Fibers

Concurrency vs Parallelism

Parallel programs may not necessarily be ¢

* e.g.thetasks are independent
Concurrent programs may hot necessarily be

+ e.g. multi-tasking on the same CPU

We focus on concurrency

* poses the most problems

* isalmost always a requirement for useful programs

Fibers

Fiber = description of an effect being executed on some other thread

def createFiber: Fiber[Throwable, String] = ???

failure type result type

Creating a fiber is an effectful operation
* the fiber will be wrapped in a ZIO

val aFiber: ZIO[Any, Nothing, Fiber[Throwable, Int]] = meaningOfLife.fork

Managing a fiber is an effectful operation

* the result of the operation is wrapped in another ZIO

def runOnSomeOtherThread[R,E,A]l(zio: ZIO[R,E,A]l): ZIO[R,E,A] = for {
fib <- io.fork

result <- fib.join
} yield result

How Fibers work

ZIO has a thread pool that manages the execution of effects

effect

thread fiber

active = can run code passive = just a data structure

How Fibers work

ZIO has a thread pool that manages the execution of effects

® .}: oxs
® ::0."

a few threads LOTS of fibers

(100s) (10000000s per GB heap)

Z10 schedules fibers for execution.

Motivation for Fibers

Why we need fibers

no more need for threads and locks
delegate thread management to ZIO runtime
avoid asynchronous code with callbacks (callback hell)

maintain pure functional programming
keep low-level primitives (e.g. blocking, waiting, joining, interrupting, cancelling)

Fiber scheduling concepts & impl details

blocking effects in a fiber lead to descheduling
semantic blocking

cooperative scheduling

the same fiber can run on multiple 3VM threads
work-stealing thread pool

Fibers rock

