HYPOTHESIS TESTING FOR THE MEAN OF A POPULATION

A brand of water comes in bottles. The amount of water follows a normal distribution of mean \(\mu \) and sd \(\sigma \). The manufacturer takes a sample of 15 bottles and finds the mean to be 124.2 ml. Test at the 5% level whether or not there is evidence that the value of \(\mu \) is lower than the manufacturer's claim that \(\mu = 125 \).

Hypothesis:

- \(H_0: \mu = \ldots \) NULL
- \(H_1: \mu > \ldots \) ALT.

The aim is...

- \(\bar{x} \sim N(\mu, \sigma^2/n) \)

\(\bar{x} \) is 'weird' enough to allow us to reject \(H_0 \)

\(\bar{x} \) is 'weird' enough to allow us to reject the idea that the population mean is \(\mu \)

Conclusion:
- Compare
- Do/do not reject \(H_0 \)
- Conclusion in context
Hypothesis Testing for Zero Correlation

Sample PMCC: $r = 0.78$, suggesting a likely linear relationship within the sample population.

Null Hypothesis (H_0): $p = 0$
Alternative Hypothesis (H_1): $p > 0$

Check Significance

- **Critical Value for r**: r_{cr}
- **If $-1 < r < -r_{cr}$**: There is evidence $p < 0$
 - **Reject H_0**.
- **If $r < r_{cr}$**: There is evidence $p > 0$
 - **Reject H_0**.

Your Conclusion Must Have 3 Stages

1. **Compare** calculated r with r_{cr}.
2. **Reject H_0?**
3. **Context**

Data Table

<table>
<thead>
<tr>
<th>x (age in years)</th>
<th>30</th>
<th>52</th>
<th>38</th>
<th>48</th>
<th>56</th>
<th>44</th>
<th>41</th>
<th>25</th>
<th>32</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>y (annual salary in thousands of pounds)</td>
<td>32</td>
<td>38</td>
<td>40</td>
<td>34</td>
<td>35</td>
<td>32</td>
<td>28</td>
<td>27</td>
<td>29</td>
<td>41</td>
</tr>
</tbody>
</table>

It is suggested that there is no correlation between age and salary. Test this at the 5% level.

Calculation

- **H_0**:
- **H_1**:

- **From Table**

- **Calculator**