

OSI Model Overview

CompTIA Network+ (N10-007)

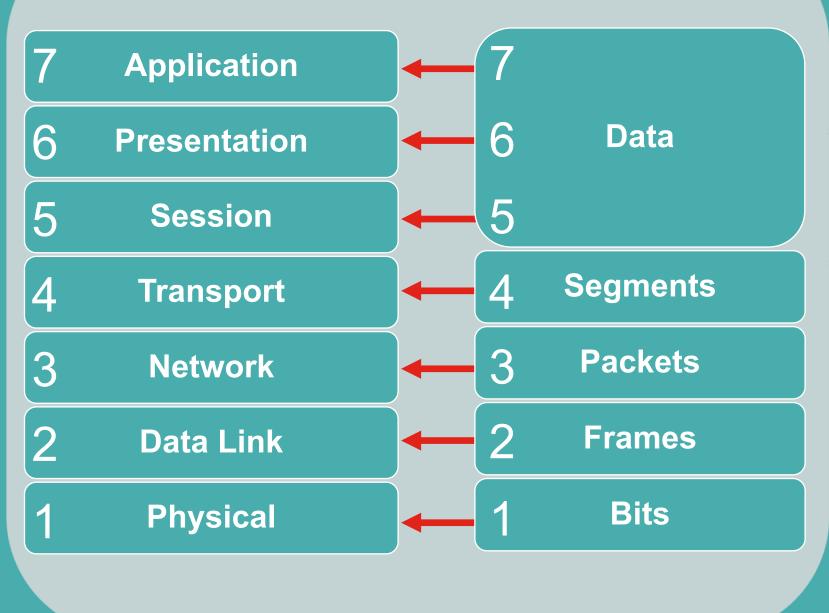
OSI Model (Open Systems Interconnection)

- Developed in 1977 by the International Organization for Standardization (ISO)
- Called the OSI model or OSI stack
- Consists of 7 layers
- Useful in troubleshooting networks
- Serves as a reference model in networks

Purpose of Reference Model

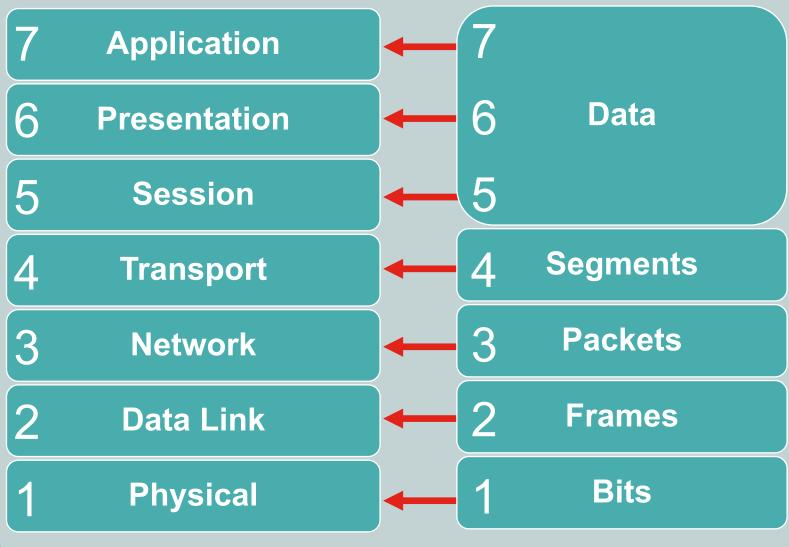
- Categorize functions of the network into particular layer(s)
- Compare technologies across different manufacturers
- By understanding its functions you can understand how best to communicate with that device

OSI Model Layers		
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	
2	Data Link	
1	Physical	



OSI Model Layers			
7	Application		
6	Presentation		
5	Session		
4	Transport		
3	Network		
2	Data Link		
1	Physical		

