AP Calculus AB/BC

Chapter 2. Limit and continuity
2.1 Rates of Change and Tangent to Curves

Average and Instantaneous Speed

EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed
(a) during the first 2 sec of fall?
(b) during the 1 -sec interval between second 1 and second 2 ?
(a) For the first 2 sec:

$$
\frac{\Delta y}{\Delta t}=
$$

(b) From sec 1 to $\sec 2: \quad \frac{\Delta y}{\Delta t}=$

Average and Instantaneous Speed

EXAMPLE 2 Find the speed of the falling rock in Example 1 at $t=1$ and $t=2 \mathrm{sec}$.

Average and Instantaneous Speed

TABLE 2.1 Average speeds over short time intervals $\left[t_{0}, t_{0}+h\right]$
Average speed: $\frac{\Delta y}{\Delta t}=\frac{16\left(t_{0}+h\right)^{2}-16 t_{0}{ }^{2}}{h}$

Length of time interval h

1
0.1
0.01
0.001
0.0001

Average speed over
interval of length \boldsymbol{h}
starting at $t_{0}=1$
48
33.6
32.16
32.016
32.0016

Average speed over interval of length h starting at $t_{0}=2$8065.6
64.16
64.016
64.0016

Average Rates of Change and Secant Lines

FIGURE 2.1 A secant to the graph $y=f(x)$. Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $\left[x_{1}, x_{2}\right]$.

Average Rates of Change and Secant Lines

DEFINITION The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

Tangent of a Point on a Curve

FIGURE 2.2 L is tangent to the circle at P if it passes through P perpendicular to radius $O P$.

Defining the Slope of a Curve

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

Defining the Slope of a Curve

EXAMPLE 3 Find the slope of the parabola $y=x^{2}$ at the point $P(2,4)$. Write an equation for the tangent to the parabola at this point.

Instantaneous Rates of Change and Tangent Lines

EXAMPLE 4 Figure 2.5 shows how a population p of fruit flies (Drosophila) grew in a 50 -day experiment. The number of flies was counted at regular intervals, the counted values plotted with respect to time t, and the points joined by a smooth curve (colored blue in Figure 2.5). Find the average growth rate from day 23 to day 45.

Instantaneous Rates of Change and Tangent Lines

EXAMPLE 5 How fast was the number of flies in the population of Example 4 growing on day 23 ?

\boldsymbol{Q}	Slope of $P Q=\Delta p / \Delta t$ (flies / day)
$(45,340)$	$\frac{340-150}{45-23} \approx 8.6$
$(40,330)$	$\frac{330-150}{40-23} \approx 10.6$
$(35,310)$	$\frac{310-150}{35-23} \approx 13.3$
$(30,265)$	$\frac{265-150}{30-23} \approx 16.4$

Exercises

Average Rates of Change
In Exercises 1-6, find the average rate of change of the function over the given interval or intervals.

1. $f(x)=x^{3}+1$
a. $[2,3]$
b. $[-1,1]$
2. $h(t)=\cot t$
a. $[\pi / 4,3 \pi / 4]$
b. $[\pi / 6, \pi / 2]$
3. $R(\theta)=\sqrt{4 \theta+1} ; \quad[0,2]$

Exercises

Slope of a Curve at a Point
In Exercises 7-14, use the method in Example 3 to find (a) the slope of the curve at the given point P, and (b) an equation of the tangent line at P.
7. $y=x^{2}-5, \quad P(2,-1)$
11. $y=x^{3}, \quad P(2,8)$

Exercises

T 19. Let $g(x)=\sqrt{x}$ for $x \geq 0$.
a. Find the average rate of change of $g(x)$ with respect to x over the intervals $[1,2],[1,1.5]$ and $[1,1+h]$.
b. Make a table of values of the average rate of change of g with respect to x over the interval $[1,1+h]$ for some values of h approaching zero, say $h=0.1,0.01,0.001,0.0001,0.00001$, and 0.000001 .
c. What does your table indicate is the rate of change of $g(x)$ with respect to x at $x=1$?
d. Calculate the limit as h approaches zero of the average rate of change of $g(x)$ with respect to x over the interval $[1,1+h]$.

Exercises

21. The accompanying graph shows the total distance s traveled by a bicyclist after t hours.
a. Estimate the bicyclist's average speed over the time intervals $[0,1],[1,2.5]$, and $[2.5,3.5]$.

b. Estimate the bicyclist's instantaneous speed at the times $t=\frac{1}{2}$, $t=2$, and $t=3$.
c. Estimate the bicyclist's maximum speed and the specific time at which it occurs.
