Then…Else

72 Exercises and Review EasyLanguage for TradeStation

EasyLanguage for TradeStation
C H A P T E R 6

ShowMe the Strategy
In this chapter, you’ll examine the conditions used in a study and learn how they can be
used as the basis for entry and exit strategies. Rather than showing you a single example,
this chapter builds on a basic idea and explains alternate methods for expressing
conditions and values. The important concept to understand is that there is no one ’right’
way of doing things with EasyLanguage, but, rather, it provides you the flexibility to
create statements that reflect any level of sophistication, from simple bar comparisions
to advanced programming constructs.
The material and examples in this chapter are intended to provide you with a general
understanding of EasyLanguage and should not be viewed as an endorsement of any
particilar analysis techniques or trading ideas. It is recommended that you complete the
exercises and review questions at the end of this chapter to reinforce your learning.

In This Chapter

ShowMe and PaintBar Studies74

The Strategy Please.....................................77

Summary...78

Exercises and Review79

74 ShowMe and PaintBar Studies EasyLanguage for TradeStation
ShowMe and PaintBar Studies
One of the common characteristics of ShowMe and PaintBar studies is that they mark
bars based on a condition. A ShowMe study places the marker above or below the bar on
which the condition is true, while a PaintBar study changes the color of a bar that meets
a specified criteria. The important thing to note is that, in both types of studies, a bar is
marked based on whether a conditional statement is true for that bar. This makes studies
a good place to start when looking for conditional ideas that might be useful in trading
strategies.

Key Reversal ShowMe - Previous Bar
Let’s start with a common bar pattern called a Key Reversal that indicates a change in
price movement. First, we’ll look at a Key Reveral Up where the Low price of the current
bar is down from the previous bar and the Close of the current bar is up from the previous
bar.

Example 6-1. ShowMe Study Key Reversal Up.

if Low < Low[1] and Close > Close[1] then

Plot1(Low, "KeyRevUp") ;

This EasyLanguage statement consists of a two part condition, both parts of which must
be true for the plot statement to be executed. Part 1 compares the Low of the current bar
to the Low the previous bar (using the notation Low[1] to mean "1 bar ago"). The
second part of the statement compares the Close of the current bar to the Close of the
previous bar (again using Close[1] to mean "1 bar ago"). The use of the word and in the
conditional statement indicates that both Part 1 and Part 2 of the statement must be true
for the entire condition to be judged true...and only if the entire condition is true will the
statement following the then clause be executed, in this case Plot1(Low, "KeyRevUp").

The chart shown in Figure 6-1 includes a marker on each bar where the EasyLanguage
conditions for the ShowMe are true based on the Low and Close of the previous bar. Note
that the position of the ShowMe marker is determined by the first parameter in the Plot1

Figure 6-1. Key Reversal Up ShowMe study based on previous bar (1 bar ago).

Lower Low

Higher Close

CHAPTER 6: ShowMe the Strategy ShowMe and PaintBar Studies 75
statement and doesn’t have to be just the Low or High. For example, to have a ShowMe
marker appear slightly below a bar, simply use any numeric value in the plot statement
such as Plot1(Low-2,"Label").

Key Reversal ShowMe - Lowest Function
Instead of simply looking at the Low of the previous bar, let’s say that you wanted your
Key Reversal Up to be based on the lowest Low over the previous 3 bars. To do this,
we’ll use an EasyLanguage function called Lowest that looks for the lowest price over
a range of bars in place of the Low[1] value used in last example.

Example 6-2. ShowMe Study Key Reversal Up using Lowest function

The Lowest function includes two parameters, the first of which is the price, Low in this
case, and the second parameter is the number of bars, 3. Notice the [1] suffix at the
end of the function is used to begin looking for the lowest bar starting on the previous
bar. Without the [1] suffix, the Lowest function would include the current bar in the
range which is not what you want to do.

Looking at the same chart data, notice that their are fewer ShowMe markers than in the
previous figure. That’s because we’re using a slightly different comparison based on the
lowest Low over the previous 3 bars instead of just looking at the previous bar’s Low in
the earlier example.

if Low < Lowest(Low,3)[1] and Close > Close[1] then
Plot1(Low, "KeyRevUp") ;

Input parameters Begins looking from previous barFunction name

Figure 6-2. Key Reversal Up ShowMe using Lowest(Low,3)[1] function.

Lowest Low for previous 3 bars

Previous bar
Low is gone

76 ShowMe and PaintBar Studies EasyLanguage for TradeStation
Key Reversal ShowMe - An Input
Now, let’s look at how you can use an input value to further improve the flexibility of
a ShowMe by allowing you to select an inital comparison value at the time the ShowMe
is applied to the chart.

Example 6-3. ShowMe Study Key Reversal Up using input

The Lowest function is still used within the conditional statement, but the second
parameter in the function has been changed from a fixed value 3 to an input variable
named LowBarsBack. This allows you to change the initial value of LowBarsBack
using the ShowMe properties dialog (Figure 6-3) when you apply it to the chart.

In this example, the bars back range has been set to 5 which further reduces the number
of ShowMe markers (Figure 6-4) because it’s looking for the lowest Low over the
previous 5 bars which typically happens less often. The important thing to recognize
is the similarity between these first several ShowMe examples...they all test for a Key
Reversal Up condition with a lower Low and a higher Close. Where they differ is in
the number of bars used for the Low comparison and whether a fixed value or input
value is used .

Input: LowBarsBack(5);

if Low < Lowest(Low,LowsBarBack)[1] and Close > Close[1] then
Plot1(Low, "KeyRevUp") ;

Input declaration and name Initial value set to 5

Figure 6-3. Key Reversal Up ShowMe input dialog.

Initial value can be changed by user

CHAPTER 6: ShowMe the Strategy The Strategy Please 77
The Strategy Please

Key Reversal Strategy
A ShowMe study places a marker on each bar based on a condition, so it’s a perfect
place to begin when creating a long entry strategy based on the same idea. In fact, all
you need to do with EasyLanguage is replace the Plot1 statement from the ShowMe
with a Buy statement to make the last ShowMe example into an entry strategy.

Example 6-4. Key Reversal LE strategy using input

When both parts of the condition are true, TradeStation will display a prompt to place
a Buy order on the next bar at the opening Market price.

It should be pointed out that a Buy or Sell order in EasyLanguage is actually a
’recommendation’ to buy or sell based on the result of one or more conditions in your
EasyLanguage statements. The actual ’order’ must still be placed by you using either
the TradeStation automated entry system or with an external broker.

Since it’s fairly common to exit from a position when the entry condition has reversed,
let’s add a long exit strategy named Key Reversal LX from the TradeStation library.
The Key Reversal LX contains a condition that looks for the highest High over the last
5 bars and a lower Close than the previous bar. This is exactly the opposite condition
to the entry strategy and TradeStation will generate a prompt to place Sell order (to exit
from the long position) when the condition is true.

Figure 6-4. Key Reversal Up ShowMe based on Lowest Low for 5 bars..

Lowest Low for previous 5 bars

3 bar Low eliminated

Input: LowBarsBack(5);

if Low < Lowest(Low,LowsBarBack)[1] and Close > Close[1] then
Buy("KeyR") next bar at Market ;

Buy statemennt replaces the Plot1.

78 Summary EasyLanguage for TradeStation
The Sell order will be placed on the next bar as a stop order using the Low price of the
current bar minus 1 point In this case, a stop order is actually a confirming condition
that will only be executed if the target price is reached. The stop order only remains
active for the designated bar and is considered ’filled’ if the order price occurs (in this
case, it becomes fillled if the price drops to the Low-1 point level).

When the entry and exit strategies are applied to the chart (Figure 6-5), an upward
arrow appears under bars where an entry position is identified and a downward arrow
appears beneath the bar that exits from the position. Notice that the labels underneath
both the entry and exit arrows are those that were specified in the EasyLanguage
statements for Buy and Sell in the examples above.

Summary
As you’ve seen, the logic required to display a ShowMe marker or change a series of bar
colors using a PaintBar study is very similar to the logic used in writing strategy
conditions. The important difference is that ShowMe and PaintBar studies are used to
change the appearance of bars on a chart while Strategies generate Buy or Sell orders that
are used to establish or close trading positions. However, the value of using ShowMe
and PaintBar studies to visually identify and understand trading ideas cannot be over-
stated. The examples in this chapter only scratch the surface, so if you’re interested at
looking at more ideas, you should take some time to review the definitions and
EasyLanguage scripts for the ShowMe and PaintBar studies contained in the
TradeStation library.

Figure 6-5. Key Reversal Up Strategy..

Entry (Buy order)

Exit (Sell order)

CHAPTER 6: ShowMe the Strategy Exercises and Review 79
Exercises and Review

Review
A ShowMe study places a marker above or below any bar that matches the conditions
stated in the ShowMe procedure.

A PaintBar study changes the color of bars that match a stated condition.

A Key Reversal is a common bar pattern that can be used to flag a change in price
movement.

Inputs allow you to specify an initial value when an analysis technique or strategy is
applied to a chart.

Functions are useful for performing a defined set of calculations that return a value.

Exercises
(Answers are contained in Appendix A)

I. Identify what type of structure is described using the letters below:

1. A range of up trending bars are colored blue.

2. The value of the Lowest Low over the past 7 bars is assigned to a variable.

3. A buy signal is generated after 5 days of an up trend.

4. A mark is placed above each bar on a daily chart showing a new weekly high.

5. Yellow bars show increasing momentum and red bars show decreasing momentum.

6. Sell signals are generated after a Key Reversal High.

7. A red marker appears above each Gap Down bar on a chart.

8. A 9 bar moving average calculation is used in an if condition.

A. ShowMe Study

B. PaintBar Study

C. Strategy

D. Function

80 Exercises and Review EasyLanguage for TradeStation

EasyLanguage for TradeStation
C H A P T E R 7

Crossing Over
This chapter will show you how to create EasyLanguage instructions for simple
indicators and how to translate them into strategies. In the process, you will learn more
about the use of functions and inputs to increase the flexibility of your indicators and
strategies. Also, you will be introduced to the use of multiple exit strategies and learn
additoinal EasyLanguage statements that are associated with positions and orders.
The material and examples in this chapter are intended to provide you with a general
understanding of EasyLanguage and should not be viewed as an endorsement of any
particilar analysis techniques or trading ideas. It is recommended that you complete the
exercises and review questions at the end of this chapter to reinforce your learning.

In This Chapter

Indicators and Strategy Elements 82

Multiple Exit Strategies.......................... 86

Summary .. 87

Exercises and Review 88

82 Indicators and Strategy Elements EasyLanguage for TradeStation
Indicators and Strategy Elements
An indicator is a type of analysis technique that, generally, plots calculated values on a
chart instead of simple marking bars that meet a specified condition. The plotted values
might be in the form of a graph line that is overlaid on the bars of a chart or could be a
historgram plotted on a sub-graph beneath the bars.

Single Line Moving Average Indicator
A single line moving average is a frequently used analysis tool that calculates the average
price of a specified range of bars and plots that average as a wavy line overlaid on top of
a set of bars. The EasyLanguage used to plot a single moving average appears below.

Example 7-1. Single Line Moving Average indicator.

Plot1(AverageFC(Close,9), "MovAvg") ;

This EasyLanguage statement plots a single line on a chart (Figure 7-1) based on two
parameters, the Close price and a range of 9 bars. The EasyLanguage Plot1 statement is
executed for each bar on the chart to obtains the average closing price of the 9 bars before
the current bar. The continuous moving average plot line is the result of connecting each
bar’s average close from one time interval to the next. In addition, the actual moving
average line on a chart is colored to help it further stand out from the bars.

To make this indicator more flexible, you can replace the fixed value parameters in the
AverageFC function with input variables that are initialized to the Close price and a
length of 9 bars.

Example 7-2. Single Line Moving Average indicator using inputs.

Figure 7-1. Indicator: Single line moving average.

9 previous bars

Average
 Close of

 ’current’ bar

inputs: Price(Close), Length(9) ;

Plot1(AverageFC(Price, Length), "MovAvg");

Input parametersFunction name

CHAPTER 7: Crossing Over Indicators and Strategy Elements 83
With inputs, you can easily change the values at the time you apply the indicator to a
chart...for example, you might want to plot the average of Highs over a 24 day period
as shown in Figure 7-2.

Entry Strategy Based On Single Line Moving Average
The moving average indicator plots a continuous line that is overlaid on the bars...so how
could you use a moving average to trigger a buy or sell event in a strategy? All you need
to do is add an If comparison (Example 7-3) in place of the Plot1statement in the
indicator! Notice that it compares the result of the AverageFC function (using inputs for
Price and Length) with the current bar’s Price (also based on the type of price specified
by the input). You also need to add an action statement following the then keyword...in
this case, a Buy order labeled "MA Entry" is added.

Example 7-3. Strategy based on a Moving Average comparison with the current bar Price.

When the current bar’s price is greater than the calculated average price for the last N
bars, a Buy order will be generated for the next bar at a market price. Because this
strategy includes a Buy statement, it is considered a long entry strategy and will be
marked as such in the Insert Strategies dialog (Figure 7-3).

Figure 7-2. Indicator dialog for changing input values when applied to chart

Initial values changed by user

inputs: Price(Close), Length(9) ;

if Price > AverageFC(Price, Length) then
 Buy("MA Entry") next bar at market;

If condition replaces the Plot statement

84 Indicators and Strategy Elements EasyLanguage for TradeStation
Two Line Moving Average Indicator
Now let’s take the idea one step further by using a pair of moving average functions to
create an indicator that displays two moving average lines using different range lengths.

Example 7-4. Two Line Moving Average Indicator using inputs and variables.