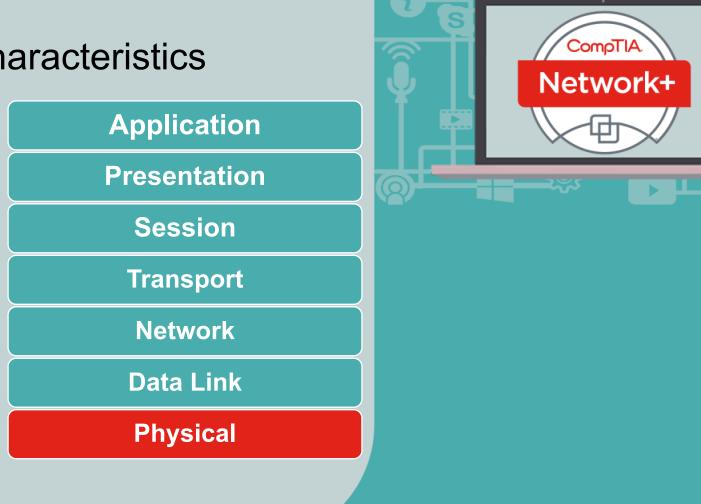
<u>*P*</u>lease <u>*D*</u>o <u>*N*</u>ot <u>*T*</u>hrow <u>*S*</u>ausage <u>*P*</u>izza <u>*A*way</u>!



Data Types in the OSI Model

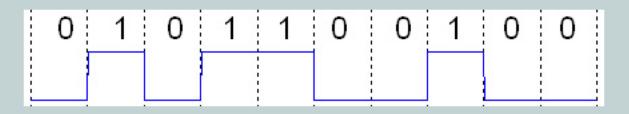
Data Types in the OSI Model

<u>**D**</u>on't <u>**S**</u>ome <u>**P**</u>eople <u>**F**</u>ear <u>**B**</u>irthdays?



Layer 1 (Physical)

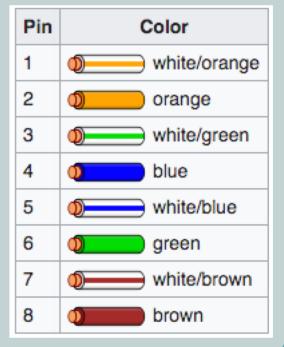
CompTIA Network+ (N10-007)


Physical Layer (Layer 1)

- Transmission of bits across the network
- Physical and electrical characteristics
- Characteristics:
 - How bits are represented on the medium
 - Wiring standards for connectors and jacks
 - Physical topology
 - Synchronizing bits
 - Bandwidth usage
 - Multiplexing strategy

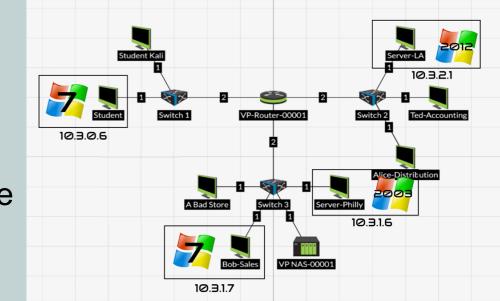
How are bits represented on the medium?

- Electrical voltage (copper wiring) or light (fiber optics) represent 1's and 0's (bits)
- Current State
 - If 0 volts, then 0 is represented
 - If +/- 5 volts, then 1 is represented
- Transition Modulation
 - If it changed during the clock cycle, then a 1 is represented otherwise a 0



How are the cables wired?

- TIA/EIA-568-B is standard wiring for RJ-45 cables and ports
- Crossover cables use T-568A and T-568B
- Straight-thru cables typically use T-568B on both ends, but could use T-568A on both


Wiring standards will be address in-depth in the Ethernet module

How are the cables connected?

- Layer 1 devices view networks from a physical topology perspective
- Includes:
 - Bus
 - Ring
 - Star
 - Hub-and-Spoke
 - Full Mesh
 - Partial Mesh

How is communication synchronized?

Asynchronous

• Uses start bits and stop bits to indicate when transmissions occur from sender to receiver

• Synchronous

 Uses a reference clock to coordinate the transmissions by both sender and receiver

How is bandwidth utilized?

