AP Calculus AB/BC

Chapter 2. Limit and continuity
2.1 Rates of Change and Tangent to Curves

Average and Instantaneous Speed

EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed

- (a) during the first 2 sec of fall?
- **(b)** during the 1-sec interval between second 1 and second 2?

(a) For the first 2 sec:
$$\frac{\Delta y}{\Delta t} =$$

(b) From sec 1 to sec 2:
$$\frac{\Delta y}{\Delta t} =$$

Average and Instantaneous Speed

EXAMPLE 2 Find the speed of the falling rock in Example 1 at t = 1 and t = 2 sec.

Average and Instantaneous Speed

TABLE 2.1 Average speeds over short time intervals $[t_0, t_0 + h]$

Average speed:
$$\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)^2 - 16t_0^2}{h}$$

Length of time interval h	Average speed over interval of length h starting at $t_0 = 1$	Average speed over interval of length h starting at $t_0 = 2$
1	48	80
0.1	33.6	65.6
0.01	32.16	64.16
0.001	32.016	64.016
0.0001	32.0016	64.0016

Average Rates of Change and Secant Lines

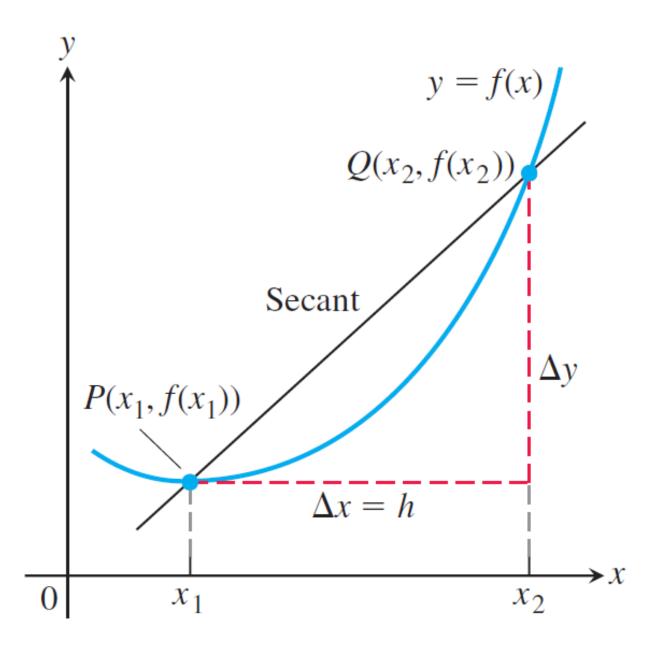


FIGURE 2.1 A secant to the graph y = f(x). Its slope is $\Delta y/\Delta x$, the average rate of change of f over the interval $[x_1, x_2]$.

Average Rates of Change and Secant Lines

DEFINITION The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0.$$

Tangent of a Point on a Curve

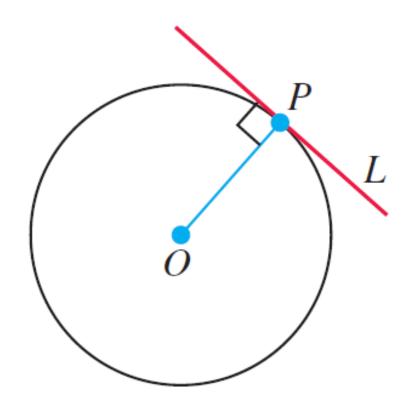


FIGURE 2.2 *L* is tangent to the circle at *P* if it passes through *P* perpendicular to radius *OP*.

