

The Mole The Basics

Presented by Amelia McCutcheon

The mole

"A mole is defined as the amount of substance that contains the same number of specified particles as there are atoms in 12 g of carbon-12."

From Heineman Chemistry 1 (Lukins et al)

Avogadro's number (N_A) :

1 mole contains 6.02×10^{23} particles

www.zenofchemistry.com

The mole

"A mole is defined as the amount of substance that contains the same number of specified particles as there are atoms in 12 g of carbon-12."

From Heineman Chemistry 1 (Lukins et al)

Avogadro's number (N_A) :

1 mole contains 6.02 x 10²³ particles

www.zenofchemistry.com

Egg Masses

...for the purposes of the example, let's assume that all eggs came in dozens (i.e. 12 eggs)

Molar Mass

- The mass of 1 mol of atoms/molecules/particles 1 mol is NOT a dozen particles but 6.02 x 10²³ particles!! 602,000,000,000,000,000,000,000
- Units: grams per mol (g/mol)

How to use equation triangles:

- 1. Write down the term you wish to calculate (e.g. n =).
- Cover the term you wish to calculate with your hand.
 What remains is your equation on the other side of the = sign, working from the top down and/or left to right, and include all multiplication/division signs linking the two remaining terms.
- 4. The three equations derived from this triangle are:
 - n = m ÷ M_r
 m = n × M_r
 - $M_r = m \div n$

The horizontal line corresponds to division; the vertical line corresponds to multiplication.

www.zenofchemistry.com

Avogadro's Number

Eggs

- 1 dozen eggs = 12 eggs
- ½ dozen eggs = 6 eggs
- 2 dozen eggs = 24 eggs
- 3 dozen eggs = 36 eggs

Moles

- 1 mole atoms = 6.02 x 10²³ atoms
- ½ mole atoms = 3.01 x 10²³ atoms
- 2 moles atoms = 12.04 x 10²³ atoms
- 3 moles atoms = 18.06 x 10²³ atoms

12

Empirical & Molecular Formulae

Molecular formula:

Empirical formula:

Exact number of atoms in a molecule

Lowest whole number ratio of atoms in a

molecule

e.g. Ethane: C₂H₆ M = 30 g/mol e.g. Ethane: CH₃ M = 15 g/mol

e.g. glucose: C₆H₁₂O₆

e.g. glucose: CH₂O

M = 180 g/mol

M = 30 g/mol

www.zenofchemistry.com

Percentage by mass

% by mass = $\frac{\text{mass of one component}}{\text{mass of one component}}$ x 100% mass of the total

This can be used for:

- % w/w
- % yield
- % by mass of one element in a compound
- % by mass of water

www.zenofchemistry.com

The Mole The Basics

Presented by Amelia McCutcheon