- Broadband
 - Divides bandwidth into separate channels
 - Example:
 - Cable TV

Baseband

- Uses all available frequency on a medium (cable) to transmit data and uses a reference clock to coordinate the transmissions by both sender and receiver
- Example:
 - Ethernet

How can we get more out of a limited network?

- Time-Division Multiplexing (TDM)
 - Each session takes turns, using time slots, to share the medium between all users
- Statistical Time-Division Multiplexing (StatTDM)
 - More efficient version of TDM, it dynamically allocates time slots on an as-needed basis instead of statically assigning
- Frequency-Division Multiplexing (FDM):
 - Medium is divided into various channels based on frequencies and each session is transmitted over a different channel
 - Broadband

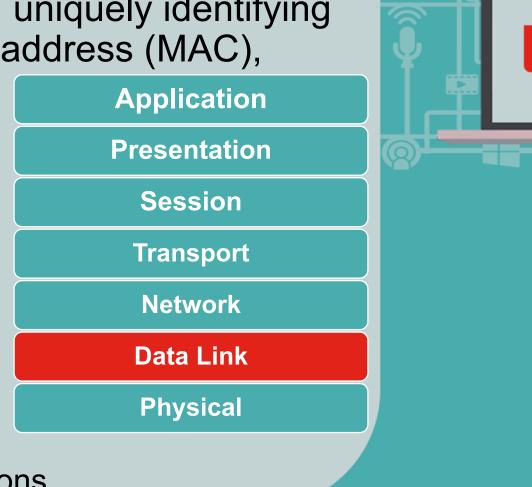
Examples at Layer 1

- Cables
 - Ethernet
 - Fiber optic
- Radio frequencies
 - Wi-Fi
 - Bluetooth
- Infrastructure devices
 - Hubs
 - Wireless Access Points
 - Media Converters

Layer 2 (Data Link)

CompTIA Network+ (N10-007)

Data Link Layer (Layer 2)


 Packages data into <u>frames</u> and transmitting those frames on the network, performing error detection/correction, and uniquely identifying network devices with an address (MAC), and flow control

• MAC

- Physical addressing
- Logical topology
- Method of Transmission

• LLC

- Connection services
- Synchronizing transmissions

i

CompTIA

Network+

Media Access Control (MAC)

Physical addressing

- Uses 48-bit address assigned to a network interface card (NIC) by manufacturer
- First 24-bits is the vendor code
- Second 24-bits is a unique value
- Logical topology
 - Layer 2 devices view networks logically
 - Ring, bus, star, mesh, hub-and-spoke, ...
- Method of transmission
 - Many devices are interconnected
 - Determines whose turn it is to transmit to prevent interference with other devices

Logical Link Control (LLC)

- Provides connection services
- Acknowledgement of receipt of a message
- Flow control
 - Limits amount of data sender can send at one time to keep receiver from becoming overwhelmed
- Error control
 - Allows receiver to let sender know when an expected data frame wasn't received or was corrupted by using a checksum

How is communication synchronized?

Isochronous

- Network devices use a common reference clock source and create time slots for transmission
- Less overhead than synchronous or asynchronous

Synchronous

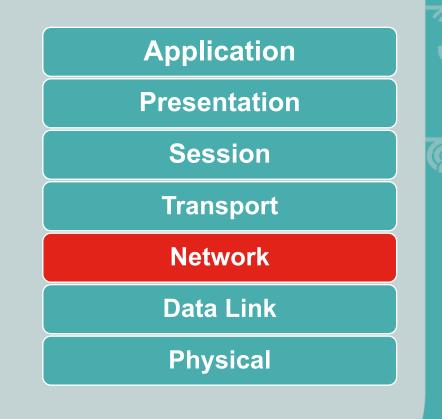
- Network devices agree on clocking method to indicate beginning and end of frames
- Uses control characters or separate timing channel

