
Fibers



Concurrency vs Parallelism
Parallelism = multiple computations running at the same time

Concurrency = multiple computations overlap

Parallel programs may not necessarily be concurrent
• e.g. the tasks are independent

Concurrent programs may not necessarily be parallel
• e.g. multi-tasking on the same CPU

We focus on concurrency
• poses the most problems

• is almost always a requirement for useful programs



def createFiber: Fiber[Throwable, String] = ???

Fibers
Fiber = description of an effect being executed on some other thread

failure type result type

Creating a fiber is an effectful operation
• the fiber will be wrapped in a ZIO

val aFiber: ZIO[Any, Nothing, Fiber[Throwable, Int]] = meaningOfLife.fork

Managing a fiber is an effectful operation
• the result of the operation is wrapped in another ZIO

def runOnSomeOtherThread[R,E,A](zio: ZIO[R,E,A]): ZIO[R,E,A] = for {
fib <- io.fork
result <- fib.join

} yield result



How Fibers work
ZIO has a thread pool that manages the execution of effects

thread

active = can run code

fiber

passive = just a data structure

effect



How Fibers work
ZIO has a thread pool that manages the execution of effects

a few threads

(100s)

LOTS of fibers

(10000000s per GB heap)

ZIO schedules fibers for execution.



Motivation for Fibers
Why we need fibers
• no more need for threads and locks

• delegate thread management to ZIO runtime
• avoid asynchronous code with callbacks (callback hell)

• maintain pure functional programming
• keep low-level primitives (e.g. blocking, waiting, joining, interrupting, cancelling)

Fiber scheduling concepts & impl details
• blocking effects in a fiber lead to descheduling

• semantic blocking
• cooperative scheduling

• the same fiber can run on multiple JVM threads
• work-stealing thread pool



Fibers rock


