
Interruptions



val interruption = for {
fib <- zioWithTime.fork
_ <- ... *> fib.interrupt
result <- fib.join

} yield result

Interruptions
Interrupting a fiber:
• is an effect

• (semantically) blocks until interruption is completed
• can also be forked!

Can run effects when interrupted
• resource cleanup

val zioWithTime =
(...).onInterrupt(ZIO.succeed("..."))

Child fibers
• new fiber is a child of the fiber that forked it

• child fiber cannot outlive parent, will be interrupted
• can spawn fibers as children of "main", via .forkDaemon

Race
• two effects are run on separate fibers

• winner (first to finish) dictates result, loser is interrupted

val parentEffect =
ZIO.succeed("spawning fiber") *>
zioWithTime.forkDaemon *> // ß this
ZIO.sleep(1.second) *>
ZIO.succeed("parent successful")

val aRace = slowEffect.race(fastEffect)



ZIO rocks