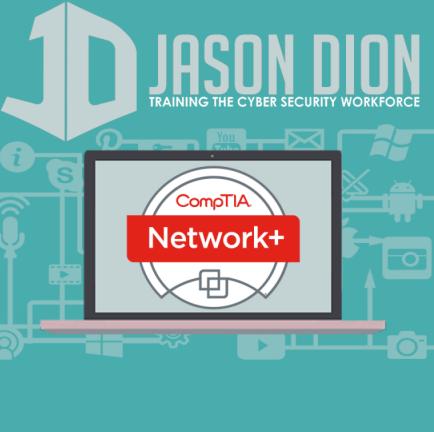
Asynchronous

Network devices reference their own internal clocks and use start/stop bits

Examples at Layer 2

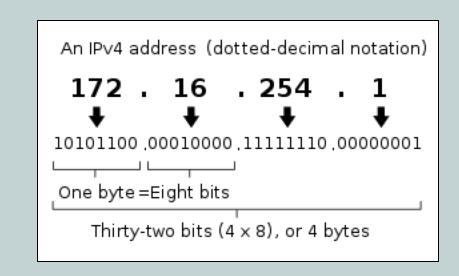
- Network Interface Cards (NIC)
- Bridges
- Switches



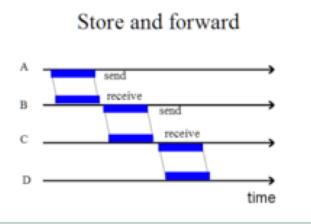

Layer 3 (Network)

CompTIA Network+ (N10-007)

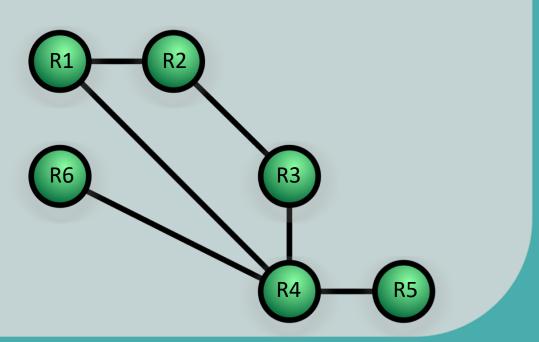
Network Layer (Layer 3)


- Forwards traffic (routing) with logical address
 - Example: IP Address (IPv4 or IPv6)
- Logical addressing
- Switching
- Route discovery and selection
- Connection services
- Bandwidth usage
- Multiplexing strategy

Logical Address


- Numerous routed protocols were used for logical addressing over the years:
 - AppleTalk
 - Internetwork Packet Exchange (IPX)
 - Internet Protocol (IP)
- Only Internet Protocol (IP) remains dominant
 - IP v4
 - IP v6

How should data be Forwarded or routed?


- Packet switching (known as routing)
 - Data is divided into packets and forwarded
- Circuit switching
 - Dedicated communication link is established between two devices
- Message switching
 - Data is divided into messages, similar to packet switching, except these messages may be stored then forwarded

Route Discovery and Selection

- Routers maintain a routing table to understand how to forward a packet based on destination IP address
- Manually configured as a static route or dynamically through a routing protocol
 - RIP
 - OSPF
 - EIGRP

Connection Services

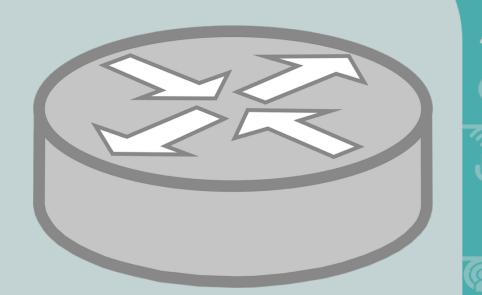
- Layer 3 augment Layer 2 to improve reliability
- Flow control
 - Prevents sender from sending data faster than
 receiver can get it

Packet reordering

• Allows packets to be sent over multiple links and across multiple routes for faster service

Internet Control Message Protocol (ICMP)

- Used to send error messages and operational information about an IP destination
- Not regularly used by end-user applications
- Used in troubleshooting (*ping* and *traceroute*)

