CAPE UNIT 1 VECTORS

1. Determine the unit vector in the direction of b = i + 2j - 3k.

$$\left[\frac{1}{\sqrt{14}}(i+2j-3k)\right]$$
2. If $p = 4i + 3j - 2k$ and $q = 2i + j + 11k$ find
(a) $p.q$
(b) $q.p$
(c) $p.p$
(d) $q.q$
3. If $a = \begin{pmatrix} 1\\ -4\\ -4 \end{pmatrix}$ and $b = \begin{pmatrix} 2\\ -14\\ 1 \end{pmatrix}$ determine:
(a) $a.b$
(b) $b.a$
(c) $a.a$
(d) $b.b$
Ans: (a) -11 (b) -11 (c) 29 (d) 126
(a) 40 (b) 40 (c) 26 (d) 199
4. Find the angle between the vectors $i - 2j + 3k$ and $2i + j + k$.
[70.9°]
5. Calculate to the nearest degree, the angle between the vectors $4i + k$ and $4i + 3j + 2k$.
[36°]
6. The points A and B have position vectors a and b relative to an origin 0 , where $a = 4i + 3j - 2k$ and $b = -7i + 5j + 4k$
(i) Find the length of AB .
(ii) Use a scalar product to find angle OAB .
[(i) $\sqrt{161}$ (ii) 43°]
7. Points A, B and C have position vectors $-5i - 10j + 12k$, $i + 2j - 3k$ and $3i + 6j + pk$ respectively, where p is a constant.
(i) Given that angle $ABC = 90^\circ$, find the value of p .
(ii) Given instead that ABC is a straight line, find the value of p .
[(i) 1 (ii) -8]
8. Determine the equation of the line which passes through the point

(i) A(-1, 1, -3) and is parallel to the vector $\begin{pmatrix} 2\\0\\-1 \end{pmatrix}$. (ii) B(4, 3, -2) and is parallel to the vector $\begin{pmatrix} -9\\-2\\1 \end{pmatrix}$.

(iii)
$$C(-3, 4, 3)$$
 and is parallel to the vector $\begin{pmatrix} 8\\-3\\-7 \end{pmatrix}$.
(iv) $D(5, 2, -3)$ and is parallel to the vector $\begin{pmatrix} -4\\-5\\7 \end{pmatrix}$.
(v) $E(3, 5, -5)$ and is parallel to the vector $\begin{pmatrix} -8\\-8\\3 \end{pmatrix}$.
Ans: (i) $r = \begin{pmatrix} -1\\1\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\0\\-1 \end{pmatrix}$ (ii) $r = \begin{pmatrix} 4\\3\\-2 \end{pmatrix} + \lambda \begin{pmatrix} -9\\-2\\1 \end{pmatrix}$ (iii) $r = \begin{pmatrix} -3\\4\\3 \end{pmatrix} + \lambda \begin{pmatrix} 8\\-3\\-7 \end{pmatrix}$
(iii) $r = \begin{pmatrix} 5\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} -4\\-5\\7 \end{pmatrix}$ (v) $r = \begin{pmatrix} 3\\5\\-5 \end{pmatrix} + \lambda \begin{pmatrix} -8\\-8\\3 \end{pmatrix}$

9. Find the equation of the line which passes through the points *A* and *B* with position vectors

(i)
$$\begin{pmatrix} 5\\-4\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\-3\\-4 \end{pmatrix}$ respectively.

(ii)
$$\begin{pmatrix} 3\\2\\2 \end{pmatrix}$$
 and $\begin{pmatrix} -1\\0\\-4 \end{pmatrix}$ respectively.

(iii)
$$\begin{pmatrix} -3\\0\\3 \end{pmatrix}$$
 and $\begin{pmatrix} -2\\0\\-2 \end{pmatrix}$ respectively.

(iv)
$$\begin{pmatrix} 3 \\ 0 \\ -5 \end{pmatrix}$$
 and $\begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}$ respectively.

(v)
$$\begin{pmatrix} 5 \\ -5 \end{pmatrix}$$
 and $\begin{pmatrix} 5 \\ 0 \end{pmatrix}$ respectively.

Ans: (i)
$$r = \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix} \text{or} \begin{pmatrix} 0 \\ -3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 1 \\ -7 \end{pmatrix}$$
 (ii) $r = \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix} \text{or} \begin{pmatrix} -1 \\ 0 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} -6 \\ -2 \\ -6 \end{pmatrix}$
(iii) $r = \begin{pmatrix} -3 \\ 0 \\ 3 \end{pmatrix}$ or $\begin{pmatrix} -2 \\ 0 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix}$ (iv) $r = \begin{pmatrix} 3 \\ 0 \\ -5 \end{pmatrix}$ or $\begin{pmatrix} 4 \\ 3 \\ -5 \end{pmatrix}$ (v) $r = \begin{pmatrix} 5 \\ 5 \\ -5 \end{pmatrix}$ or $\begin{pmatrix} -4 \\ 5 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -9 \\ 0 \\ 5 \end{pmatrix}$

10. Determine the vector equation of the line which passes through
$$(3, -2, 3)$$
 and is parallel to the vector

- (i) Vector form
- (ii) Parametric form and
- (iii) Cartesian form.

Ans: (i)
$$r = 3i - 2j + 3k + \lambda(i + 3j + 4k)$$
 (ii) $\binom{x}{y}_{z} = \binom{3+\lambda}{-2+3\lambda}_{3+4\lambda}$ (iii) $12x - 36 = 4y + 8 = 3z - 9$

- 11. The line L_1 passes through the points (2, -3, 1) and (-1, -2, -4). The line L_2 passes through the point (3, 2, -9) and is parallel to the vector 4i 4j + 5k.
 - (i) Find an equation for L_1 in the form r = a + tb.

(ii) Prove that L_1 and L_2 are skewed.

$$[r = (2i + 3j + k \text{ or } - i - 2j - 4k) + t(3i - j + 5k)]$$

12. Two lines have vector equations

$$r = \begin{pmatrix} 4\\2\\-6 \end{pmatrix} + t \begin{pmatrix} -8\\1\\2 \end{pmatrix} \text{ and } r = \begin{pmatrix} -2\\a\\-2 \end{pmatrix} + s \begin{pmatrix} -9\\2\\-5 \end{pmatrix}$$

where *a* is a constant.

- (i) Calculate the acute angle between the lines. [Hint: This is the angle between the two direction vectors]
- (ii) Given that these two lines intersect, find *a* and the point of intersection.
 - $\left[(i)15^{\circ} \ (ii)a = 1, \begin{pmatrix} -20\\5\\-12 \end{pmatrix} \right]$

Ans: -4x + 7y - 2z = 35

- 13. Find the equation of the plane, in vector form and Cartesian form, through the point (-4, 3, 1) that is perpendicular to the vector a = -4i + 7j 2k.
- 14. Find an equation of the plane through the point (6, 3, 2) and perpendicular to the vector (-2, 1, 5). Check if (2, -1, 0) and (1, -2, 1) are in that plane.

Ans: $r.\begin{pmatrix} -2\\1\\5 \end{pmatrix} = 1$, Does not lie on the line, Lies on the line