
Mastering

Interruptions



val atomicPayment = ZIO.uninterruptible(paymentSystem)

Mastering Interruptions
ZIOs can be marked uninterruptible

Define pinpoint interruptible regions by using the restorer
• everything wrapped in the restore call has the same flag as before 

• everything else is not interruptible

val authFlow = ZIO.uninterruptibleMask { restore =>
for {

pw <- restore(inputPassword)
verification <- verifyPassword(pw)
_ <- if (verification) ZIO.succeed("Auth success!").debugThread

else ZIO.succeed("Auth failed.").debugThread
} yield ()

}

uninterruptible

interruptible

The restorer is the local opposite of uninterruptible
• can be called as many times as we like



ZIO rocks