We’ll name the first length input FastLength because it is quicker to react to price
changes since it is based on average of fewer bars, in this case 9 bars. The second length
input is named SlowLength and is initially set to 18 bars, which means it will appear to
react more slowly to price changes. For this example, we’ll assign the result of each
AverageFC function to variables Value1 and Value2 which are then plotted. The reason
for using variables will be apparent as we continue on to the strategy example based on
the same pair of moving averages.

When this indicator is plotted on a chart (Figure 7-4) it displays two moving average
lines that weave their way across the bars. Notice how the fast moving average (solid
line) crosses above and below the slow moving average line (dashed line) in response
to rising and falling prices. The fast line crosses above the slow line when prices are
rising more quickly and crosses below when prices are beginning to decline.

Figure 7-3. Strategy is marked as LE (Long Entry) when it contains a Buy

Marked as LE (Long Entry)

inputs: Price(Close), FastLength(9), SlowLength(18) ;

Value1 = AverageFC(Price, FastLength) ;
Value2 = AverageFC(Price, SlowLength) ;

Plot1(Value1, "FastAvg") ;

Plot2(Value2, "SlowAvg") ;

CHAPTER 7: Crossing Over Indicators and Strategy Elements 85
Entry and Exit Strategies Based on Two Line Moving Average
Let’s create a strategy from the previous two line Moving Average indicator. All that
you need to do is replace the Plot1 and Plot2 statements with an If statement that tests for
a crossover condition. First we’ll make an Long Entry Strategy that will Buy when the
fast line crosses above the slow line (indicating upward price movement). Then we’ll
make a matching Long Exit Strategy that Sells when the fast line crosses under the slow
line (indicating downward price movement).

Example 7-5. Long Entry Strategy using a two line moving average crossover.

For the Long Entry Strategy, we’ll use an if condition that is true when the price Value1
(based on the fast 9 bar average of Close) crosses above the price Value2 (the 18 bar
average). Notice that, by using the variables Value1and Value2, we’ve made an easy to
read condition where the EasyLanguage phrase ’crosses above’ reflects the visual
appearance of the fast line (Value1) crossing above the slow line (Value2) on the chart.
When the condition is true, a Buy order is generated using the Close of the current bar as
the order price. Remember, EasyLanguage doesn’t actually place the order, but simply
displays an up arrow mark beneath each matching bar (Figure 7-5) to indicate that it is
the start of a long position based on the Close of the current bar. The up arrow mark is
labled "MA2 Entry" along with the number of shares added to this position. In addition,
if the ’current’ bar is the last trade on a real-time chart, you’ll be shown a alert box that
instructs you to place a Buy order for the specified shares using the TradeStation order
bar or by calling your broker.

Figure 7-4. Indicator: Two Line Moving Average.

’Fast’ 9 bar average ’Slow’ 18 bar average

Fast crosses above

Fast crosses under

inputs: Price(Close), FastLength(9), SlowLength(18) ;

Value1 = AverageFC(Price, FastLength) ;
Value2 = AverageFC(Price, SlowLength) ;

if Value1 crosses above Value2 then
 Buy("MA2 Entry") this bar on close ;

86 Multiple Exit Strategies EasyLanguage for TradeStation
A Long Exit Strategy can be used to exit a long position based on the fast moving average
crossing below the slow which indicates downward price movement. All you need to do
to change the EasyLanguage is to modify the if condition to use the ’crosses below’
comparison phrase and to replace the Buy order with a Sell order (Example 7-6). When
the condition matches for a given bar, a downward pointing ’exit’ arrow will display
above the bar with a label and resulting share position. In this example, the Sell order
cancels the previous long position which results in 0 shares held (Figure 7-5) displayed
above the "MA2 Exit" label for the sell arrow.

Example 7-6. Long Exit Strategy using a two line moving average crossover.

Multiple Exit Strategies
It’s quite common to use more than one exit strategy to get out of a position. For
example, let’s look at adding a stop loss exit to protect against a sudden unforseen change
in market conditions. Even though the ’MA2 Exit’ is intended to exit the position when
the fast average crosses under the long, this could take several bars to develop and might
result in a loss that exceeds your risk tolerance. So let’s create a basic stop loss exit
stategy that will exit from any long position that has dropped at least $250 from it’s initial
entry price (Example 7-7).

Figure 7-5. Long Entry and Exit Strategies: Two Line Moving Average.

Long Exit - 0 shares

Long Entry - 100 shares

inputs: Price(Close), FastLength(9), SlowLength(18) ;

Value1 = AverageFC(Price, FastLength) ;
Value2 = AverageFC(Price, SlowLength) ;

if Value1 crosses below Value2 then
 Sell("MA2 Exit") this bar on close ;

CHAPTER 7: Crossing Over Summary 87
Example 7-7. Stop Loss Long Exit Strategy.

The if condition MarketPosition = 1 is used to determine if you’re already in a long
position...in other words, the statements under the if will only be executed if a previous
long entry position was generated but not closed. So, when the if condition is true, two
calculations are performed to determine the stop order price...the first calculation
determines the risk per share based on the maximum acceptable dollar loss (DollarRisk)
divided by the number of shares or contracts in the current long position
(CurrentContracts). Once the risk per share value is calculated (RiskCalc), it is
substracted from the initial entry price for the position (EntryPrice) to produce the new
target stop price (OrderPrice) that is used in the Sell stop order.

Notice that DollarRisk is an input value that can be set by the user when the strategy is
applied to a chart while both RiskCalc and OrderPrice are declared variables used to hold
temporary values that are calculated in this strategy only. Two other values,
MarketPosition and CurrentContracts, are system variables that are automatically
updated within EasyLanguage on each bar. Finally, notice the use of a Sell stop order to
set the exit price...if that price occurs within the next bar, the Sell order will be
completed...if that price is not met on the next bar, the order is canceled.

Summary
So there you have it...we started with a simple moving average indicator and ended up
with several potential entry and exit strategies based on the crossover of a fast and slow
moving average. As you can see, EasyLanguage is a very flexible tool for both technical
analysis and strategy building.

While there is no limit to the number of exit or entry strategies used together, the
important thing to understand is that each entry or exit might affect the overall
performance of your total strategy. To make it easy to experiment with different
combinations, it’s a good idea to use input values that allow you to easy change
parameters for entries and exits at the time they’re applied to a chart.

inputs: DollarRisk(250) ;
variables: RiskCalc(0), OrderPrice(0);

if MarketPosition = 1 then
 RiskCalc = DollarRisk / CurrentContracts ;
 OrderPrice = EntryPrice - RiskCalc ;
 Sell("$SL") next bar at OrderPrice stop ;
end ;

88 Exercises and Review EasyLanguage for TradeStation
Exercises and Review

Review
An Indicator is a type of analysis technique that is used to plot calculated values on a
chart in the form of a graph line or a sub-graph beneath the bars.

A Moving Average indicator plots one or more continuous lines on a chart based on the
average of a specified price (such as Close) over a range of bars (Length) before each
current bar. This indicator is commonly used to show trend changes.

An Entry Strategy is used to generate an order than establishes a market position when
a specific entry condition is true.

Exit Strategies are used to generate orders than close a position based on specific exit
criteria such as a change in entry conditions, risk tolerance parameters, and money
management calculations.

Exercises
(Answers are contained in Appendix A)

I. Mark the following either True or False (T or F).

1. Indicators are used to return a value in a condition or comparison.

2. An entry strategy cannot contain inputs.

3. You can only apply one indicator to a chart at a time.

4. Entry and exit strategies cannot be mixed on the same chart.

5. An exit strategy is only valid if a previous position has been established.

6. A moving average indicator must always be used to indicate a trend change.

EasyLanguage for TradeStation
C H A P T E R 8

Counting On Functions
In this chapter, you’ll get a chance to look inside several functions to see how they are
used to calculate results and can help make your EasyLanguage procedures easier to use
and understand. You will be shown examples of common looping constructs that are
useful for handling calculations across a range of bars and data. Also, you’ll see how to
create functions that return multiple values that can be used to further modularize your
procedures and help you understand more advanced coding techniques.
The material and concepts in this chapter include intermediate level EasyLanguage
examples that may require additional study. Before continuing, it is a good idea to have
reviewed the material in earlier chapters and be sure that you are comfortable with basic
EasyLanguage statements and constructs. Also, it’s recommended that you complete the
exercises and review questions at the end of this chapter to reinforce your learning.

In This Chapter

The Function of Functions 90

Looks Can Be Deceiving........................ 92

Summary .. 94

Exercises and Review 95

90 The Function of Functions EasyLanguage for TradeStation
The Function of Functions
At a basic level, functions are nothing more than self-contained EasyLanguage
procedures that, typically, perform some calculations and return a result to the calling
procedure. For example, a function might be used to obtain the average of several
different prices or could be used to calculate values using a standard ’formula’.

While functions can be used in calculations and comparisons to return a value, you
cannot assign a value to a function...the returned function value is read-only.

GetAverage Price Function
The best way to explain a function is to look at an example, so let’s start with a function
named GetAverage (Example 8-1) that uses a looping structure to calculate the average
of a specified price over the range of several of bars. Something similiar to this function
is used in the moving average indicator and strategy to return a multi-bar price average.

Let’s look at the EasyLanguage in more detail. There are really three separate sections
in this function...lines 1-5 include the declarations of inputs and variables, lines 6-10
contain the main calculations and statements, and line 11 sets the value that the function
will return to the calling procedure.

Example 8-1. Function GetAverage calculates the average price over a range of bars.

Lines 1-3 define the inputs that will be used to accept the pair of values included in
parenthesis after the function call name, such as GetAverage(Close,9). Notice that the
declared inputs have no initial value as in previous procedures, but rather the Price and
Length inputs are declared based on the type of value that they receive. The first input
named Price uses the keyword numericseries to specify an array of values (such as the
Close or Open price). The second input named Length is declared as a numericsimple
value that may be either a single numeric constant or variable. So remember, it’s
important to pay attention to what kind of procedure you’re working with since inputs are
declared differently in functions than in other cases.

Lines 4-5 are used to delclare the variable Sum which accumulate the multi-bar total of
prices for the specified number of bars.

inputs:
 Price(numericseries),
 Length(numericsimple) ;

variables:
 Sum(0) ;

Sum = 0 ;

for Value1 = 0 to Length - 1
 begin
 Sum = Sum + Price[Value1] ;
 end ;

GetAverage = Sum / Length ;

1.
2.
3.

4.
5.

6.

7.
8.
9.
10.

11.

CHAPTER 8: Counting On Functions The Function of Functions 91
The next set of lines (7-10) is actually one compound EasyLanguage statement, called a
for loop, that will execute a group of statements a specified number of times. First let’s
look at line 7...the parameter between the keyword for and the equal sign is a ’counter’
variable (named Value1 in this case)...this variable will automatically be assigned a new
value each time the loop is executed. The value between the equal sign and the keyword
to is the initial value, in this case 0, that will be assigned to the counter. The last value
on the for line is the number of times that the loop will be executed, in this case
Length-1 times (where Length is specified as an input when the function is called).

Lines 8 and 10 mark the beginning and end of the EasyLanguage statement(s) that are to
be evaluated each time the loop is executed. In this example, the statement on line 9 is a
simple calculation that accumulates the Sum of a specified Price[n] across a range of n
bars starting with 0 and ending with bar Length-1.

Finally, after the loop is done executing for the specified number of steps, line 11 is
reached which includes a calculation that divides the Sum by the number of bars (Length)
to determine the average bar price. The result of the calculation is assigned to a return
variable that has same name as the function, in this case GetAverage, that sends the result
back to the calling procedure.

What’s important to notice about functions is that their input declarations require you to
specify the type of data that they’ll accept and that a function returns a value to the calling
procedure.

For example, the GetAverage function might be used in the following manner:

Example 8-2. Procedure that uses the function named GetAverage

where the function GetAverage will calculate and return the average of Close prices for
a range of 5 bars from the current bar. The value of the function is then assigned to the
variable MyVar.

variables:
 MyVar ;

MyVar = GetAverage(Close,5) ;

1.
2.

3.

92 Looks Can Be Deceiving EasyLanguage for TradeStation
Looks Can Be Deceiving
Sometimes it’s desireable to want to return more than one value from a single function.
So the first question is, how is it possible to do this since a function appears to be able to
only return a single named value.

Look at this example of a procedure that uses a function with 4 parameters:

Example 8-3. Procedure that includes a 4 parameter function

At first glance, it looks like this function simply returns its value on Line 3 as
MyVar...but, in reality, it actually returns 2 additional values to the variables HighVal and
HighBar. The first two parameters in the function, High and 10, are simple inputs that
are used to pass values to the function, but that last two parameters, HighVal and
HighBar, are reference inputs that are used to return values from the function.
Unfortunately, there’s no way to tell that this is the case by simply looking at the function
from the calling procedure. We need to look deeper into the EasyLanguage statements
within the function to understand how this is done.

GetHighest Function
Let’s take a closer look at a function named GetHighest (Example 8-4) that is designed
to find the highest Price over a range of N bars. However, instead of just returning a
single value, it is designed to return both the highest price found and the the relative
number of bars back on which that highest price occurred.

