Promise

Promise

A purely functional concurrency primitive with two methods

+ get: blocks the fiber (semantically) until a value is present

+ complete: inserts a value that can be read by the blocked fibers

val aPromise = Promise.make[Throwable, Int]

Why def consumer(signal: Promise[Throwable, Int]) = for {
« allows inter-fiber communication _ <— ZI0.succeed(" [consumer] waiting for result...").debug
meaning0fLife <- signal.get

* avoids busy waiting <— ZI0.succeed(s" [consumer] got: $meaningOfLife").debug

+ maintains thread safety } yield ()

_ def producer(signal: Promise[Throwable, Int]) = for {
Use-cases _ <— ZI0.succeed("[producer] crunching numbers...").debug
. producer-consumer-like problems _ <- ZI0.succeed.sleep(1.second)

. sending data between fibers _ <— ZI0.succeed(" [producer] complete: 42").debug
meaning0fLife <— ZIO0.succeed(42)

_ <— signal.complete(meaning0fLife)

yield ()

. notification mechanisms

ZI10 rocks