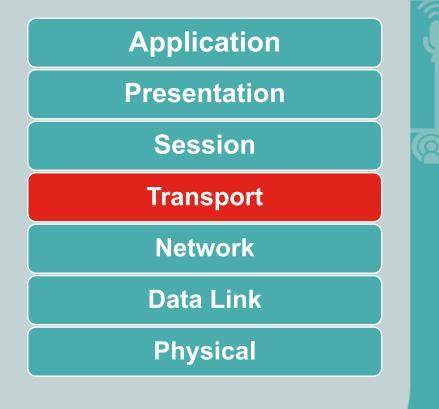

```
$ ping -c 5 www.example.com
PING www.example.com (93.184.216.34): 56 data bytes
64 bytes from 93.184.216.34: icmp_seq=0 ttl=56 time=11.632 ms
64 bytes from 93.184.216.34: icmp_seq=1 ttl=56 time=11.726 ms
64 bytes from 93.184.216.34: icmp_seq=2 ttl=56 time=10.683 ms
64 bytes from 93.184.216.34: icmp_seq=3 ttl=56 time=9.674 ms
64 bytes from 93.184.216.34: icmp_seq=4 ttl=56 time=11.127 ms
```

--- www.example.com ping statistics ---5 packets transmitted, 5 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 9.674/10.968/11.726/0.748 ms

Examples at Layer 3

- Routers
- Multilayer switches
- IPv4 protocol

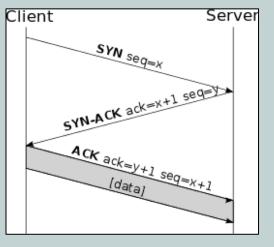
- IPv6 protocol
- Internet Control Message
 Protocol (ICMP)


Layer 4 (Transport)

CompTIA Network+ (N10-007)

Transport Layer (Layer 4)

- Dividing line between upper and lower layers of the OSI model
- Data is sent as segments
- TCP/UDP
- Windowing


Buffering

TCP (Transmission Control Protocol)

- Connection-oriented protocol
- Reliable transport of segments
 - If segment is dropped, protocol detects it and resends segment

- Acknowledgements received for successful communications
- Used for all network data that needs to be assured to get to its destination

UDP (User Datagram Protocol)

- Connectionless protocol
- Unreliable transport of segments
 - If dropped, sender is unaware
- No retransmission
- Good for audio/video streaming

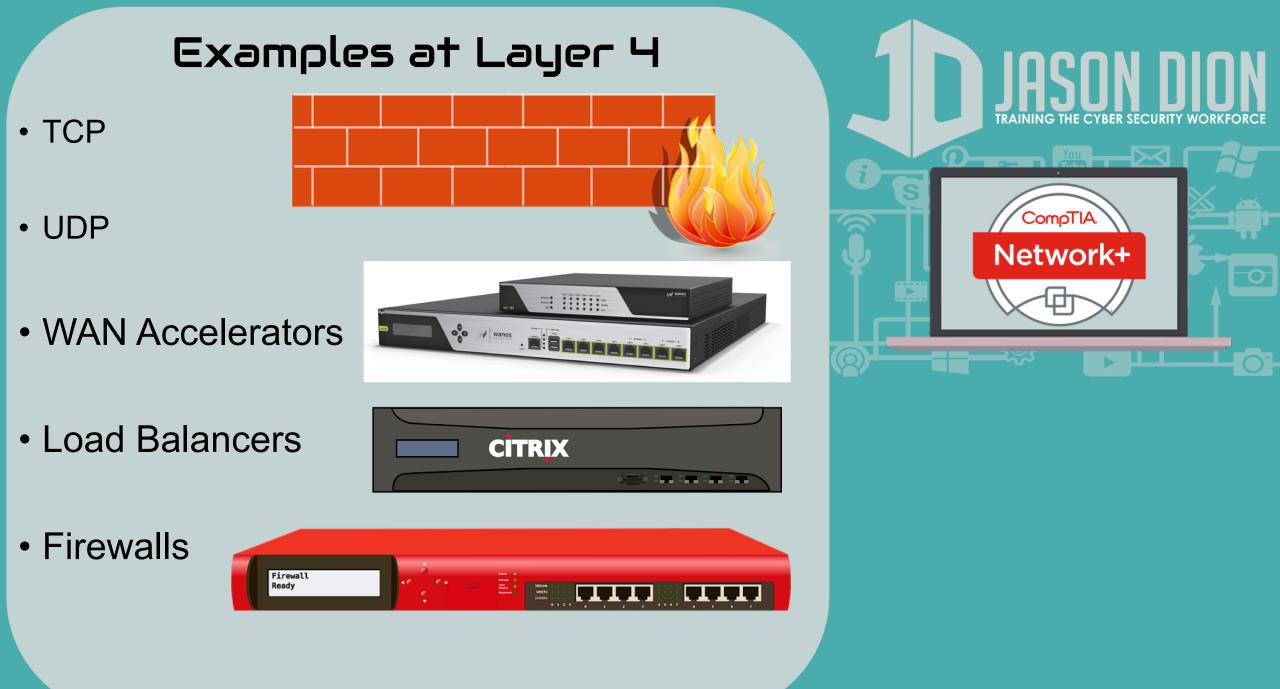
Lower overhead for increased performance