Lines 1-5 define the inputs that are used to accept the parameters included in parenthesis
after the function call name, such as GetHighest(Open,15,HighVal,HighBar).
Remember, with function inputs you must declare the type of value they are to receive
rather than specifying an intial value as with non-function inputs. The first input named
Price uses the keyword numericseries to specify that it may accept an array of values
(such as the Close or Open price). The second input named Length is declared as a
numericsimple value that may be either a single numeric constant or variable. Now
here’s where it gets interesting...the third and fourth input values named oHighVal and
oHighBar are declared as numericref values which means that their values are actually
stored elsewhere and are simply referenced by the function. So what does that mean! If
you look back to the GetHighest function call in Example 8-3 you’ll see that the third and
fourth parameters are specified as variables HighVal and HighBar. Normally this would
mean that the value of each variable is passed into the function as a read-only value and
used in calculations within the function. However, in the special case of a numericref
type input, the value of the calling variable is actually ’pointed’ to by the function which
allows it to save a value to the location of the original variable in the calling procedure.
That means that the numericref inputs declared on lines 4 & 5, named oHighVal and
oHighBar, can directly read and save values to the variables named HighVal and
HighBar that are specified as the third and fourth parameters in the calling procedure.

variables:
 MyVar(0),HighVal(0),HighBar(0) ;

MyVar = GetHighest(High,10,HighVal,HighBar) ;

1.
2.

3.

CHAPTER 8: Counting On Functions Looks Can Be Deceiving 93
It’s this special numericref input type that makes it possible for a function to return more
than one value. To help identify the different role these reference input play in our
function we’ve added an 'o' (since they are really input/output values) to the beginning
of each variable name.

Example 8-4. Function GetHighest returns multiple values using pass-by-reference inputs.

On lines 6-8, two local variables named MyVal and MyBar are declared with initial
values of '0' in both cases. These will be used to store temporary values used in the
functions calculations.

The main portion of the function, lines 11-16 contain a for loop which operates in a
similar manner to the loop described in Example 8-1. In this case, the loop will execute
a group of statements a specified number of times and updates the counter Value1 with a
starting value of '1' and an ending value of Length. This is slightly different than in the
previous function example because this function is designed to look at a range of bars
that starts with the bar before the current bar instead of including the current bar in the
range.

The begin and end on lines 12 and 16 mark the start and end of the EasyLanguage
statements that will be executed with each loop iteration. Lines 13-16 includes an if
condition that is true when the Price of bar Value1 is greater than the last value of MyVal.
Since the inital value of MyVal is '0', this condition should always be true for the Price
of bar 1. When true, the calculations on lines 14 & 15 are performed which saves the new
'highest' price value of the bar being tested as MyVal along with the actual bar number as
MyBar. As the loop progresses, the Price of each bar in the range is tested against the

inputs:
Price(numericseries),
Length(numericsimple),
oHighVal(numericref),
oHighBar(numericref) ;

variables:
MyVal(0),
MyBar(0) ;

MyVal = Price ;
MyBar = 0 ;

for Value1 = 1 to Length
begin

if (Price[Value1] > MyVal) then begin
MyVal = Price[Value1] ;
MyBar = Value1 ;

 end ;
end ;

oHighVal = MyVal ;
oHighBar = MyBar ;

GetHighest = 1 ; { always returns 1; only outputs used }

1.
2.
3.
4.
5.

6.
7.
8.

9.
10.

11.
12.
13.
14.
15.
16.
17.

18.
19.

20.

94 Summary EasyLanguage for TradeStation
value of MyVal. When the loop is finished, the variable MyVal will contain the highest
price found and MyBar will hold the bar position of that price.

Finally, lines 18-20 are used to set the return values. The highest price and bar position
are going to be returned using the special numericref inputs. However, to properly
verify, a function must also include a return variable that has same name as the function,
in this case GetHighest. In this case, we’ll simply always return a value of '1' since the
primary calculated values have already been returned using oHighVal and oHighBar.

Summary
Functions can be thought of as "intelligent" values that perform calculations based on
specified input parameters. For example, the GetAverage(Close,5) function, explained
in Example 8-1, returns the average of the Close prices across a range of 5 bars, including
the current bar. However, by changing the parameters to GetAverage(High,12), the same
function can be used to calculate and return more than one value, in this case the average
of High prices across a range of 12 bars. A good rule to follow is that if you find yourself
performing the same type of calculations over and over again in your procedures, you
might want to develop a function that performs those same calculations. It not only helps
simplfy the code in your main EasyLanguage procedures, but it helps ensure that the
calculations are consistent and ’tested’ because, once developed, the function will always
perform them in a uniform manner. If, later, you decide to change or refeine these
calculations, all you need to do is edit the function and all of the analysis techniques and
strategies that use the function will reflect the change as well.

CHAPTER 8: Counting On Functions Exercises and Review 95
Exercises and Review

Review
A Function is a EasyLanguage script or procedure that performs calculations on
specified input parameters and return results to the calling procedure.

The for loop allows the same EasyLanguage statements to be executed a specified
number of times using a counter variable.

A Return statement is a required element at the end of a function that is used to pass back
a value and which has the same name as the function.

Exercises
(Answers are contained in Appendix A)

I. Mark the following either True or False (T or F).

1. Loops may only be used in functions.

2. You may assign a value to a function just like any other variable.

3. Function inputs are exactly the same as indicator or strategy inputs.

4. Inputs may also be used to return values from a function

5. A function can be applied to a chart along with indicators and strategies..

6. Loop statements must always include begin and end keywords.

7. A for loop is only executed if the counter condition is true.

96 Exercises and Review EasyLanguage for TradeStation

EasyLanguage for TradeStation
C H A P T E R 9

Filtering Adds Flexiblity
In this chapter, you’ll examine the use of filter conditions in a simple strategy to make
the strategy more flexible and to be able to create more complex entry and exit rules.
The concepts and examples used in this chapter build on a basic knowledge of entry and
exit strategies that are part of the strategy building process that may require additional
study. Therefore, before continuing, it is a good idea to have reviewed the material in
earlier chapters and be sure that you are comfortable with basic EasyLanguage
statements and constructs. Also, it’s recommended that you complete the exercises and
review questions at the end of this chapter to reinforce your learning.

In This Chapter

Understanding Strategy Elements 98

Filtering A Strategy................................ 99

Summary .. 101

Exercises and Review 102

98 Understanding Strategy Elements EasyLanguage for TradeStation
Understanding Strategy Elements
You learned about entry and exit strategy elements in several of the earlier chapters in
this book. The important thing to recognize is that an entry strategy is used to determine
when and how to enter, or establish, a market position (long or short) while an exit
strategy either closes or reverses as established position. While many strategies utilize
just a single entry strategy element, it’s quite common to have several different exit
strategy elements. This is true because you may want to create exit conditions that
accomodate money management and risk avoidance calculations in addition to a simple
change in the original entry condition.

Now we’re going to take this one step further by looking a strategy element that use
several EasyLanguage conditions to determine if a buy or sell order should be generated.

Momentum Long Entry Strategy
Example 9-1 is a fairly simple entry strategy that places a Buy order when the change in
momentum rises from the previous bar. Momentum is considered to be a difference in
price between two bars that are Length bars apart. An increase in price is considered
positive momentum while a decrease is price is negative momentum. However, in this
example we’re actually looking to see if momentum is positive and has become MORE
positive since the previous bar.

Example 9-1. Strategy - Momentum long entry.

The default input values are declared in Lines 1-3 with the Price set to Close and a
momentum Length of 10 bars. Remember, because these values are inputs, they can be
changed when this strategy is applied to your chart. Lines 4-5 are used to declare a
variable that will hold the calculated value for momentum which is defined as the
difference between two prices that are Length bars apart. Line 7 contains an if condition
that has three separate comparisons that must all be true for the entire condition to be true.
The first comparison tests whether the value for Mom is greater than zero since we’re
looking for a position change in momentum. The second comparison, Mom >= Mom[1],
is the key to this strategy...it’s testing to see if the momentum from Length bars ago to
the current bar (Mom) is greater than, or equal to, the momentum from one bar ago for
the same Length number of bars (Mom[1]). EasyLanguage is smart enough to
automatically calculate values for Mom and Mom[1] based on the assignment statement
in Line 6, even though you’ve only specified a single calculation. The final comparison,

inputs:
 Price(Close),
 Length(10) ;

variables:
 Mom(0) ;

Mom = Price - Price[Length] ;

if Mom > 0 and Mom >= Mom[1] and MarketPosition <> 1 then
 Buy("Mom") next bar at High + 1 point stop;

1.
2.
3.

4.
5.

6.

7.
8.

CHAPTER 9: Filtering Adds Flexiblity Filtering A Strategy 99
MarketPosition <> 1, will only be true if we are not already in a long position. Again,
no sense in continuing if we are already long!

So, if all three comparisons in the if statement are true, the EasyLanguage statement(s)
following the keyword then is executed, in this case Line 8. This statement actually
generates a Buy stop order at the specified price for the next bar. Notice that it sets a stop
at one point above the High of the current bar which will only be executed if the price
continues to rise about the previous bar’s high price...thereby confirming upward price
movement. This is a classic setup and trigger arrangement, where the if condition
provides the setup (i.e. are conditions right for this type of trade) while the Buy stop order
establishes the trigger that will be executed only if the related price move is confirmed.

Obviously, this is a long entry strategy since the resulting Buy order places us in a long
position. To change this to a short entry strategy, all you’d need to do is change the if
condition to test for a negative momentum value on the Low that becomes more negative
from the previous bar to the current bar. Of course, a short entry strategy would place a
Sell order based on the Low price.

Filtering A Strategy
So, in Example 9-1 you can see how a momentum entry strategy operates. Clearly, you
could make the test condition more sophisticated by looking at the change in momentum
over more than the previous bar (for example, Mom>=Mom[1] and
Mom[1]>=Mom[2])...but that’s really just an extension of the basic strategy rule of
testing for a increase in positive momentum. However, let’s say that you wanted to refine
this strategy by also checking for trade volume above a specified threshold. This can be
done quite easily by adding a filter condition that is evaluated after the primary condition
is true but before an order is generated.

Example 9-2 is basically the same as the previous example with the addition of two more
lines. First, a new input named Target has been added at Line 4 with an initial value of
1000. This represents the volume threshold that will be used for your filter. Be aware
that you need to consider how this volume threshold will be affected by the trading
volume of the symbol you’re trading and the bar increment on your chart. For example,
the trade volume of a heavily trading symbol on a 1 minute bar might be tens of
thousands of shares while an small volume symbol might have only hundreds of shares
traded on a 5 minute bar.

The actual filter condition has been added as Line 9 as a second if statement that tests
whether current bar Volume is greater then the Target input value. So, the only way a
Buy order will be generated is for the a positive change in momentum to exist at the same
time the current bar Volume is at or above a specified threshold. This second if statement
is sometimes called a "nested" statement since it is only evaluated when the previous if
is true. You could easily added more nested if statements beneath the Volume test to
further restrict the generation of a Buy order based on other conditions.

100 Filtering A Strategy EasyLanguage for TradeStation
Example 9-2. Strategy - Momentum long entry with Volume filter.

Time Filter
So what would another filter condition look like? In Example 9-3, we’ve added a time
of day filter beneath the Volume filter to allow the Momentum long entry strategy to
place trades only during the middle of the day. The pair of new conditions have been
added at line 10 that will be true if the time of day is greater than 10:30am but less than
3:00pm. Even when the primary Momentum condition and Volume conditions are true,
any potential trades occuring before or after the target times will be ignored. Note that
all times are specified using a 24-hour format. Also, notice the use of the optional
parenthesis around the pair of times that help you recognize that these are really
associated conditions. In other words, the Volume condition is our first filter and the two
time conditions in parenthesis are the second filter.

Example 9-3. Strategy - Momentum long entry with Volume filter and Time filter.

As you have seen, filter conditions are basically additional trading rules that must be true
for an order to be generated. In other words, the primary rule, represented by the first if

inputs:
 Price(Close),
 Length(10),
 Target(1000) ;

variables:
 Mom(0) ;

Mom = Price - Price[Length] ;

if Mom > 0 and Mom >= Mom[1] and MarketPosition <> 1 then
 if Volume >= Target then
 Buy("Mom") next bar at High + 1 point stop;

1.
2.
3.
4.

5.
6.

7.

8.
9.
10.

inputs:
 Price(Close),
 Length(10),
 Target(1000) ;

variables:
 Mom(0) ;

Mom = Price - Price[Length] ;

if Mom > 0 and Mom >= Mom[1] and MarketPosition <> 1 then
 if Volume >= Target then
 if (Time > 1030 AND Time < 1500) then
 Buy("Mom") next bar at High + 1 point stop;

1.
2.
3.
4.

5.
6.

7.

8.
9.
10.
11.

CHAPTER 9: Filtering Adds Flexiblity Summary 101
condition, must be true AND all of the filter conditions, represented by nested conditions,
must be true for an order to be generated.

So how is this different than simply creating a new entry strategy for each rule and adding
it to your chart? The important difference is that entry strategies are independent of one
another and any entry strategy can generate an order where filters are co-dependant and
both the primary entry rule and ALL filter rules must be true for an order to be generated.
To put it in programming terms, multiple entry strategies are a series of OR conditions
where a strategy with filters represents a series of AND conditions.

Summary
An entry or exit strategy is based on a primary rule that can also be modified by additional
rules called filters. Each filter rule, in effect, represents one more condition that must be
true for the strategies buy or sell action to be executed. For example, you might use a
filter to limit an entry condition based on trade volume or on the value of an overbought/
oversold indicator. The important thing to pay attention to is that you don’t make filter
conditions so restrictive that the primary entry or exit rule condition never gets applied.
This is especially true if you intend to use exit strategies for risk avoidance or money
management...in other words, a low volume price drop is still a loss!

102 Exercises and Review EasyLanguage for TradeStation
Exercises and Review

Review
An Entry strategy contains one more more rules that are used to establish a market
position.

An Exit strategy is used to close out or reverse an existing position and consists of one
or more rules.

A Filter condition is typically a secondary rule in a strategy that is evaluated only when
the primary Entry or Exit rule is true.