Defining the Slope of a Curve

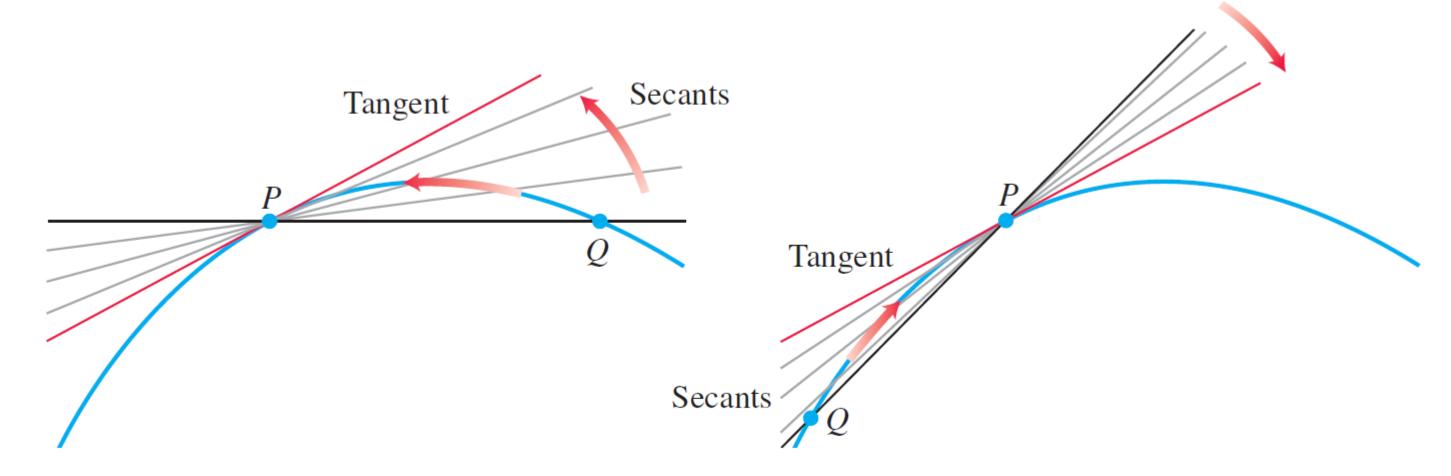
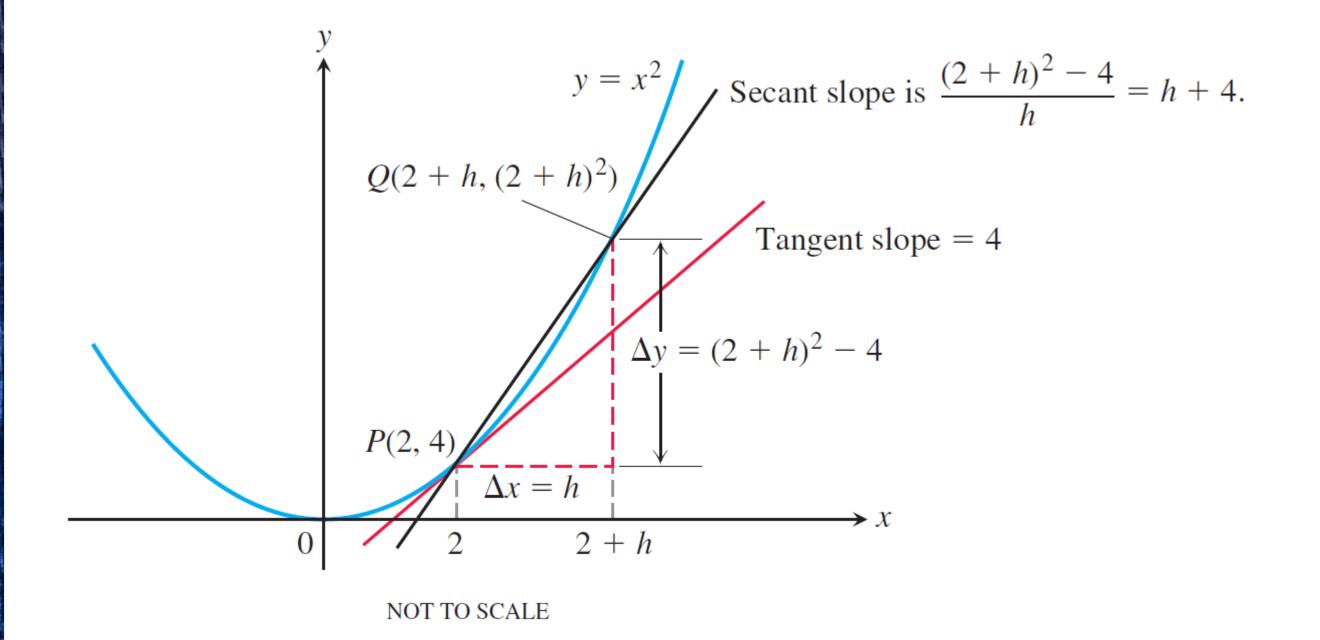


FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

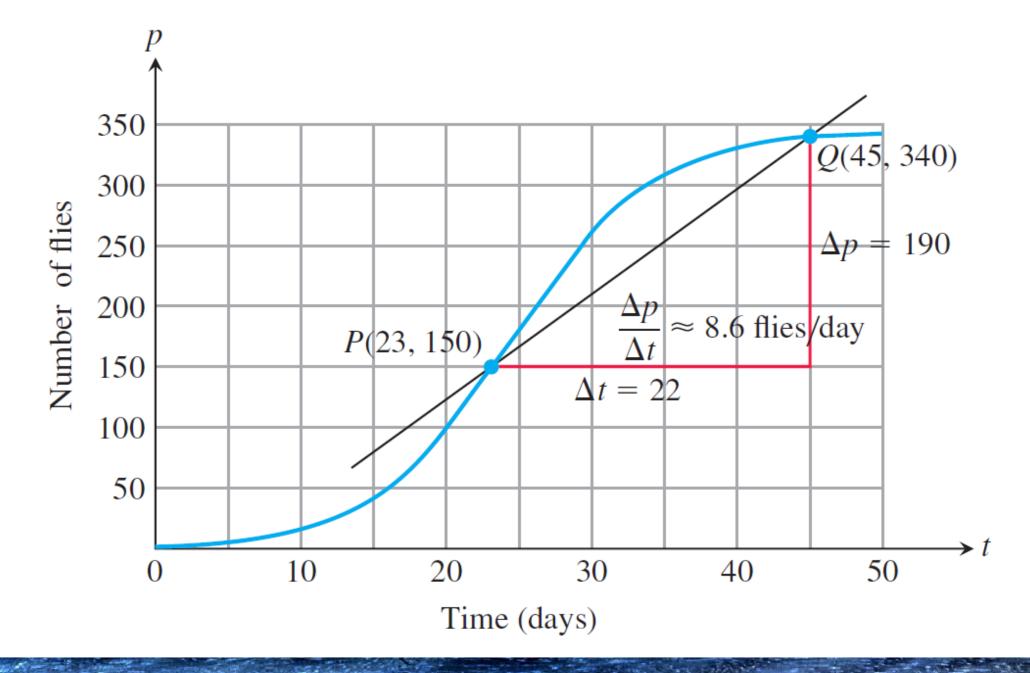
Defining the Slope of a Curve

EXAMPLE 3 Find the slope of the parabola $y = x^2$ at the point P(2, 4). Write an equation for the tangent to the parabola at this point.



Instantaneous Rates of Change and Tangent Lines

EXAMPLE 4 Figure 2.5 shows how a population *p* of fruit flies (*Drosophila*) grew in a 50-day experiment. The number of flies was counted at regular intervals, the counted values plotted with respect to time *t*, and the points joined by a smooth curve (colored blue in Figure 2.5). Find the average growth rate from day 23 to day 45.

