Question	Answers	Mark	Additional Comments/Guidance
04.1	$\begin{aligned} & \text { Initial amount of } A=6.4 \times 10^{-3} \\ & \text { Equ } A=6.4 \times 10^{-3}-2 x \quad \therefore x=1.25 \times 10^{-3} \\ & B=9.5 \times 10^{-3}-x=8.25 \times 10^{-3} \\ & C=2.8 \times 10^{-2}+3 x=0.0318 \\ & D=x=1.25 \times 10^{-3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \\ & \text { M3 } \\ & \text { M4 } \\ & \text { M5 } \end{aligned}$	If M1 wrong can score max 3 If incorrect x can score $\max 3$ Allow 2 or more sig figs
04.2	$\begin{aligned} & K_{\mathrm{c}}=\frac{[C]^{3}[D]}{[A]^{2}[B]} \\ & \text { Units }=\mathrm{mol} \mathrm{dm}^{-3} \end{aligned}$	1 1	Penalise () but mark on in $4.2 \& 4.3$ If K_{c} wrong no mark for units
$\begin{gathered} 04.3 \\ \text { Can see } \\ 4.2 \end{gathered}$	M1 for correct rearrangement $[A]^{2}=\frac{[C]^{3}[D]}{K_{c}[B]}$ or $[A]=\sqrt{ } \frac{[C]^{3}[D]}{K_{c}[B]}$ M2 for division of mol of B, C and D by correct volume $[A]^{2}=\frac{\left[^{1.05]} / 0.5^{3}\right]^{3}[076 / 0.5]}{116 \times\left[^{0.21 / 0.5]}\right.} \text { or } 0.0289 \text { or } 0.0290$ M3 for final answer: $[\mathrm{A}]=\underline{0.17}$ (must be 2 sfs)	M1 M2 M3	If K_{c} wrong in 4.2 can score 1 for dividing by correct volume If K_{c} correct but incorrect rearrangement can score 1 for dividing by correct volume
04.4	(AII) conc fall: (ignore dilution) Equm moves to side with more moles To oppose the decrease in conc	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OR $K_{\mathrm{c}}=$ mole ratio $\times 1 / \mathrm{V}$ If vol increases, mole ratio must increase To keep K_{c} constant If only conc of A falls CE=0 If pressure falls $\mathrm{CE}=0$
Total		13	