Exercises
(Answers are contained in Appendix A)

I. Mark the following either True or False (T or F).

1. Entry strategies are only used to enter a long position.

2. You must use a filter if you want to evaluate more than one condition in a strategy.

3. The following EasyLanguage expression can be used to determine if a long position
had been previously established:

 MarketPosition <> 1

4. You can have many exit strategies with a single entry strategy.

5. Filter conditions must always make positive comparisions.

APPENDIX A: Answers to Exercises 103
A P P E N D I X A

Answers to Exercises
CHAPTER 1 - Answers
I. Match each numbered word with its correct definition. Write the matching letter

next to the word’s number.

II. Indicate which of the following items are true or false.

1. False – An EasyLanguage procedure always evaluates every bar on the chart.

2. False – Not all reserved words are complete statements.

3. True – Bars on a chart start with the oldest bar at the left of the chart and continue
evaluating bars until the newest bar at the right is reached.

4. False – Skip words are ignored by EasyLanguage and do not prevent other Reserved
words in an instruction from being processed.

CHAPTER 2 - Answers
I. Mark the following either True or False (T or F).

1. False – Many signals are as simple as an If…Then Buy statement.

2. True – Both return values, but only variables can be assigned a value.

3. False – In EasyLanguage, numeric calculation works right to left. This example
compares two values in evaluating a conditional (true/false) expression.

4. False – If…Then is widely used in all types of analysis techniques and functions.

5. False – The execution method “this bar on close” places orders for the current bar.
All other orders (including or Higher and or Lower) are placed on the next bar.

1. – E 2. – F

3. – G 4. – I

5. – A 6. – H

7. – D 8. – B

9. - C

104 Learning to Use EasyLanguage
6. False – A user defined variable name cannot be declared more than once in a proce-
dure. However, once declared, a variable can be used in numerous calculations and
assignments.

7. False – Only variables can be assigned a new value after they have been declared.

II. Identify each statement’s type using the letters below:

1. C (Assignment).
This statement assigns a condition (High>High[1]) to a true/false variable.

2. A (Conditional).
The order is placed only if the condition is true

3. B (Declaration).
This statement declares two numeric variables and sets their initial value to zero.

4. C (Assignment).
The average of the two closes is stored as Value10.

5. A (Conditional).
This is a conditional statement that performs two variable assignments when the
condition is true. Note the use of the block words Begin…End to perform more than
one action.

6. B (Declaration).
This statement declares two input values.

7. A (Conditional).
Even though the action of this If…Then statement is to plot a value, it is still a con-
ditional statement since the plot will only occur if the condition is true.

8. C (Assignment).
The value returned from the Average function is stored in the user variable SlowAvg
which would have to be previously declared.

III. Write EasyLanguage statements for the following.

1. If today’s high is greater then yesterday’s close, buy 100 shares of GM at tomor-
row’s open.
If High>Close[1] Then Buy 100 Shares Next Bar at Market;

A. Conditional statement

B. Declaration statement

C. Assignment statement

APPENDIX A: Answers to Exercises 105
2. Buy as soon as the next bar’s price is greater than today’s high.
Buy Next Bar at High + 1 Point or Higher;

Note: It’s clearer to use the words or Higher when writing a Buy Stop order such as this.

3. When the current bar closes up from the previous day’s high, buy 25 shares at a price
of $45 or higher.
If Close > High[1] Then
 Buy 25 Shares Next Bar at 45 or Higher;

4. When IBM’s close is higher than yesterday’s by 2 percent, you want to sell another
100 shares.
If Close > Close[1]*1.02 Then
 SellShort 100 Shares Next Bar at Market;
Note: You may have found that the text description was misleading since it didn’t specify when to sell or at
what price. It would have been better to add “at the market price of the next bar” to make it clearer. Be careful
when preparing your own descriptions that you are as clear and complete as possible.

5. If you are in a long position and today’s high is lower than yesterday’s close, then
you want to exit your position.
If MarketPosition=1 AND High<Close[1] Then
 Sell This Bar at Close;
Note: This text description was also incomplete since it didn’t specify when to exit or at what price. Be careful
when preparing your own descriptions that you are as clear and complete as possible.

CHAPTER 3 - Answers
I. Mark the following either True or False (T or F).

1. False - Set-up and Entry is a commonly used technique to determine when and how
to enter a position.

2. True - A Buy statement establishes a long position if not in any position, or, if in a
short position, closes out the short position and creates a long position.

3. False - In EasyLanguage, a SellShort statement establishes a short position if no
other position exists, or, if in a long position, close out the long position and creates
a short position.

4. True - This is the default action of EasyLanguage. If you add the word Total to the
end of the phrase, it only closes out 2 contracts from the first position(s).

5. False -. A multi-data strategy looks at data from more than one data stream at a time
on the same chart.

106 Learning to Use EasyLanguage
6. False -. The only difference between a regular strategy and a multi-data strategy is
the use of additional data streams.

7. False - A trailing stop is used to exit based on a price.

8. False - A strategy does not have to place an order, but it would be unusual not to do
so. It’s a good idea to consider using an entry with multiple exits as part of your
trading strategy.

9. True - An input in a function includes the data type (numeric, true/false) for the
value. For analysis techniques (including studies), the default input includes the
initial value (either a number or a true/false condition).

II. Identify each order type using the letters below:

1. D (Close Out Short Position).
This statement closes out a short position at the close of the current bar.

2. A (Enter Long Position)
This buy order establishes a long position if the condition is true. It also closes out
any short position that might have been previously open.

3. B (Enter Short Position)
If the condition is true, a short position is created and any open long position is
exited.

4. A (Enter Long Position)
Same as 2.

5. C (Close Out Long Position)
This statement actually places an initial stop order that only closes out a long posi-
tion if one is also established for the next bar with another buy statement.

6. A (Enter Long Position)
Establishes a long position if the condition is true and the price is 100 or lower.

7. A and C (Enter Long and Close Out Long)
Establishes a long position and places a sell stop order at a price of 90% of the
Close if the condition is true.

8. A (Enter Long Position)
Creates a long position.

A. Enter Long Position

B. Enter Short Position

C. Close Out Long Position

D. Close Out Short Position

APPENDIX A: Answers to Exercises 107
CHAPTER 4 - Answers
I. Mark the following either True or False (T or F).

1. False – Indicators and studies are both considered analysis techniques.

2. False – A PaintBar study typically changes a bar’s color.

3. False – While most indicators and studies include a plot, they are not required to.

4. False – An alert occurs only for the last bar on the chart.

5. True – One plot is needed to set the start price and a second plot to set an end price.

6. False – The default style and scaling for an analysis technique can be set at the time
you create it.

CHAPTER 5 - Answers
I. Mark the following either True or False (T or F).

1. True – However, Data1 is assumed if no qualifier is used.

2. False – The value of each array element can be stored and changed just like any sim-
ple variable.

3. False – It is just an expanded form of If…Then.

4. True – The loop is executed only when the test condition is true.

5. False – An array can have any number of elements.

6. False – The counter can increase in steps of 1 or decrease by –1.

7. True - An array index can be either a fixed number or a variable.

8. True – The first set of statements (following the If) are processed when the condition
is true, and the second set of statements (following the Else) are processed when the
condition is false.

108 Learning to Use EasyLanguage
II. Identify what type of structure is described using the letters below:

1. A (For…Begin). The following EasyLanguage loop starts with the current bar and
looks at the previous nine bars by using BC as the bars ago offset (values 0 to 9).
The variable UpCount is incremented every time a bar’s Close is greater than its
open.

UpCount = 0 ;

For BC = 0 to 9 Begin

If Close[BC] > Open[BC] Then UpCount = UpCount + 1;

End ;

2. C (If…Then). In the following example, the action is performed whenever the cur-
rent bar’s high is less than the previous bar’s high.

If High < High[1] Then ACTION ;

3. B (While…Begin). This is best handled with a While loop that uses a test condition
based on the close. Here is a general example:

While Close > Close[1] Begin

ACTION ;

End ;

4. D (If…Then…Else). Although this might look like a situation where you would use
two regular If statements (one for each condition), this is a case where the stated
conditions are actually the reverse of one another. Therefore, it’s better to use an
If...Then...Else statement where the first action is taken when the condition is true
and the second is taken when the condition is false. See the following:

If High < High[1] Then

Action1 ;

Else

Action2 ;

Remember, you can also use Begin…End around a set of statements if your
action requires multiple statements.

5. A (For…Begin). Normally when you need to perform an action over a fixed number
of bars, the For…Begin loop will do.

Variable: Count(0), CloseTotal(0), CloseAvg(0) ;

A. For…Begin

B. While…Begin

C. If…Then

D. If…Then…Else

APPENDIX A: Answers to Exercises 109
For Count = 1 to 7 Begin

CloseTotal = CloseTotal + Close[Count] ;

End ;

CloseAvg = CloseTotal / 7 ;

However, instead of writing your own loop, you could just use the built-in Aver-
age function to get the same result:
CloseAvg = Average(Close,7) ;

6. C (If…Then). Using the _CloseUps function you created in a previous chapter, you
could generate a buy order with a simple If statement:

If _CloseUps(3) Then Buy This Bar on Close;

CHAPTER 6 - Answers
I. Identify what type of structure is described using the letters below:

1. B (PaintBar Study). Changing the color of one or more bars is usually done by this
type of analysis technique.

2. D (Function). The value of a function is calcuated and returned to the calling Easy-
Language script where it may be assigned to a variable, as in this example.

3. C (Strategy). The EasyLanguage structure that can generates an order is a Strategy
element. In this case, an entry strategies was used to establish a position with a Buy
order..

4. A (ShowMe). Although other types of analysis techniques might be used to place a
mark above or below a bar, a ShowMe structure is the answer here.

5. B (PaintBar). Again, changing the color of bars is a feature of the PaintBar study.

6. C (Strategy). Only strategies can generate Buy and Sell orders.

7. A (ShowMe). Another example of a marker placed by a ShowMe.

8. D (Function). The value of a function can be used in any calculation or compari-
soin. In this case, a Moving Average function was part of an if condition.

A. ShowMe Study

B. PaintBar Study

C. Strategy

D. Function

110 Learning to Use EasyLanguage
CHAPTER 7 - Answers
I. Mark the following either True or False (T or F).

1. False - A Function returns a value and can be used in a condition or comparison.

2. False - Inputs are often used in entry and exit strategies to set initial parameters.

3. False - TradeStation lets you apply multiple indicators and strategies to a chart.

4. False - In fact, you need both entry and exit strategies to open and close positoins.

5. True - An exit strategy closes a previously established position.

6. False - There are many types of indicators that can be used to indicate a trend
change from key reversals to more sophisticated averages and indexes.

CHAPTER 8 - Answers
I. Mark the following either True or False (T or F).

1. False - A loop is a general language construct that can be used in any EasyLanguage
script to execute specific statement a number of times.

2. False - A function is a Read-Only value and you cannot be assigned a value in the
same manner as a variable.

3. False - The input statement in a function requires that you specify the type of value
that is to be received but does not let you set its initial value.

4. True - While it may sound counter-intuitive, you can use a by reference input type
(also called an Output) to change a value in the calling EasyLanguage script.

5. False - Functions are used in calculations and comparisons and are not directly
applied to a chart. Indicators, studies, and strategies are applied to charts.

6. False - The use of begin and end keywords is only required if multiple EasyLan-
guage statement are to be executed by a loop or comparison.

7. False - A for loop executes a specific number of times as determined by the maxi-
mum value of the counter.

APPENDIX A: Answers to Exercises 111
CHAPTER 9 - Answers
I. Mark the following either True or False (T or F).

1. False - An entry strategy can be used to establish either a long or short position.

2. False - Entry and exit strategy comparisons often include have complex rules that
consist of more than one condition. Filters are simply used to add other conditions
based on the truth of the primary entry or exit rule.

3. False - This is a bit of a trick question. The expression MarketPosition <> 1 is true
when a long position doesn’t exist, but can’t really tell you if a long position had
been previously opened and closed because this condition would also be true if a
long position was never established.

4. True - It’s very common to use multiple exit strategies with a single entry strategy.
For example, you might have one exit that closes a position when the entry condi-
tion is no longer true along with several different risk and money mangement exits.

5. False - A filter condition, just like any other comparison, can make either positive
or negative comparisons. However, a filter will only execute the associate Easy-
Language statements when its condition is True.

112 Learning to Use EasyLanguage

APPENDIX B: User Functions 113
A P P E N D I X B

User Functions
 A Note

AB_AddCellRange Adds multiple cells within a price range to an ActivityBar.

AB_AverageCells Average number of ActivityBar cells per row.

AB_AveragePrice Average price of ActivityBar cells on a particular side or over the entire bar.

AB_CellCount The number of cells on one or both sides of an ActivityBar.

AB_Median Median value for the ActivityBar cells of the current bar.

AB_Mode The number of cells in the mode row of the ActivityBar.

AB_NextColor Changes the color of ActivityBar cells for specified minute-based intervals.

AB_NextLabel Changes letter in an ActivityBar cell based on minute-based intervals.

AB_RowHeightCalc The row height to be used for ActivityBar cells.

AB_StdDev Standard deviation value of the ActivityBars.

AbsoluteBreadth Calculates market momentum based on the advancing and declining issues.

AccumDist Examines total daily volume to find the start of a Bull or Bear market move.

AccumSwingIndex Keeps a running total of the SwingIndex values for a current bar.

AdaptiveMovAvg Calculates a variable speed exponential moving average.

AdvanceDeclineDiff The current ratio between advancing issues and declining issues.

AdvanceDeclineRatio The cumulative difference between advancing issues and declining issues.

ADX Wilder’s Average Directional Index measures the trending quality of the market.