TCP vs UDP

ТСР	UDP
Reliable	Unreliable
Connection-oriented	Connectionless
Segment retransmission and flow control through windowing	No windowing or retransmission
Segment sequencing	No sequencing
Acknowledge segments	No acknowledgement

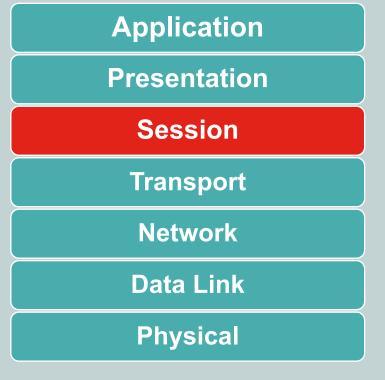
Windowing

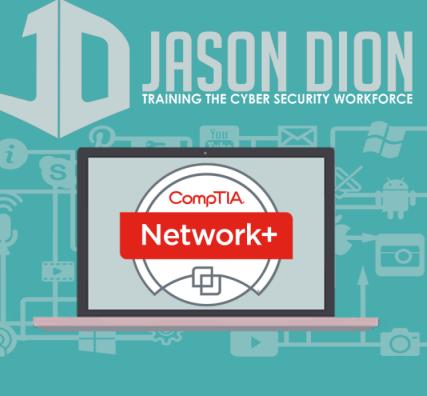
- Allows the clients to adjust the amount of data sent in each segment
- Continually adjusts to send more or less data per segment transmitted
 - Adjusts lower as number of retransmissions occur
 - Adjusts upwards as retransmissions are eliminated



Buffering

- Devices, such as routers, allocate memory to store segments if bandwidth isn't readily available
- When available, it transmits the contents of the buffer 10 mbps **R1** If the buffer overflows, 100, segments will be **R3 R6** dropped 10 mbps 100 mbps **R4** 50 mbps




Layer 5 (Session)

CompTIA Network+ (N10-007)

Session Layer (Layer 5)

- Think of a session as a conversation that must be kept separate from others to prevent intermingling of the data
- Setting up sessions
- Maintaining sessions
- Tearing down sessions

Setting up a Session

- Check user credentials
- Assign numbers to session to identify them
- Negotiate services needed for session
- Negotiate who begins sending data

Maintaining a Session

- Transfer the data
- Reestablish a disconnected session
- Acknowledging receipt of data

Tearing Down a Session

- Due to mutual agreement
 - After the transfer is done
- Due to other party disconnecting

