
ZIO Error Handling

val failedWithThrowable = ZIO.attempt(throw new RuntimeException("Boom!"))

Error Handling
Attempt: wrap an expression that might throw

val catchError = anAttempt.catchAll(e => ZIO.succeed(s"Recovered from $e"))

Catch/catchAll: process potential errors

Fold/foldZIO: process both success and failure

val handleBoth = anAttempt.foldZIO(
ex => ZIO.succeed(s"Something bad happened: $ex"),
value => ZIO.succeed(s"Length of the string was $value")

)

Conversions between Try/Either/Option to ZIO

val aTryToZIO: ZIO[Any, Throwable, Int] = ZIO.fromTry(Try(42 / 0))
val anEitherToZIO: ZIO[Any, Int, String] = ZIO.fromEither(Right("Good!"))
val anOption: ZIO[Any, Option[Nothing], Int] = ZIO.fromOption(Some(42))

val failedDefect: ZIO[Any, Nothing, String] = failedEffect.orDie

Errors and Defects
• Errors: expected failures, present in the type signature
• Defects: unforeseen failures, not present in the type signature

failedEffect.refineOrDie[IOException] {
case e: IOException => e
case _: NoRouteToHostException => new IOException(s"No route to host")

}

Turn failures into defects

Narrow failure type, leave the rest as defects

Treat failure causes, including defects

val foldedWithCause = failedInt.foldCauseZIO(
cause => ZIO.succeed(s"this failed with ${cause.defects}"),
value => ZIO.succeed(s"this succeeded with $value")

)

ZIO rocks