ADXCustom Same as ADX, except it lets you specify what value to use for the DMI.

ADXR Wilder’s ADX Rating of a symbol according to its strength of movement.

ADXRCustom Same as ADXR, except you specify values for DM Plus and DM Minus.

ArmsIndex The ratio between adv/declining issues and the adv/declining Volume.

Average Gets the simple average of the specified data series for the last N bars.

AverageArray Gets the simple average of the specified array.

AverageFC Uses a fast calculation method to get same value as the Average function.

AvgDeviation The average of the absolute deviation of data points from their mean.

AvgDeviationArray The average of the absolute deviation of data points from their mean in an array.

AvgPrice The average price of a bar calculated by adding OHLC and dividing by four.

AvgTrueRange An average of the TrueRange values over a period of time.

B

BarAnnualization Annualization based on the data compression of a bar.

BarNumber Provides a bar’s number relative to the start of the chart.

BearishDivergence Looks for highs in prices not accompanied by highs in an oscillator.

BollingerBand Calculates the Bollinger Band offset from a specified price or moving average.

114 Learning to Use EasyLanguage
BullishDivergence Looks for lows in prices not accompanied by lows in an oscillator

C

CalcTime Adds and subtracts minutes from the time and returns new time in HHMM format.

CCI Measures the deviation from normal cycles to indicate major trend changes.

ChaikinOsc Variation of the AccumDist function that measures the direction of a trend.

CloseD Closing price of N days ago from the current bar in an intraday chart.

CloseM Closing price of N months ago from the current bar.

CloseW Closing price of N weeks ago from the current bar.

CloseY Closing price of N years ago from the current bar.

CoefficientR Calculates the R Coefficient for the past N bars.

CoefficientRArray Calculates the R Coefficient for the past N bars for an array.

Combination Determines the number of combinations for a given number of items.

Correlation Calculates the correlation coefficient between two data sets.

CorrelationArray Calculates the correlation coefficient between two array.

CountIf Counts the number of occurrences of a specified criteria over the last N bars.

Covar Determines the strength of the relationship between two data sets.

CovarArray Determines the strength of the relationship between two arrays.

CSI Identifies markets that will likely provide greater returns on dollars invested.

CSIClassic Classic formula for CSI to determine the likelihood of greater returns.

Cum Cumulative total of a data series, up to and including the current bar.

D

DailyLosers The number of losing positions that were taken throughout the date specified.

DailyWinners The number of winning trades that were taken throughout the date specified .

DaysToExpiration The number of days left between today and a stock option’s expiration date.

Detrend Calculates the detrended value of a price over a period of bars.

DevSqrd The sum of squares of deviations of data points from their average.

DevSqrdArray The sum of squares of deviations in an array from their average.

DMI Identifies the amount of directional movement or trend strength quality.

DMICustom Same as DMI, except you specify the price the function uses.

DMIMinus Commonly used with DMIPlus to identify an uptrend or a downtrend.

DMIMinusCustom Same as DMIMinus, except you specify the price the function uses.

DMIPlus Commonly used with DMIMinus to identify an uptrend or a downtrend.

DMIPlusCustom Same as DMIPlus, except you specify the price the function uses.

E

EaseOfMovement Gauges the magnitude of price and volume movement

ELDate Returns a date in EasyLanguage format (YYYMMDD)

ELDate_Consol Returns a date in EasyLanguage format (YYYMMDD)

ELDateToString Returns a date string from a specified Julian date.

APPENDIX B: User Functions 115
EntriesToday The number of entries that have been taken on the date specified

ExitsToday The number of exits that have been taken on the date specified

ExtremePrice The ratio of the extreme values (high/low) for a length of bars.

Extremes Provides the value and number of bars ago the most extreme prices occurred.

ExtremesArray Provides the value and element number of the most extreme values in an array.

ExtremesFC Uses a fast calculation to get the same number as Extremes.

F

Factorial Calculates the factorial of a number.

FastD Fast percentD value used in Stochastic calculations.

FastDCustom Fast percentD value based on custom prices used in Stochastic calculations.

FastDCustomOrig Fast percentD value based on custom prices used in Stochastic calculations.

FastHighestBar Part of the HighestBar function.

FastK Fast percentK line used in Stochastic calculations with custom prices.

FastKCustom Fast percentK line based on custom prices used in Stochastic calculations.

FastKCustomOrig Fast percentK line based on custom prices used in Stochastic calculations.

FastLowestBar Part of the LowestBar function.

FindBar Searches back in time for the first bar matching the date and time specified.

Fisher Calculates the Fisher transformation.

FisherINV Calculates the inverse of the Fisher transformation.

G

H

HarmonicMean Calculates the harmonic mean of a data set.

HarmonicMeanArray Calculates the harmonic mean of an array.

HighD The high price of N days ago from the current bar.

Highest Finds the highest PRICE value over a period of time.

HighestArray Finds the highest PRICE value over a period of time in an array.

HighestBar Finds the number of bars ago when the highest PRICE occurred.

HighestFC Finds the highest PRICE value over a period of time using fast method.

HighM The high price of N months ago from the current bar.

HighW The high price of N weeks ago from the current bar.

HighY The high price of N years ago from the current bar.

HPI The money flow in and out of the market or commodity to which it is applied.

I

IFF Returns one value if a condition is true and another value if false.

IFFLogic Returns one logical value if a condition is true and another value if false.

116 Learning to Use EasyLanguage
J

K

KeltnerChannel Calculates the Keltner Channel value for a specified bar.

Kurtosis Calculates the Kurtosis of a data set.

KurtosisArray Calculates the Kurtosis of an array.

KurtosisOpt Calculates the Kurtosis for which all the data points are not available.

L

LastBarOnChart True if the current bar is the last bar on the chart.

LastCalcDate Date of the last completed bar, in YYMMDD format.

LastCalcTime Time of completion (close) of the last bar, in 24-hour military format.

LastDayOfMonth Last calendar day of the specified month.

LastHour True if the current time is within the last hour of the first trading session.

Leader True if mid-point is greater than a previous high or less than a previous low.

LinearReg Calculates the slope, angle and regression value of the current regression line.

LinearRegAngle Calculates the angle of the current regression line.

LinearRegAngleFC Calculates the angle of the current regression line using the fast method.

LinearRegFC Uses a fast calculation method to derive the same values as LinearReg.

LinearRegSlope Calculates the slope of the current regression line.

LinearRegSlopeFC Calculates the slope of the current regression line using the fast method.

LinearRegValue Calculates the regression value of the current regression line.

LinearRegValueFC Calculates the regression value of the current reg line using the fast method.

LinRegArray Calculates the slope, angle and regression value based on an array.

LinRegForecastArray Calculates the predicted y-value for a given x-value based an two arrays.

LinRegInterceptArray Determines the point at which a line will intersect the y-axis based on two arrays.

LinRegSlopeArray Calculates the slope of the linear regression line using two arrays.

LowD Low price of N days ago from the current bar.

Lowest Finds the lowest PRICE value over a period of time.

LowestArray Finds the lowest PRICE value in an array over a period of time.

LowestBar Finds the number of bars ago when the lowest PRICE occurred.

LowestFC Finds the lowest PRICE value over a period of time using fast method.

LowM Low price of N months ago from the current bar.

LowW Low price of N weeks ago from the current bar.

LowY Low price of N year ago from the current bar.

LRO The number of bars ago the specified expression was True.

LWAccDis Calculates the Larry Williams – Accumulation Distribution total.

M

MACD Difference between a fast and slow moving average for a specified price.

MassIndex Warns of an impending direction change.

APPENDIX B: User Functions 117
McClellanOsc Market breadth based on smoothed difference between the NYSE adv/dec issues.

Median Gets the median value from a series of values.

MedianArray Gets the median value from a series of values in an array.

MedianPrice Calculates the mid-price (median) of the bar.

MFI Returns the Range divided by Volume.

MidPoint Calculates the average of the highest and lowest price over a specified period.

MinutesToTime Converts minutes into HH:MM format.

Mode The most frequently occurring or repetitive value in a specified period.

ModeArray The most frequently occurring or repetitive array value in a specified period.

Momentum Calculates the change in price (overbought/oversold) during a specified period.

MoneyFlow The positive or negative money flow over a period of bars.

MRO The number of bars ago that an expression was true.

MyPrice The average bar price based on the high, low, and close.

N

Next3rdFriday Number of days to the next third Friday in the month.

NormCumDensity Normal Cumulative Density for a specified mean and standard deviation.

NormCumDensityArray Normal Cumulative Density for a specified mean and standard deviation in an array.

NormDensity Normal Density (also called distribution) for a specific value.

NormDensityArray Normal Density (also called distribution) for a specific value in an array.

NormSCDensity Calculates the standard normal cumulative distribution for a data series.

NthExtremes Finds the Nth highest and lowest values over a number of bars.

NthExtremesArray Finds the Nth highest and lowest values of an array.

NthHighest Finds the Nth highest value of price over a number of bars.

NthHighestArray Finds the Nth highest value in an array.

NthHighestBar The bar number of the Nth highest value of price over a number of bars.

NthLowest Find the Nth lowest value of price over a number of bars.

NthLowestArray Find the Nth lowest value in an array.

NthLowestBar The bar number of the Nth lowest value of price over a number of bars.

NumericRank Calculates the rank of a number in a list.

NumericRankArray Calculates the rank of a number in an array.

NumUnits The number of shares to buy based on the amount and minimum lot values used.

O

OBV On Balance Volume gauges the buying and selling pressure in the market.

OHLCPeriodsAgo Calculates the Open, High, Low and Close for the specified periods in the past.

OpenD Opening price of N days ago from the current bar.

OpenM Opening price of N months ago from the current bar.

OpenW Opening price of N weeks ago from the current bar.

OpenY Opening price of N year ago from the current bar.

118 Learning to Use EasyLanguage
P

Parabolic Parabolic SAR for the current bar.

ParabolicCustom Parabolic SAR for the current bar using a custom price.

ParabolicSAR Parabolic SAR for the current bar.

PercentChange The percent change in price of the current bar over the price length bars ago.

Percentile Calculates the Percentile (k-th value) of a specified period.

PercentileArray Calculates the Percentile (k-th value) of a specified period in an array.

PercentR Identifies occurrences of prices outside this normal trading range.

PercentRank The rank of a value in a data set as a percentage of the data set.

PercentRankArray The rank of a value in a data set as a percentage of the array.

Permutation Number of permutations for N objects from a range of objects.

Pivot Calculates the value and the number of bars ago a pivot occurred.

PivotHighVS The specified value of the High Pivot bar with variable strength sides.

PivotHighVSBar Bars ago that the Pivot High bar, with variable strength sides, occurred.

PivotLowVS The specified value of the Low Pivot bar with variable strength sides.

PivotLowVSBar Bars ago that the Pivot Low bar, with variable strength sides, occurred.

PositionProfitCustom Customized position profit value for current or maximum position profit.

PriceOscillator Calculates the price oscillator for the current bar.

PriceVolTrend Calculates the trend based on trade volume.

ProbAbove The probability that a price will rise or remain above a price target.

ProbBelow The probability that a price will fall or remain below a price target.

ProbBetween The probability that a price will be within the specified low and high range.

Q

Quartile Calculates the quartile value of a data set for a specified quarter.

QuartileArray Calculates the quartile value of an array for a specified quarter.

R

Range Calculates a bars range buy subtracting the low from the high.

RangeLeader True if the current bar is considered a range leader.

RateOfChange Rate of Change determines the magnitude of oscillations based on volatility.

RecentOcc Returns the number of bars ago a condition was true.

Round2Fraction The nearest fractional value for a decimal variable.

RSI Relative Strength Index indicates momentum ranging from 0 to 100.

RSquare The square of the Pearson product moment correlation coefficient, R.

RSquareArray The square of the Pearson product moment correlation coefficient, R, based on an array.

S

ShowLongStop Adds text to a chart displaying the stop level for a long-side stop.

ShowShortStop Adds text to a chart displaying the stop level for a short-side stop.

Skew Calculates the Skewness of a distribution for a set of values.

APPENDIX B: User Functions 119
SkewArray Calculates the Skewness of a distribution for an array.

SkewOpt The optimizable skew for a set of values.

SlowD Slow (smoothed) value used in Stochastic calculations.

SlowDCustom Slow (smoothed) value used in Stochastic calculations with custom prices.

SlowDCustomOrig Same as SlowDCustom, using original smoothing methods of Stochastics inventor.

SlowK Slow (smoothed) value used in Stochastic calculations.

SlowKCustom Slow (smoothed) value based on custom prices used in Stochastic calculations.

SlowKCustomOrig Same as SlowKCustom, using original smoothing methods of Stochastics inventor.

SmoothedAverage Used like Average but provides smoothed value.

Sort2DArray Sorts an array of two dimensions.

SortArray Sorts an array of one dimension.

StandardDev Calculates a standard deviation of values.

StandardDevAnnual Calculates a standard deviation of values and presents an annualized number.

StandardDevArray Calculates a standard deviation of values based on an array.

Standardize Normalized value from a distribution.

StandardizeArray Calculates a normalized value from an array.

StdDev The amount prices vary from the mean average (using the same parameters).

StdDevS Calculates the Sample Standard Deviation value of the specified bar.

StdError Calculates standard variation around a regression line.

StdErrorArray Calculates standard variation around a regression line, based on an array.

Stochastic Calculates all of the stochastic values.

StrColorToNum The color number of a given color’s name.

Summation Provides the sum total of a series of numbers.

SummationArray Provides the sum total of an array of values.

SummationFC Provides the sum total of a series of numbers using the fast method.

SummationIf Provides the sum total of a series of numbers when a condition is true.

