Question number	Answer	Additional guidance	Marks
7(a)	B		1
7(b)(i)	- calculation of $n(\mathrm{CO})$ at equilibrium and $n\left(\mathrm{H}_{2}\right)$ at equilibrium - converting number of moles to concentration - evaluation of K_{c} by substitution - correct answer to 3 sf - units: $\mathrm{dm}^{6} \mathrm{~mol}^{-2}$	$\begin{align*} & \frac{\text { Example of calculation }}{n(\mathrm{CO}) \text { at equilibrium }=0.114(\mathrm{~mol})} \\ & n\left(\mathrm{H}_{2}\right) \text { at equilibrium }=0.228(\mathrm{~mol}) \\ & {[\mathrm{CO}]=0.0950 \mathrm{moldm}^{-3},\left[\mathrm{H}_{2}\right]=0.190 \mathrm{moldm}^{-3},} \tag{1}\\ & {\left[\mathrm{CH}_{3} \mathrm{OH}\right]=0.0717 \mathrm{~mol}^{2} \mathrm{dm}^{-3}} \\ & K_{\mathrm{c}}=0.0717 \div\left(0.0950 \times 0.190^{2}\right)=20.9068 \ldots . . \\ & \quad=20.9 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \end{align*}$ Allow $\mathrm{mol}^{-2} \mathrm{dm}^{6}$ $3^{\text {rd }}$ and $4^{\text {th }}$ marks csq on answers given in $1^{\text {st }}$ and $2^{\text {nd }}$ marks Correct final answer to 3 sf with units but no working scores 5 marks	5
7(b)(ii)	An explanation that makes reference to the following points: - an increase in temperature shifts the equilibrium to the left - an increase in pressure shifts the equilibrium to the right - these changes produce opposing effects, so to predict the effect on the yield it is necessary to know the relative effects of each one		3

