

SIEVING

 Sieving: a technique in which two or more components of a mixture can be separated based on their size difference.



 Sieving: only works if components have different sizes. eg will NOT work to separate a mixture of flour and chalk powder

Sieving a mixture of nuts



### **Geological Soil Profile**

Soil mixture is placed in top, agitator turned on. The soil grains fall through each sieve grate until each sieve holds soil particles for its diameter size



#### Syllabus statement:

\* explore homogeneous mixtures and heterogeneous mixtures through practical investigations: Video in course

– using separation techniques based on physical properties

2.5



DECANTATION

Decantation: a technique of separation for liquid-liquid immiscible liquids (oil/water) OR an insoluble solid that has settled from a liquid (muddy water).

Physical Property: density

Immiscible-liquids

Sediment in rivers

Decanting a solid-liquid mixture







## Syllabus statement:

\* explore homogeneous mixtures and heterogeneous mixtures through practical investigations: Video in course - using separation techniques based on physical properties 2.4



# MODULE 1 © The Flipped Teacher 2020

# SEPARATING MIXTURES

FILTRATION

• Filtration: a technique of separation used to separate insoluble materials from soluble materials.

## Physical Property:

- (a) solubility
  - soluble component in filtrate

## (b) particle size

 filter paper separates insoluble material which remains in the residue.





## Syllabus statement:

\* explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

Video in course

2.



SIMPLE DISTILLATION

## • Distillation:

a technique of separation used to separate mixtures containing miscible liquids who have relatively large gaps between their B.P (> 30°C)

Physical Property: B.P



### Syllabus statement:



# SEPARATING MIXTURES FRACTIONAL DISTILLATION

## • Fractional Distillation:

- is used when the B.P of the components are close together.
- this allows continual evaporation and condensation cycles to occur producing a more pure distillate.
- the most volatile components vapourise first.
- Physical Property: B.P
- Fractionating column is designed to have a large SA with glass beads, glass spirals often in the column.



### Syllabus statement:

\* explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

Video in course

2.10

CENTRIFUGATION

# Centrifugation:

- is used to separate suspended particles in a solution due to differences in size, mass, density or viscosity.
- high speed is used to provide the force used to separate particles.
- **Physical Property:** size, mass, density, viscosity



#### Syllabus statement:

Video in course explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties



MAGNETIC SEPARATION

## • Magnetic Separation:

- is used to separate magnetic materials from non-magnetic materials.
   often used in Industry to remove iron ore from waste or metal from recycling in factory processing.
- Magnetic materials have Fe, Ni or Co in them.
- Physical Property: magnetic attraction (material must be ferromagnetic)





Sulphur and Iron filings

### Syllabus statement:

\* explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

Video in course

---



# SEPARATING MIXTURES EVAPORATIVE CRYSTALISATION

- Evaporative crystallisation:
- is used to separate a mixture of soluble solutes.
- when solubility decreases, pure crystals form as they push out impurities when forming a crystal.
- differences in solubility are used to separate components.

 Physical Property: solubility in fixed volume of water



#### Syllabus statement:

Video in course

\* explore homogeneous mixtures and heterogeneous mixtures through practical investigations:

- using separation techniques based on physical properties

2.