SummationRecArray Calculates a summation of the reciporical value of array elements.

SummationSqrArray Calculates a summation of the square of array elements.

SwingHigh Finds the Swing High price over a series of bars. Returns –1 if none found.

SwingHighBar Number of the bar ago a Swing High occurred.

SwingIndex Positive or negative value (+100 to –100) indicating trend direction.

SwingLow Finds the Swing Low price over a series of bars. Returns –1 if none found.

SwingLowBar Number of the bar ago a Swing Low occurred.

T

TimeSeriesForecast Plots a line through prices to minimize the distance between a line and point.

TimeToMinutes Converts time in 24-hour format to minutes after midnight.

TL_Exist True if the specified trendline exists.

TLAngle Angle of an imaginary trend line between two points on your chart.

TLAngleEasy Angle of an imaginary trend line between two bars on your chart.

TLSlope Slope of an imaginary trend line between two points on your chart.

120 Learning to Use EasyLanguage
TLSlopeEasy Slope of an imaginary trend line between two bars on your chart.

TLValue Price of a target bar based on an imaginary trend line into the future.

TLValueEasy Price of a target bar based on an imaginary trend line into the future.

TriAverage Triangular Moving Average weighted on the middle portion of the length.

TrimMean Mean of the interior portion of a set of data.

TrimMeanArray Calculates the interior mean value of an array.

TRIX Triple Smooth Exponential Average

TrueHigh Returns the high of the current bar, or the close of the previous bar if higher.

TrueLow Returns the low of the current bar, or the close of the previous bar if lower.

TrueRange Difference between the TrueHigh and TrueLow values.

TrueRangeCustom The difference between user specified values based on high, low, and close.

TypicalPrice Similar to AvgPrice except that it uses an average of the high, low and close.

U

UlcerIndex A measure of the stress level related to market condition.

UltimateOscillator Oscillator based on three different time frames.

V

VarianceArray Calculates the estimated variance based on an array.

VariancePS Calculates the estimated variance.

Volatility Average of the TrueRange over a specific number of bars.

VolatilityStdDev The statistical (historical) volatility based on a standard deviation of closes.

VolumeOsc Difference between a slow and fast period moving average in terms of points.

VolumeROC Positive or negative value of the likelihood of a continuation in current move.

W

WAverage Weighted moving average of the price over a specified number of bars.

WeightedClose Similar to the AvgPrice function except it gives weight to additional avg close.

X

XAverage Weighted moving average of the prices of the last length bars.

XAverageOrig Weighted moving average of prices using a distinct smoothing method.

Y

Z

ZProb Two-tailed P-value of a Z-test.

APPENDIX C: Reserved Words 121
A P P E N D I X C

Reserved Words
ActivityBar Study

Alerts and Commentary

AB_AddCell Adds a cell to an ActivityBar row.

AB_GetCellChar Returns the character stored in a cell.

AB_GetCellColor Returns the color of the character stored in a cell.

AB_GetCellDate Returns the corresponding date of a cell.

AB_GetCellTime Returns the corresponding time of a cell.

AB_GetCellValue Returns the extra-value stored in a cell.

AB_GetNumCells Returns how many cells exist in a row-side.

AB_GetZoneHigh Returns the value of the top (high) of the ActivityBar zone.

AB_GetZoneLow Returns the value of the bottom (low) of the ActivityBar zone.

AB_High Returns the high of the current ActivityBar.

AB_Low Returns the low of the current ActivityBar.

AB_RemoveCell Removes a cell from an ActivityBar row.

AB_RowHeight Returns the cell height from an ActivityBar.

AB_SetActiveCell Sets a cell-row as the active cell.

AB_SetRowHeight Changes the current ActivityBar's row-increment value.

AB_SetZone Set a zone range-box for an ActivityBar side.

ActivityData References any bar data element (Open, upticks, etc.) of an ActivityBar.

LeftSide Used with ActivityBars to refer to a cell or zone on the left side of a bar.

RightSide Used with ActivityBars to refer to a cell or zone on the right side of a bar.

Alert Triggers an alert for an indicator, ShowMe, PaintBar, or ActivityBar.

AlertEnabled True/false expression returning true if the Enable Alert check box is selected.

AtCommentaryBar True/false expression returning true when Analysis Commentary is applied to a bar.

Cancel Used in conjunction with Alert to cancel a previously enabled alert.

CheckAlert Returns true for the last bar when Enable Alert check box is selected.

Commentary Sends EasyLanguage expression(s) to the Analysis Commentary window.

CommentaryCl Sends EasyLanguage expression(s) to Analysis Commentary with a carriage return.

CommentaryEnabled True/false expression returns true when the Analysis Commentary window is open.

122 Learning to Use EasyLanguage
Backward Compatibility
Based Skip word.

BreakEvenStopFloor Break-even stop floor amount.

CheckCommentary True/false expression returning true when Analysis Commentary is applied to a bar.

Default Used in plot statements to set one of its styles to its default value.

DefineCustField Reserved for future use.

GetSystemName The name of the trading strategy applied to the chart.

IncludeSignal Allows the inclusion of a strategy within another strategy.

IncludeSystem Allows the inclusion of a strategy within another strategy.

Moc Reserved for future use.

MoneyMgtStopAmt Money management stop dollar amount

Not Reserved for future use.

Place Skip word.

Pob A synonym for a limit order.

ProfitTargetStop Profit target stop amount.

Repeat Reserved for future use.

Screen Reserved for future use.

Skip Reserved for future use.

Text Reserved for backward compatibility with previous EasyLanguage versions.

Today References the most current bar, even when analyzing intraday bars.

Tomorrow References the next bar, even when analyzing intraday bars.

Tool_Black References the color black.

Tool_Blue References the color blue.

Tool_Cyan References the color cyan.

Tool_DarkBlue References the color dark blue.

Tool_DarkBrown References the color dark brown.

Tool_DarkCyan References the color dark cyan.

Tool_DarkGray References the color dark gray.

Tool_DarkGreen References the color dark green.

Tool_DarkMagenta References the color dark magenta.

Tool_DarkRed References the color dark red.

Tool_DarkYellow References the color dark yellow.

Tool_Green References the color green.

Tool_LightGray References the color light gray.

Tool_Magenta References the color magenta.

Tool_Red References the color red.

Tool_White References the color white.

Tool_Yellow References the color yellow.

TrailingStopAmt Risk trailing stop dollar amount.

TrailingStopFloor Risk trailing stop floor amount.

TrailingStopPct Risk trailing stop percent amount.

APPENDIX C: Reserved Words 123
Colors

Comparison and Loops

Units Number of assets, options, or futures comprising a specific position leg.

Until Reserved for future use.

Yesterday References the previous bar, even when analyzing intraday bars.

Black Specifies color Black (numeric value = 1) for plots and backgrounds.

Blue Specifies color Blue (numeric value = 2) for plots and backgrounds.

Cyan Specifies color Cyan (numeric value = 3) for plots and backgrounds.

DarkBlue Specifies color Dark Blue (numeric value = 9) for plots and backgrounds.

DarkBrown Specifies color Dark Brown (numeric value = 14) for plots and backgrounds.

DarkCyan Specifies color Dark Cyan (numeric value = 10) for plots and backgrounds.

DarkGray Specifies color Dark Gray (numeric value = 15) for plots and backgrounds.

DarkGreen Specifies color Dark Green (numeric value = 11) for plots and backgrounds.

DarkMagenta Specifies color Dark Magenta (numeric value = 12) for plots and backgrounds.

DarkRed Specifies color Dark Red (numeric value = 13) for plots and backgrounds.

Green Specifies color Cyan (numeric value = 4) for plots and backgrounds.

LightGray Specifies color Light Gray (numeric value = 16) for plots and backgrounds.

Magenta Specifies color Magenta (numeric value = 5) for plots and backgrounds.

Red Specifies color Red (numeric value = 6) for plots and backgrounds.

White Specifies color White (numeric value = 8) for plots and backgrounds.

Yellow Specifies color Yellow (numeric value = 7) for plots and backgrounds.

Above Detects when a value crosses over, or becomes greater than another value.

And Links two true/false expressions together. True if both expressions are true.

Begin Used to begin a block statement (e.g., If-Then-Else, For loops, While loops).

Below Detects when a value crosses below, or becomes less than another value.

Cross Used to detect when values have crossed over/under another value.

Crosses Used to detect when values have crossed over/under another value.

DownTo Instructs a loop's counter to decrement and exit the loop at a specified value.

Else Included in If-Then statements to execute an alternate set of statements.

End Completes a block of instructions that follow a Begin statement.

False Assigns a false value to a variable. Checks the status of an expression.

For Defines a group of instructions executed a predefined number of times.

If Specifies a condition that must be met to execute a set of instructions.

Or Links 2 true/false expressions together. True if either expression is true.

Over Detects when a value crosses above, or becomes greater than another value.

Then Specifies the action to be executed if an If-Then statement is true.

To Instructs a For-Loop statement to increment its count by one each iteration.

124 Learning to Use EasyLanguage
Compiler Directives

Data Information / Fundamental

Data Information/General

True Assigns a true value to a variable. Checks the status of an expression.

Under Detects when a value crosses under, or becomes less than another value.

While Defines instructions executed until a true/false expression returns false.

#BEGINALERT A compiler directive including all instructions between #BeginAlert and #End.

#BEGINCMTRY A compiler directive including all instructions between #BeginCmtry and #End.

#BEGINCMTRYORALERT A compiler directive including instructions between #BeginCmtryOrAlert and #End.

#END A compiler directive used to terminate an alert or commentary statement.

HistFundExists Informs if historical fundamental data available for symbol.

SnapFundExists Informs if snapshot fundamental data available for symbol.

Ago References a specified number of bars back already analyzed by EasyLanguage.

Bar References a specific bar.

BarInterval Bar interval of data stream currently being analyzed.

Bars References a specific bar.

BarStatus Returns 0 for the first tick, 1 for a normal-tick, and 2 for bar-close.

BigPointValue Dollar amount of 1 full point move.

BoxSize Box size of Point & Figure chart.

C Returns the closing price of the bar referenced. (Abbreviation for Close).

Close Returns the closing price of the bar referenced.

CommodityNumber Unique number representing particular symbol (optional).

Contract Specifies the number of units to trade within a trading strategy.

ContractMonth Refers to the delivery/expiration month of any option, future, or position leg.

Contracts Specifies the number of contracts/share for a particular order.

ContractYear Refers to the delivery/expiration year of any option, future, or position leg.

Current Reserved for future use.

CurrentBar Bar number of current bar.

D Returns the closing date of the bar referenced. (Abbreviation for Date).

DailyLimit Number of stocks/contracts allowed traded in 1 day.

Data Used to reference information from a specified data stream.

DataCompression 0 for tick, 1 for intra-day, 2 for daily, 3 for weekly, 4 for monthly, 5 for P&F.

DataInUnion Reserved for future use.

Date Returns the closing date of the bar referenced.

APPENDIX C: Reserved Words 125
Day References a specific bar occurring N days ago.

Days References a specific bar occurring N days ago.

DeliveryMonth Delivery month of futures contract.

DeliveryYear Delivery year of futures contract.

DownTicks Reserved for backward compatibility. Replaced with DnVolume.

ExpirationDate Returns the expiration/delivery date of an option, future, or position leg.

FirstNoticeDate Returns the first notice date of a futures contract.

GetExchangeName The name of the exchange for a symbol.

GetSymbolName Name of the symbol study currently analyzing.

H Returns the highest price of the bar referenced. (Abbreviation for High)

High Returns the highest price of the bar referenced.

I Number of contracts outstanding at the close of a bar. (Abbr. for OpenInt)

L Returns the lowest price of the bar referenced. (Abbreviation for Low).

LastTradingDate Refers to the last day an option, future, position leg, or asset may be traded.

Low Returns the lowest price of the bar referenced.

Market Order type referring to the opening price of the next bar.

MaxBarsBack Maximum number of reference bars (buffer) needed before study can plot.

MaxBarsForward Number bars allocated (by charting) to the right of the chart.

MinMove Minimum tick movement of a symbol.

Next Used with Bar to reference the next bar in a trading strategy.

O Returns the opening price of the bar referenced. (Abbreviation for Open)

Open Returns the opening price of the bar referenced.

OpenInt Returns the number of contracts outstanding at the close of the bar referenced.

Point Returns the minimal interval value a symbol can move.

Points Returns the minimal interval value a symbol can move.

PointValue Dollar amount of 1 point move.

PriceScale Price scale of stock/future symbol (inverted for EasyLanguage).

RevSize Reversal size of Point & Figure chart

Sess1EndTime Ending time of first session.

Sess1FirstBarTime Time when first bar in morning session completed.

Sess1StartTime Starting time of first session

Sess2EndTime Ending time of second session.

Sess2FirstBarTime Time when first bar in second session completed.

Sess2StartTime Starting time of second session.

StartDate Reserved for future use.

T Returns the closing time of the bar referenced. (Abbreviation for Time),

This Used with Bar to reference the current bar.

Ticks Reserved for backward compatibility. Replaced with Volume.

Time Closing time of the bar in charting or specified time interval in a grid.

UnionSess1EndTime Latest session 1 end time of all data in a multi-data chart.

UnionSess1FirstBar Earliest session 1 first bar time of all data in a multi-data chart.

126 Learning to Use EasyLanguage
Date and Time

Declaration

UnionSess1StartTime Earliest session 1 start time of all data in a multi-data chart.

UnionSess2EndTime Latest session 2 end time of all data in a multi-data chart.

UnionSess2FirstBar Earliest session 2 first bar time of all data in a multi-data chart.

UnionSess2StartTime Earliest session 2 start time of all data in a multi-data chart.

