
STM



val anAttemptSTM: ZSTM[Any, Throwable, Int] = STM.attempt(42 / 0)

// "commit", i.e. evaluate this effect
val anAtomicEffect: ZIO[Any, Throwable, Int] = anAttemptSTM.commit

Software Transactional Memory
Atomic effects
• have similar APIs/descriptions as ZIOs

• cannot be created from arbitrary Scala code
• cannot be "run"

• evaluate to regular ZIOs

Pros
• atomicity guaranteed

• familiar APIs
• tools for complex CS problems

Cons
• have to replicate common programming structures



// get, update, modify, set
val aVariable: USTM[TRef[Int]] = TRef.make(42)

STM Data Structures

STM Ref: atomic reference (doubles as transactional "variable")

Tools for general programming with transactional properties
• creation is an STM effect

• all API calls are STM effects

// apply, update, transform, fold
val specifiedValuesTArray: USTM[TArray[Int]] = TArray.make(1,2,3)

Array: mutable storage of elements

// contains, put, delete, transform, union/intersection/diff, removeIf/retainIf
val specificValuesTSet: USTM[TSet[Int]] = TSet.make(1,2,3,4,5,1,2,3)

Set: mutable collection of unique elements



STM Data Structures
// put, get, delete, keys/values, removeIf/retainIf, transform
val aTMapEffect: USTM[TMap[String, Int]] = TMap.make(("Daniel", 123), ("Alice", 456))

Map: mutable collection of associations with unique keys

// offer/offerAll, take/takeAll/takeOption, peek
val tQueueBounded: USTM[TQueue[Int]] = TQueue.bounded[Int](5)

Queue: FIFO-ordered mutable collection

// same API as Queue
val maxQueue: USTM[TPriorityQueue[Int]] = TPriorityQueue.make(3,4,1,2,5)

Priority Queue: sorted mutable collection



STM Coordination
// cannot be read/written by two fibers at the same time
val aVariable: USTM[TRef[Int]] = TRef.make(42)

TRef: atomic reference for guards against race conditions

// same API as regular promise
val tPromiseEffect: USTM[TPromise[String, Int]] = TPromise.make[String, Int]

TPromise: notification mechanism

// acquire/acquireN, release/releaseN, withPermit
val tSemaphoreEffect: USTM[TSemaphore] = TSemaphore.make(10)

TSemaphore: controlled access to a critical region

// acquireRead/acquireWrite, releaseRead/releaseWrite, readLocked/writeLocked
val reentrantLockEffect = TReentrantLock.make

TReentrantLock: combined primitive for readers-writers problem, with
• read lock which can be acquired multiple times

• write lock which can be acquired once



ZIO rocks


