Topic: Vector and parametric equations of a line

Question: Find the vector equation of the line.

Passing through (2, -2, -1)

Perpendicular to $5\mathbf{i} + 6\mathbf{j} - \mathbf{k} = 0$

Answer choices:

A
$$r = (5+2t)\mathbf{i} + (6-2t)\mathbf{j} + (-1-t)\mathbf{k}$$

B
$$r = (2 - 5t)\mathbf{i} + (-2 - 6t)\mathbf{j} + (-1 + t)\mathbf{k}$$

C
$$r = (2+5t)\mathbf{i} + (-2+6t)\mathbf{j} + (-1-t)\mathbf{k}$$

D
$$r = (5 - 2t)\mathbf{i} + (6 + 2t)\mathbf{j} + (-1 + t)\mathbf{k}$$

Solution: C

We'll start by converting the given point to its vector equivalent.

$$(2, -2, -1)$$

 $2i - 2j - k$

We know we're looking for the line perpendicular to $5\mathbf{i} + 6\mathbf{j} - \mathbf{k} = 0$, which means we need the normal line to $5\mathbf{i} + 6\mathbf{j} - \mathbf{k} = 0$, which is $5\mathbf{i} + 6\mathbf{j} - \mathbf{k}$. The line we're looking for will be parallel to $5\mathbf{i} + 6\mathbf{j} - \mathbf{k}$.

Now we're ready to plug into the equation of a line, $r = r_0 + tv$, where r_0 is a point on the line, and where *v* is a vector parallel to the vector we want.

$$r = r_{0} + tv$$

$$r = (2\mathbf{i} - 2\mathbf{j} - \mathbf{k}) + t(5\mathbf{i} + 6\mathbf{j} - \mathbf{k})$$

$$r = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k} + 5t\mathbf{i} + 6t\mathbf{j} - t\mathbf{k}$$

$$r = (2\mathbf{i} + 5t\mathbf{i}) + (-2\mathbf{j} + 6t\mathbf{j}) + (-\mathbf{k} - t\mathbf{k})$$

$$r = (2 + 5t)\mathbf{i} + (-2 + 6t)\mathbf{j} + (-1 - t)\mathbf{k}$$

Question: Find the parametric equations of the line that corresponds to the vector equation.

$$r = (-3 + t)\mathbf{i} + (8t)\mathbf{j} + (1 - 3t)\mathbf{k}$$

Answer choices:

А	x = 1 + 3t	y = -8	z = 3 - t
В	x = -3 + t	y = 8t	z = 1 - 3t
С	x = 1 - 3t	y = 8	z = -3 + t
D	x = 3 - t	y = -8t	z = -1 + 3t

Solution: B

Given a vector equation

$$r = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

the parametric equations are x = a, y = b and z = c. So from the vector equation $r = (-3 + t)\mathbf{i} + (8t)\mathbf{j} + (1 - 3t)\mathbf{k}$, we get

x = -3 + ty = 8tz = 1 - 3t