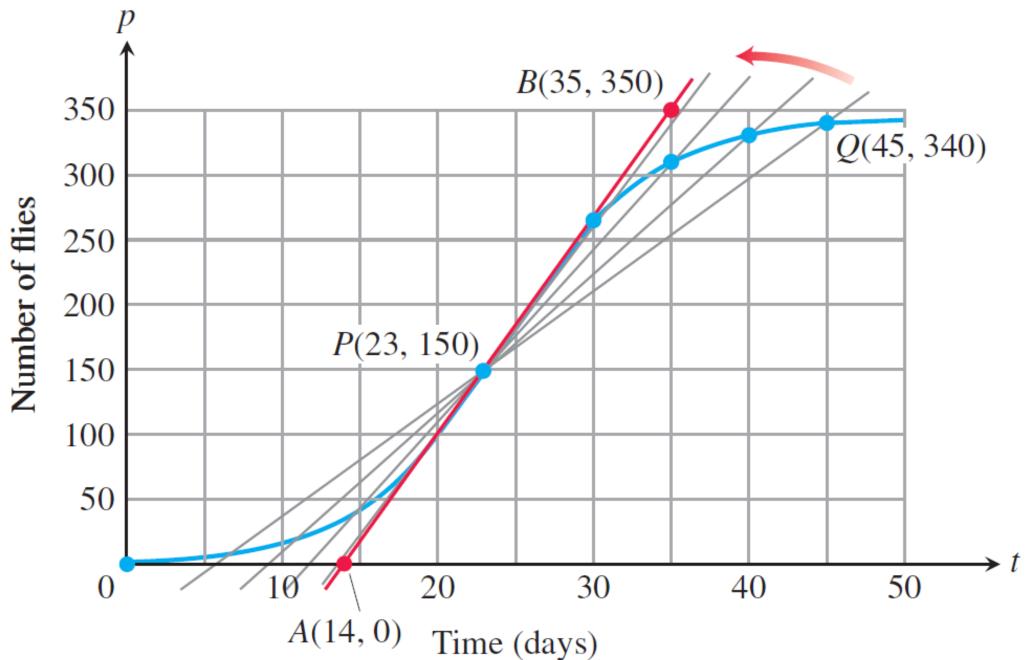


Instantaneous Rates of Change and Tangent Lines

EXAMPLE 5

How fast was the number of flies in the population of Example 4 grow-

ing on day 23?



Q	Slope of $PQ = \Delta p / \Delta t$ (flies / day)	
(45, 340)	$\frac{340 - 150}{45 - 23} \approx 8.6$	
(40, 330)	$\frac{330 - 150}{40 - 23} \approx 10.6$	
(35, 310)	$\frac{310 - 150}{35 - 23} \approx 13.3$	
(30, 265)	$\frac{265 - 150}{30 - 23} \approx 16.4$	

Average Rates of Change

In Exercises 1–6, find the average rate of change of the function over the given interval or intervals.

1.
$$f(x) = x^3 + 1$$

b.
$$[-1, 1]$$

3.
$$h(t) = \cot t$$

a.
$$[\pi/4, 3\pi/4]$$
 b. $[\pi/6, \pi/2]$

b.
$$[\pi/6, \pi/2]$$

5.
$$R(\theta) = \sqrt{4\theta + 1}$$
; [0, 2]

Slope of a Curve at a Point

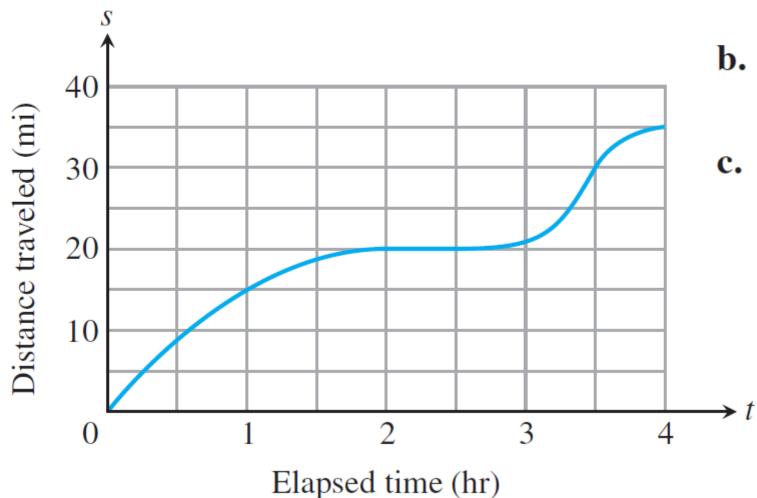
In Exercises 7–14, use the method in Example 3 to find (a) the slope of the curve at the given point P, and (b) an equation of the tangent line at P.

7.
$$y = x^2 - 5$$
, $P(2, -1)$

11.
$$y = x^3$$
, $P(2, 8)$

- **T** 19. Let $g(x) = \sqrt{x}$ for $x \ge 0$.
 - **a.** Find the average rate of change of g(x) with respect to x over the intervals [1, 2], [1, 1.5] and [1, 1 + h].
 - **b.** Make a table of values of the average rate of change of g with respect to x over the interval [1, 1 + h] for some values of h approaching zero, say h = 0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001.
 - c. What does your table indicate is the rate of change of g(x) with respect to x at x = 1?
 - **d.** Calculate the limit as h approaches zero of the average rate of change of g(x) with respect to x over the interval [1, 1 + h].

21. The accompanying graph shows the total distance *s* traveled by a bicyclist after *t* hours.



- **a.** Estimate the bicyclist's average speed over the time intervals [0, 1], [1, 2.5], and [2.5, 3.5].
- **b.** Estimate the bicyclist's instantaneous speed at the times $t = \frac{1}{2}$, t = 2, and t = 3.
- **c.** Estimate the bicyclist's maximum speed and the specific time at which it occurs.