UpTicks Reserved for backward compatibility. Replaced with UpVolume.

V Number of shares/contracts traded for the bar referenced. (abbr. for Volume).

Volume Returns the number of shares or contracts traded for the bar referenced.

CurrentDate Computer or datafeed current calendar date.

CurrentTime Computer or datafeed current time, in 24 hr format.

DateToJulian Converts calendar date to Julian date.

DayOfMonth Day's date on specified calendar date.

DayOfWeek Day of week (0 for Sun., 1 for Mon., ..., 6 for Sat.) on specified calendar date.

EL_DateStr Returns a string composed of the month,day,year passed.

Friday Specifies day of the week Friday (numeric value = 5).

JulianToDate Converts Julian date to calendar date.

LastCalcJDate Julian date of last completed bar.

LastCalcMMTime Time of last completed bar, in minutes since midnight.

Monday Specifies day of the week Monday (numeric value = 1).

Month Month on specified calendar date, from 1 to 12

Saturday Specifies day of the week Saturday (numeric value = 6).

Sunday Specifies day of the week Sunday (numeric value = 0).

T Returns the closing time of the bar referenced. (Abbreviation for Time)

Thursday Specifies day of the week Thursday (numeric value = 4).

Time Closing time of the bar referenced.

Tuesday Specifies day of the week Tuesday (numeric value = 2).

Wednesday Specifies day of the week Wednesday (numeric value = 3).

Year Year on specified calendar date, in short form (last 2 digits of year)

Array Used to declare an array.

Arrays Used to declare an array.

Input Declares custom words to behave as constants throughout an analysis technique.

Inputs Declares custom words to behave as constants throughout an analysis technique.

Numeric Defines an input as a numeric expression.

NumericArray Defines an input as a numeric array.

APPENDIX C: Reserved Words 127
DLL

NumericArrayRef Defines an input as a numeric function-modifiable array.

NumericRef Allows the code to pass a Numeric variable so it can be modified by the function.

NumericSeries Defines an input as a numeric series expression.

NumericSimple Defines an input as a numeric simple expression.

String Defines an input as a string expression.

StringArray Defines an input as a string array.

StringArrayRef Defines an input as a string function-modifiable array.

StringRef Allows the code to pass a Text-String variable so it can be modified by the function.

StringSeries Defines a function's input as a string series expression.

StringSimple Defines a function's input as a string simple expression.

TrueFalse Defines an input as a true/false expression.

TrueFalseArray Defines an input as a true/false array.

TrueFalseArrayRef Defines an input as a true/false function-modifiable array.

TrueFalseRef Allows the code to pass a TrueFalse variable so it can be modified by the function.

TrueFalseSeries Defines an input as a true/false series expression.

TrueFalseSimple Defines an input as a true/false simple expression.

Var Declares words to recognize as variables throughout your analysis technique.

Variable Declares words to recognize as variables throughout your analysis technique.

Variables Declares words to recognize as variables throughout your analysis technique.

Vars Declares words to recognize as variables throughout your analysis technique.

ARRAYSIZE Reserved for use with ELKIT32.DLL.

ARRAYSTARTADDR Reserved for use with ELKIT32.DLL.

BOOL Reserved for use with ELKIT32.DLL.

BYTE Reserved for use with ELKIT32.DLL.

CHAR Reserved for use with ELKIT32.DLL.

DEFINEDLLFUNC Reserved for use with ELKIT32.DLL to declare a DLL.

DOUBLE Reserved for use with ELKIT32.DLL.

DWORD Reserved for use with ELKIT32.DLL.

FLOAT Reserved for use with ELKIT32.DLL.

INT Reserved for use with ELKIT32.DLL.

LONG Reserved for use with ELKIT32.DLL.

LPBOOL Reserved for use with ELKIT32.DLL.

LPBYTE Reserved for use with ELKIT32.DLL.

LPDOUBLE Reserved for use with ELKIT32.DLL.

LPDWORD Reserved for use with ELKIT32.DLL.

LPFLOAT Reserved for use with ELKIT32.DLL.

LPINT Reserved for use with ELKIT32.DLL.

LPLONG Reserved for use with ELKIT32.DLL.

128 Learning to Use EasyLanguage
Math and Trig

LPSTR Reserved for use with ELKIT32.DLL.

LPWORD Reserved for use with ELKIT32.DLL.

MULTIPLE Reserved for use with ELKIT32.DLL.

POINTER Reserved for use with ELKIT32.DLL.

UNSIGNED Reserved for use with ELKIT32.DLL.

VARSIZE Reserved for use with ELKIT32.DLL.

VARSTARTADDR Reserved for use with ELKIT32.DLL.

VOID Reserved for use with ELKIT32.DLL.

WORD Reserved for use with ELKIT32.DLL.

AbsValue Absolute value of num.

Arctangent Arctangent value of num, in degrees.

AvgList Average of nums in list.

Ceiling Lowest integer greater than num.

Cosine Cosine value of num, in degrees.

Cotangent Cotangent value of num, in degrees.

ExpValue Exponential value of num.

Floor Highest integer less than num.

FracPortion Fractional portion of num.

IntPortion Integer portion of num.

Log Natural logarithm of num.

MaxList Highest value num in list.

MaxList2 Second highest value num in list.

MinList Lowest value num in list.

MinList2 Second lowest value num in list.

Mod Remainder of num/divisor.

Neg Absolute negative of num.

NthMaxList Nth highest value num in list.

NthMinList Nth lowest value num in list.

Pos Absolute positive of num.

Power Num raised to the Nth power.

Random Returns a pseudo-random number.

Round Num rounded to nearest precision.

Sign 1 for positive num, -1 for negative num and 0 for 0.

Sine Sine value of num, in degrees.

Square Square of num.

SquareRoot Square root of num.

APPENDIX C: Reserved Words 129
Messaging

Multimedia

Output

Plotting

SumList Sum of all nums in list.

Tangent Tangent of num degrees.

Pager_DefaultName Default subscriber name.

Pager_Send Sends text message str_Msg to str_Name (if pager module enabled).

AddToMovieChain Appends movie file to end of movie chain.

GetCDRomDrive Drive letter of first CD-ROM found.

MakeNewMovieRef Creates new movie reference number.

PlayMovieChain Queues then plays movies in movie chain.

PlaySound Plays sound from file.

ClearDebug Clears the contents of the Print Log tab.

File Sends information to a specified file from a print statement.

FileAppend Appends text string to file.

FileDelete Deletes the specified file.

MessageLog Sends EasyLanguage expression(s) to the Print Log tab.

Print Sends information to the Print Log, a specified file, or a printer.

Printer Sends information to a printer from a print statement.

GetBackgroundColor Current chart background color (see documentation for color values).

GetPlotBGColor Returns the background color of a cell for an analysis technique.

GetPlotColor Returns the numeric color value of a chart's plot line or grid's foreground.

GetPlotWidth Returns the width value of a plot line in a chart.

NoPlot Removes a plot from the current bar in a chart or cell in a grid.

Plot References the value of a plot.

Plot1 References the value of a plot.

Plot2 References the value of a plot.

Plot3 References the value of a plot.

Plot4 References the value of a plot.

PlotPaintBar Plots a range of values inside the current bar in a chart.

PlotPB Plots a range of values inside the current bar in a chart.

130 Learning to Use EasyLanguage
ProbabilityMaps

Product Information

Skip Words

SetPlotBGColor Assigns a specified background color to a grid containing an indicator.

SetPlotColor Assigns the color value (color) to the plot specified by (num).

SetPlotWidth Modifies the thickness of an indicator's plot line.

PM_GetCellValue Returns the intensity value of a cell at the specified column and price location.

PM_GetNumColumns Returns the number of columns in a probability map array.

PM_GetRowHeight Returns the height or increment of the rows in a ProbabilityMap study.

PM_High Returns the value of the upper range of a ProbabilityMap grid.

PM_Low Returns the value of the lower range of a ProbabilityMap grid.

PM_SetCellValue Sets the location and intensity of ProbabilityMap cells.

PM_SetHigh Sets the upper range value of a ProbabilityMap.

PM_SetLow Sets the lower range value of a ProbabilityMap.

PM_SetNumColumns Sets the number of columns in a probability map array.

PM_SetRowHeight Sets the height of the rows for a ProbabilityMap grid.

BlockNumber Unique Security Block number.

CurrentDate Computer or data current calendar date.

CurrentTime Computer or data current time, in 24 hr format.

CustomerID Unique customer ID number.

EasyLanguageVersion Number representing EasyLanguage implementation version.

Product Number representing Omega product currently being used.

A Skip word.

An Skip word.

At Skip word.

By Skip word.

Does Skip word.

Is Skip word.

Of Skip word.

On Skip word.

Than Skip word.

The Skip word.

Was Skip word.

APPENDIX C: Reserved Words 131
Strategy Orders

Strategy Performance

All Specifies all shares/contracts are to be sold/covered when exiting a position.

At$ Anchors exit prices to the bar where the entry order was placed.

Bar References a specific bar.

Buy Initiates a long position. Covers any short positions & reverses your position.

BuyToCover Used in trading strategies to partially or completely cover short positions.

Entry Ties an exit to an entry order in a strategy.

From Skip word.

Higher Synonym for stop or limit orders depending on the context used within a strategy.

Limit A limit order meaning 'or higher' or 'or lower', depending on the context.

Lower Synonym for stop or limit orders depending on the context used within a strategy.

Market Order type referring to the opening price of the next bar.

Next Used with Bar to reference the next bar in a trading Strategy.

Point Returns the minimal interval value a symbol can move.

Points Returns the minimal interval value a symbol can move.

Sell Used in trading strategies to partially or completely liquidate a long position.

SellShort Initiates a short position, closes any open long positions & reverses position.

SetBreakeven Sets up a break-even stop.

SetDollarTrailing Sets up a dollar-trailing stop.

SetExitOnClose Sets the Exit on Close stop to true.

SetPercentTrailing Sets up a percent-trailing stop.

SetProfitTarget Sets up a profit-target stop.

SetStopContract Sets the builtin stops to execute on a contract basis.

SetStopLoss Sets up a stop-loss stop.

SetStopPosition Sets the built-in stops to execute on a position basis.

SetStopShare Sets the built-in stops to execute on a share basis.

Share Used to specify the number of contracts/shares for a particular order.

Shares Used to specify the number of contracts/shares for a particular order.

Stop A stop order meaning 'or higher' or 'or lower', depending on the context.

This Used with Bar to reference the current bar.

Total Number of shares/contracts to exit from a position created by pyramiding.

AvgBarsLosTrade Average number of bars in closed-out losing trades.

AvgBarsWinTrade Average number of bars in closed-out winning trades.

AvgEntryPrice Average price of all currently open entries.

CurrentContracts Number of contracts currently open.

CurrentEntries Number of entries currently open.

CurrentShares Number of shares currently open.

132 Learning to Use EasyLanguage
Strategy Position

GrossLoss Cumulative dollar total of all closed-out losing trades.

GrossProfit Cumulative dollar total of all closed-out winning trades.

I_AvgEntryPrice Average of applied strategy's open entries.

I_ClosedEquity Applied strategy's total net profit.

I_CurrentContracts Number of contracts applied strategy has currently bought/sold.

I_MarketPosition Applied strategy's current market position: 1 = long, -1 = short, 0 = flat.

I_OpenEquity Applied strategy's total net profit + open position Profit/Loss.

LargestLosTrade Dollar amount of largest closed-out losing trade.

LargestWinTrade Dollar amount of largest closed-out winning trade.

MaxConsecLosers Longest chain of consecutive closed-out losing trades.

MaxConsecWinners Longest chain of consecutive closed-out winning trades.

MaxContractsHeld Maximum number of contracts held at any one time.

MaxIDDrawDown True dollar amount needed to sustain largest equity dip.

NetProfit Cumulative dollar total of all closed-out trades.

NumLosTrades Total count of closed-out losing trades.

NumWinTrades Total count of closed-out winning trades.

PercentProfit Percentage of all closed-out winning trades.

TotalBarsLosTrades Total number of bars in closed-out losing trades.

TotalBarsWinTrades Total number of bars in closed-out winning trades.

TotalTrades Number of all closed-out trades in the life of a strategy.

BarsSinceEntry Bars since initial entry of position, num position(s) ago.

BarsSinceExit Bars since position closed-out, num position(s) ago.

CurrentContracts Number of contracts currently open.

CurrentEntries Number of entries currently open.

CurrentShares Number of shares currently open.

EntryDate Date of entry, num position(s) ago.

EntryPrice Price of entry, num position(s) ago.

EntryTime Time of entry of position, num position(s) ago.

ExitDate Date when position closed-out, num position(s) ago.

ExitPrice Exit price of closed-out entry, num position(s) ago.

ExitTime Time when last entry closed-out, num position(s) ago.

MarketPosition Market position (1 = long, -1 = short, 0 = flat) of num position(s) ago.

MaxContracts Max contracts held during num position(s) ago.

MaxEntries Max entries open during life of position, num position(s) ago.

MaxPositionLoss Dollar amount of largest loss during position, num position(s) ago.

MaxPositionProfit Dollar amount of largest gain during position, num position(s) ago.

OpenPositionProfit Profit/Loss of current open position.

PositionProfit Profit/Loss of position, num position(s) ago.

APPENDIX C: Reserved Words 133
Strategy Properties

Text Drawing

Text Manipulation

Commission Commission per stock/contract/transaction.

GetStrategyName The name of the trading strategy which applied to the chart.

Margin Margin of futures contract.

Slippage Slippage per contract.

GetBackGroundColor Current chart background color (see documentation for color values).

Text_Delete Deletes the specified text object.

