Topic: Vector and parametric equations of a line

Question: Find the vector equation of the line.
Passing through ($2,-2,-1$)
Perpendicular to $5 \mathbf{i}+6 \mathbf{j}-\mathbf{k}=0$

Answer choices:

A $\quad r=(5+2 t) \mathbf{i}+(6-2 t) \mathbf{j}+(-1-t) \mathbf{k}$
B $\quad r=(2-5 t) \mathbf{i}+(-2-6 t) \mathbf{j}+(-1+t) \mathbf{k}$
C $\quad r=(2+5 t) \mathbf{i}+(-2+6 t) \mathbf{j}+(-1-t) \mathbf{k}$
D $\quad r=(5-2 t) \mathbf{i}+(6+2 t) \mathbf{j}+(-1+t) \mathbf{k}$

Solution: C

We'll start by converting the given point to its vector equivalent.

$$
\begin{aligned}
& (2,-2,-1) \\
& 2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}
\end{aligned}
$$

We know we're looking for the line perpendicular to $5 \mathbf{i}+6 \mathbf{j}-\mathbf{k}=0$, which means we need the normal line to $5 \mathbf{i}+6 \mathbf{j}-\mathbf{k}=0$, which is $5 \mathbf{i}+6 \mathbf{j}-\mathbf{k}$. The line we're looking for will be parallel to $5 \mathbf{i}+6 \mathbf{j}-\mathbf{k}$.

Now we're ready to plug into the equation of a line, $r=r_{0}+t v$, where r_{0} is a point on the line, and where v is a vector parallel to the vector we want.

$$
\begin{aligned}
& r=r_{0}+t v \\
& r=(2 \mathbf{i}-2 \mathbf{j}-\mathbf{k})+t(5 \mathbf{i}+6 \mathbf{j}-\mathbf{k}) \\
& r=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}+5 t \mathbf{i}+6 t \mathbf{j}-t \mathbf{k} \\
& r=(2 \mathbf{i}+5 t \mathbf{i})+(-2 \mathbf{j}+6 t \mathbf{j})+(-\mathbf{k}-t \mathbf{k}) \\
& r=(2+5 t) \mathbf{i}+(-2+6 t) \mathbf{j}+(-1-t) \mathbf{k}
\end{aligned}
$$

Topic: Vector and parametric equations of a line

Question: Find the parametric equations of the line that corresponds to the vector equation.

$$
r=(-3+t) \mathbf{i}+(8 t) \mathbf{j}+(1-3 t) \mathbf{k}
$$

Answer choices:

A $\quad x=1+3 t$

$$
y=-8
$$

$$
z=3-t
$$

$$
\text { B } \quad x=-3+t
$$

$$
y=8 t
$$

$$
z=1-3 t
$$

$$
\text { C } \quad x=1-3 t
$$

$$
y=8
$$

$$
z=-3+t
$$

D $\quad x=3-t$
$y=-8 t$
$z=-1+3 t$

Solution: B

Given a vector equation

$$
r=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}
$$

the parametric equations are $x=a, y=b$ and $z=c$. So from the vector equation $r=(-3+t) \mathbf{i}+(8 t) \mathbf{j}+(1-3 t) \mathbf{k}$, we get

$$
\begin{aligned}
& x=-3+t \\
& y=8 t \\
& z=1-3 t
\end{aligned}
$$

