| 18 | Nitrogen monoxide, NO, and oxygen, O ₂ , react to form nitrogen dioxide, NO ₂ , in the reversible | |----|---| | | reaction shown in equilibrium 18.1 . | $$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$ Equilibrium 18.1 (a) Write an expression for K_c for this equilibrium and state the units. $$K_{\rm c} =$$ - **(b)** A chemist mixes together nitrogen and oxygen and pressurises the gases so that their total gas volume is $4.0\,\mathrm{dm}^3$. - The mixture is allowed to reach equilibrium at constant temperature and volume. - The equilibrium mixture contains 0.40 mol NO and 0.80 mol O₂. - Under these conditions, the numerical value of $K_{\rm c}$ is 45. Calculate the amount, in ${\rm mol}$, of ${\rm NO}_2$ in the equilibrium mixture. (c) The values of $K_{\rm p}$ for equilibrium 18.1 at 298 K and 1000 K are shown below. $$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$ ## **Equilibrium 18.1** | Temperature/K | K _p /atm ^{−1} | |---------------|-----------------------------------| | 298 | $K_{\rm p} = 2.19 \times 10^{12}$ | | 1000 | $K_{\rm p} = 2.03 \times 10^{-1}$ | | (i) | Predict, with a reason, whether the forward reaction is exothermic or endothermic. | | |------|--|------| | | | | | | | Lı | | (ii) | The chemist increases the pressure of the equilibrium mixture at the same temperatu | re | | | State, and explain in terms of $K_{\rm p}$, how you would expect the equilibrium position change. | ı to | Г3 |