Text_GetColor Returns the color of the specified text object (see documentation for color values).

Text_GetDate Returns the date axis value of the specified text object.

Text_GetFirst First created text object of the specified type (see documentation for pref types).

Text_GetHStyle Returns the horizontal style of the text object (see documentation for style values).

Text_GetNext Text object created after the specified object (see documentation for pref types).

Text_GetString Text stored in the specified text object.

Text_GetTime Time axis value of text object.

Text_GetValue Price axis value of text object.

Text_GetVStyle Returns the vertical style of the text object (see documentation for style values).

Text_New Draws text object at a specified value on a specified date and time.

Text_SetColor Changes the color of the specified text object (see documentation for color values).

Text_SetLocation Moves the specified text object.

Text_SetString Changes the text string of the specified text object.

Text_SetStyle Sets horiz/vert position of the text object (see documentation for horiz/vert values).

InStr Location of string2 within string1.

LeftStr Leftmost portion of string.

LowerStr Lowercase copy of string.

MidStr Arbitrary slice of the specified string, starting at a position for n characters.

NewLine Carriage return/linefeed useful for commentary/file output strings.

NumToStr Converts a numeric to a string with decimal places.

RightStr Rightmost portion of string.

Spaces Creates a string of empty spaces, used for padding output.

StrLen Number of characters in the specified string.

StrToNum Numerical value of a string, zero if the string is not numeric.

UpperStr Uppercase copy of the specified string.

134 Learning to Use EasyLanguage
Trendline Drawing
GetBackGroundColor Current chart background color (see documentation for color values).

TL_Delete Deletes a trendline and recycles its reference.

TL_GetAlert Returns the indicated trendline’s alert type (see documentation for alert values).

TL_GetBeginDate Date of trendline's start point.

TL_GetBeginTime Bar time of trendline's start point.

TL_GetBeginVal Price axis value at trendline's start point.

TL_GetColor Trendline's color value (see documentation for color values).

TL_GetEndDate Date of trendline's end point.

TL_GetEndTime Bar time of trendline's end point.

TL_GetEndVal Price value at trendline's end point .

TL_GetExtLeft True if trendline is extended left, False otherwise.

TL_GetExtRight True if trendline is extended right, False otherwise.

TL_GetFirst First created trendline of the specified type (see documentation for pref types).

TL_GetNext Next trendline created (see documentation for pref types).

TL_GetSize Thickness of trendline (see documentation for size values).

TL_GetStyle Trendline's style value (see documentation for style values).

TL_GetValue Price value at a specified date and time along trendline's projection.

TL_New Creates a new trendline with listed start and end points.

TL_SetAlert Sets trendline's alert value (see documentation for alert values).

TL_SetBegin Sets the start point of a trendline to a specific Date and Time.

TL_SetColor Sets color of a trendline (see documentation for color values).

TL_SetEnd Sets the end point of trendline to a specific Date and Time.

TL_SetExtLeft Sets or clears an indefinite leftward extention of trendline.

TL_SetExtRight Sets or clears an indefinite rightward extention of trendline.

TL_SetSize Sets thickness/size of trendline (see documentation for size values).

TL_SetStyle Sets the trendline line style (see documentation for style values).

Tool_Dashed Assigns a dashed line to a drawing object.

Tool_Dashed2 Assigns a dashed2 line to a drawing object.

Tool_Dashed3 Assigns a dashed3 line to a drawing object.

Tool_Dotted Assigns a dotted line to a drawing object.

Tool_Solid Assigns a solid line to a drawing object.

INDEX

A
ActivityBar Studies ..53

understanding74, 82, 90, 98
Additional Resources ..69
Advanced Grammar and Data Types64
Advanced Structures ...65

If-then-else ..65
loops ..66
Series functions ...68

Alerts
writing ...60

Alerts, writing ...57
And - Or ..20
Answers to Exercises .. 103
Array Variables ..68

B
Begin-End Statements ..28
Buy/SellShort orders ..41
Buy/SellShort statements16

C
Calculations ..18
Close Order ...30
Comparisons and Conditional Expressions14
Compound Expressions19

and-or ..20
condition variables20

Condition Variables ..20
Condition1-Condition9920
Conditions

multiple ..28
Creating a Position ...41
Crosses Over/Under ..15
Current bar .. 6
Custom Functions ...44

D
Data

advanced types ..64

dollars .. 32
points ... 31
price data ... 7
reading ... 53
scanning on a chart .. 5

Data Types
qualifiers .. 64
text values .. 64

Declaring Your Own Variables 22
Defining Your Trading Rules 38
Deleting an indicator .. 57
Dollars .. 32
DownTo Reserved Word 66

E
EasyLanguage .. 16

advanced structures
if-then-else ... 65
loops ... 66
series functions 68

alerts .. 60
categories and data types 23
compound expressions 19
defined ... 5
dictionary ... 23
expressions .. 14
functions .. 24
inputs ... 27
order conditions ... 32
points ... 31
Price Data .. 7
Punctuation .. 10
Reading Data ... 53
Reserved Words .. 7
Reserved Words listing 121
skip words ... 9
specifying quantities 32
statements .. 9
understanding the flow 50
User Functions listing 113

136 Index
variables ..20
arrays ..68

writing PaintBar studies59
writing ShowMe studies57
writing studies and alerts57

EasyLanguage Dictionary23
Entry Orders ...40

buy/sellshort orders41
creating a position41
reversing a position41

Examples
Function

_CloseUps ..45
GetAverage ..90
GetHighest ...90
Lowest ..75

Indicator
_Close ...55
_Volume ...55
_VolumeAvg ..61
Single Line Moving Average82
Two Moving Average84

PaintBar
_BullAvgs ..59

ShowMe
_3UpCloses ..58
Key Reversal Up74

Strategy
_CloseOpen ..46
_CloseUp ..16
_CloseUp3 ..19
_MovAvgLength27
_MovAvgUp ..26
Key Reversal LE77
Key Reversal LX77
Momentum Long Entry98
Moving Average LE82
Two Line Moving Average85

Exercises, answers to .. 103
Exit Orders ..42

closing a position ...42
Expressions

Buy/SellShort statements16
calculations ..18
comparisons and conditional14
compound ..19
mathematical operators18
relational operators15
simple ...14

if-then ...14

F
For-Begin Loops ...66
Functions

custom ..44
defined ...24
series ..68
user function listing113
using ...25

G
Grammar ...64

I
If...Then statements ...14
Indicators ..50

Plot Statement ..54
properties ...55
style and scaling ...55
using inputs ..61

Inputs ..27
using ...27, 61

L
Loops ..66

For-Begin ...66
While-Begin ...67

M
Market Order ...30
MarketPosition Reserved Word29
Mathematical Operators18
Money Management ...40

Index 137
Multi-Data Strategies ..43
Multiple Conditions and Actions28

begin-end statement28

N
Numeric Variables ..22

O
Operators

mathematical ...18
relational ..15

Or Higher Order ...30
Or Lower Order ..31
Order Conditions ..32
Orders

entry orders ..40

P
PaintBar Studies ...52

writing ...59
Plot Statement ...54
Points ..31
Price Data ... 7
ProbabilityMap Studies53
Punctuation ...10
Pyramiding ...17

Q
Qualifiers ..64
Quantity ..32

R
Reading Data ..53
Relational Operators ...15
Removing indicator from a chart57
Reserved Words .. 7

listing ... 121
Resources ..69
Reversing a Position ...41

S
Scale Type, indicators ...55
Scaling and Style ..55
Scanning the data on a chart5
Series Functions ..68
Setup and Entry ...38
ShowMe and PaintBar Studies74
ShowMe Studies ...51

writing ..57
Simple Expressions ...14

Buy/SellShort ...16
If-then statements ..14

Skip Words ...9
Statements ...9

Begin-end ...28
buy/sellshort ...16
If-then ..14
If-then-else ...65
loops ...66
plot ...54
variable declaration22

Strategies ...16
multi-data ...43

Studies ...51
ActivityBar ..53
ActivityBar Studies 74, 82, 90, 98
alerts ...57
PaintBar ...52
ProbabilityMap ..53
ShowMe ...51
using inputs ..61
writing ..57
writing a PaintBar study59
writing ShowMe studies57

Style and Scaling ..55

T
Text Values ...64
Time Filter ..100
Trading Rules

defining ..38

138 Index
entry orders ..40
Money Management40
setup and entry ..38
When to exit and why39

Trading Strategy
defined ... 4

True/False Variables ...22
Types of Orders

dollars ..32
market ..30
Or higher ...30
Or Lower ...31
order conditions ...32
points ...32
quantities ...32

U
Understanding ActivityBar Studies ...74, 82, 90, 98
Understanding the Flow50

indicators ...50
Reading Data ...53
studies ..51

ActivityBar ...53
PaintBar ..52
ProbabilityMap studies53

User Functions Listing 113

V
Value0-Value99 ..22
Variable Declaration Statement22
Variables ...21

arrays ...68
condition ..20
declaring your own22
numeric ..22
true/false ..22

W
What are ActivityBar Studies?74, 82, 90, 98
What is a Function? ..24
What is a Trading Strategy? 4

What is EasyLanguage? ..5
When to Exit and Why ..39
While-Begin Loops ...67
Writing a PaintBar Study59
Writing Alerts ...60
Writing strategies ..16
Writing Studies and Alerts57

Y
Your First Indicator ..54

	Contents
	CHAPTER 1
	The Language of Strategic Trading
	What is a Trading Strategy?
	What is EasyLanguage?
	Scanning the data on a chart
	Reserved Words
	Price Data
	Statements
	Skip words
	Punctuation
	Summary

	Exercises and Review
	Review
	Exercises

	CHAPTER 2
	Your First Trading Strategy
	Using the PowerEditor
	Comparisons and Conditions
	Simple Expressions
	If…Then
	Buy/SellShort
	Calculations
	Compound Expressions
	Condition Variables
	AND - OR

	More About Variables
	True/False and Numeric
	Declaring Your Own Variables

	EasyLanguage Dictionary
	Categories and data types

	What is a Function?
	Using a Function
	Inputs
	Using Inputs

	Multiple Conditions and Actions
	Begin…End

	Types of Orders
	This Bar on Close
	Next Bar at Market
	Or higher (same as Buy-Stop and SellShort-Limit)
	Or lower (same as Buy-Limit and SellShort-Stop)
	Points
	Big Points
	Quantity
	Order Conditions

	Exercises and Review
	Review
	Exercises

	CHAPTER 3
	More About Writing Trading Strategies
	Defining Your Trading Rules
	Set-up and entry
	Set-up
	Entry
	When to exit and why…
	Money Management
	Entry Orders
	Creating a position
	Reversing a position
	Buy/SellShort

	Exit Orders
	Closing a Position
	Sell/BuyToCover

	Multi-data Strategies
	Custom Functions
	Exercises and Review
	Review
	Exercises

	CHAPTER 4
	Creating Indicators and Studies
	Understanding the Flow
	Indicators
	Studies
	ShowMe
	PaintBar
	ActivityBar
	ProbabilityMap
	Reading Data

	Your First Indicator
	Plot statement
	Style and Scaling

	Writing Studies and Alerts
	Writing a ShowMe Study
	Writing a PaintBar Study
	Writing Alerts

	Using Inputs
	Exercises and Review
	Review
	Exercises

	CHAPTER 5
	More About EasyLanguage
	Advanced Grammar and Data Types
	Qualifiers
	Text Values

	Advanced Structures
	If…Then…Else
	Loops
	For…Begin
	While…Begin
	Series Functions

	More About Variables
	Arrays

	Additional Resources
	TradeStation Help
	EasyLanguage Support

	Exercises and Review
	Review
	Exercises

	CHAPTER 6
	ShowMe the Strategy
	ShowMe and PaintBar Studies
	Key Reversal ShowMe - Previous Bar
	Key Reversal ShowMe - Lowest Function
	Key Reversal ShowMe - An Input

	The Strategy Please
	Key Reversal Strategy

	Summary
	Exercises and Review
	Review
	Exercises

	CHAPTER 7
	Crossing Over
	Indicators and Strategy Elements
	Single Line Moving Average Indicator
	Entry Strategy Based On Single Line Moving Average
	Two Line Moving Average Indicator
	Entry and Exit Strategies Based on Two Line Moving Average

	Multiple Exit Strategies
	Summary
	Exercises and Review
	Review
	Exercises

	CHAPTER 8
	Counting On Functions
	The Function of Functions
	GetAverage Price Function

	Looks Can Be Deceiving
	GetHighest Function

	Summary
	Exercises and Review
	Review
	Exercises

	CHAPTER 9
	Filtering Adds Flexiblity
	Understanding Strategy Elements
	Momentum Long Entry Strategy

	Filtering A Strategy
	Time Filter

	Summary
	Exercises and Review
	Review
	Exercises

	APPENDIX A
	CHAPTER 1 - Answers
	CHAPTER 2 - Answers
	CHAPTER 3 - Answers
	CHAPTER 4 - Answers
	CHAPTER 5 - Answers
	CHAPTER 6 - Answers
	CHAPTER 7 - Answers
	CHAPTER 8 - Answers
	CHAPTER 9 - Answers

	APPENDIX B
	APPENDIX C
	ActivityBar Study
	Alerts and Commentary
	Backward Compatibility
	Colors
	Comparison and Loops
	Compiler Directives
	Data Information / Fundamental
	Data Information/General
	Date and Time
	Declaration
	DLL
	Math and Trig
	Messaging
	Multimedia
	Output
	Plotting
	ProbabilityMaps
	Product Information
	Skip Words
	Strategy Orders
	Strategy Performance
	Strategy Position
	Strategy Properties
	Text Drawing
	Text Manipulation
	Trendline Drawing