Examples at Layer 5

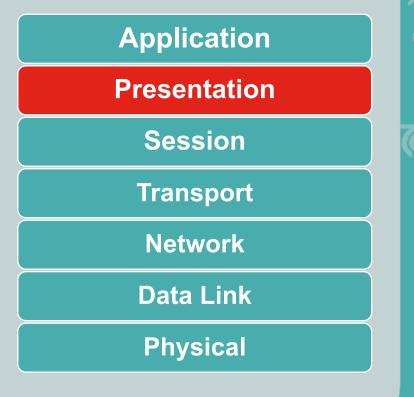
• H.323

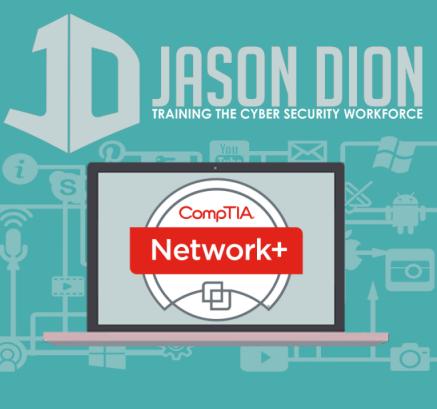
Used to setup, maintain, and tear down a voice/video connection

NetBIOS

• Used by computers to share files over a network

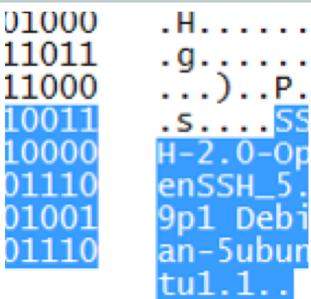
Layer 6 (Presentation)


CompTIA Network+ (N10-007)


Presentation Layer (Layer 6)

 Responsible for formatting the data exchanged and securing that data with proper encryption

• Functions


- Data formatting
- Encryption

Data Formatting

- Formats data for proper compatibility between devices
 D1000 .H....
 - ASCII
 - GIF
 - JPG
- Ensures data is readable by receiving system

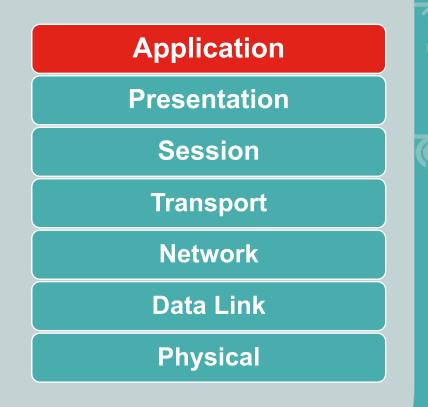
- Provides proper data structures
- Negotiates data transfer syntax for the Application Layer (Layer 7)

Encryption

- Used to scramble the data in transit to keep it secure from prying eyes
- Provides confidentiality of data
- Example:
 - TLS to secure data between your PC and website

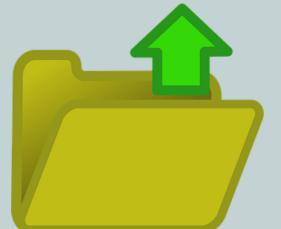
Examples at Layer 6

- HTML, XML, PHP, JavaScript, ...
- ASCII, EBCDIC, UNICODE, ...
- GIF, JPG, TIF, SVG, PNG, ...
- MPG, MOV, ...
- TLS, SSL, ...



Layer 7 (Application) CompTIA Network+ (N10-007)

Application Layer (Layer 7)


- Provides application level services
 - Not Microsoft Word or Notepad
- Layer where the users communicate with the computer
- Functions:
 - Application services
 - Service advertisement

Application Services

- Application services unite communicating components from more than one network application
- Examples:
 - File transfers and file sharing
 - E-mail
 - Remote access
 - Network management activities
 - Client/server processes

Service Advertisement

- Some applications send out announcements
- States the services they offer on the network
- Some centrally register with the Active Directory server instead
- Example:
 - Printers
 - File servers

Examples at Layer 7

- E-mail (POP3, IMAP, SMTP)
- Web Browsing (HTTP, HTTPS)
- Domain Name Service (DNS)
- File Transfer Protocol (FTP, FTPS)
- Remote Access (TELNET, SSH)
- Simple Network Management Protocol (SNMP)

