- **18** A student is asked to calculate ΔG at 25 °C for the combustion of butan-1-ol. The teacher provides two pieces of information.
 - The equation for the combustion of butan-1-ol.

 $CH_3(CH_2)_3OH(l) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l)$ Equation 2

• Standard entropies of butan-1-ol, oxygen, carbon dioxide and water.

	CH ₃ (CH ₂) ₃ OH(l)	$O_2(g)$	$CO_2(g)$	$H_2O(l)$
S^{Θ} / J K ⁻¹ mol ⁻¹	228	205	214	70

The student carries out an experiment using the apparatus below and obtains the following results. The specific heat capacity of water is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$.

Mass of burner and butan-1-ol before burning / g	98.997
Mass of burner and butan-1-ol after burning / g	98.738
Initial temperature / °C	18.5
Maximum temperature reached / °C	39.0

Use the information on the previous page to calculate ΔG , in kJ mol⁻¹, for the combustion of butan-1-ol according to **Equation 2** at 25 °C.

Show all your working.

 $\Delta G = \dots kJ \text{ mol}^{-1}$ [7]