CAPE UNIT 1 VECTORS

1. Determine the unit vector in the direction of $b=i+2 j-3 k$.

$$
\left[\frac{1}{\sqrt{14}}(i+2 j-3 k)\right]
$$

2. If $p=4 i+3 j-2 k$ and $q=2 i+j+11 k$ find
(a) $p \cdot q$
(b) $q \cdot p$
(c) $p \cdot p$
(d) $q \cdot q$
3. If $a=\left(\begin{array}{c}1 \\ -3 \\ -4\end{array}\right)$ and $b=\left(\begin{array}{c}2 \\ -14 \\ 1\end{array}\right)$ determine:
(a) $a . b$
(b) $b \cdot a$
(c) $a \cdot a$
(d) $b . b$

$$
\text { Ans: (a) -11 } \begin{array}{llll}
\text { (b) }-11 & \text { (c) } 29 & \text { (d) } 126
\end{array}
$$

(a) 40 (b) 40
(c) 26 (d) 199
4. Find the angle between the vectors $i-2 j+3 k$ and $2 i+j+k$.
5. Calculate to the nearest degree, the angle between the vectors $4 i+k$ and $4 i+3 j+2 k$.
6. The points A and B have position vectors a and b relative to an origin O, where $a=4 i+3 j-2 k$ and $b=-7 i+5 j+4 k$
(i) Find the length of $A B$.
(ii) Use a scalar product to find angle $O A B$.

$$
\left[(\mathrm{i}) \sqrt{161} \text { (ii) } 43^{\circ}\right]
$$

7. Points A, B and C have position vectors $-5 i-10 j+12 k, i+2 j-3 k$ and $3 i+6 j+p k$ respectively, where p is a constant.
(i) Given that angle $A B C=90^{\circ}$, find the value of p.
(ii) Given instead that $A B C$ is a straight line, find the value of p.
[(i) 1 (ii) -8]
8. Determine the equation of the line which passes through the point
(i) $A(-1,1,-3)$ and is parallel to the vector $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$.
(ii) $B(4,3,-2)$ and is parallel to the vector $\left(\begin{array}{c}-9 \\ -2 \\ 1\end{array}\right)$.
(iii) $C(-3,4,3)$ and is parallel to the vector $\left(\begin{array}{c}8 \\ -3 \\ -7\end{array}\right)$.
(iv) $D(5,2,-3)$ and is parallel to the vector $\left(\begin{array}{c}-4 \\ -5 \\ 7\end{array}\right)$.
(v) $E(3,5,-5)$ and is parallel to the vector $\left(\begin{array}{c}-8 \\ -8 \\ 3\end{array}\right)$.

$$
\begin{aligned}
\text { Ans: (i) } r=\left(\begin{array}{c}
-1 \\
1 \\
-3
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right) \text { (ii) } r & =\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
-9 \\
-2 \\
1
\end{array}\right) \text { (iii) } r=\left(\begin{array}{c}
-3 \\
4 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
8 \\
-3 \\
-7
\end{array}\right) \\
\text { (iii) } r & =\left(\begin{array}{c}
5 \\
2 \\
-3
\end{array}\right)+\lambda\left(\begin{array}{c}
-4 \\
-5 \\
7
\end{array}\right) \text { (v) } r=\left(\begin{array}{c}
3 \\
5 \\
-5
\end{array}\right)+\lambda\left(\begin{array}{c}
-8 \\
-8 \\
3
\end{array}\right)
\end{aligned}
$$

9. Find the equation of the line which passes through the points A and B with position vectors
(i) $\quad\left(\begin{array}{c}5 \\ -4 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}0 \\ -3 \\ -4\end{array}\right)$ respectively.
(ii) $\quad\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 0 \\ -4\end{array}\right)$ respectively.
(iii) $\quad\left(\begin{array}{c}-3 \\ 0 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 0 \\ -2\end{array}\right)$ respectively.
(iv) $\quad\left(\begin{array}{c}3 \\ 0 \\ -5\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 3 \\ 0\end{array}\right)$ respectively.
(v) $\quad\left(\begin{array}{c}5 \\ 5 \\ -5\end{array}\right)$ and $\left(\begin{array}{c}-4 \\ 5 \\ 0\end{array}\right)$ respectively.

Ans: (i) $r=\left(\begin{array}{c}5 \\ -4 \\ 3\end{array}\right)$ or $\left(\begin{array}{c}0 \\ -3 \\ -4\end{array}\right)+\lambda\left(\begin{array}{c}-5 \\ 1 \\ -7\end{array}\right)$ (ii) $r=\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right)$ or $\left(\begin{array}{c}-1 \\ 0 \\ -4\end{array}\right)+\lambda\left(\begin{array}{l}-6 \\ -2 \\ -6\end{array}\right)$
(iii) $r=\left(\begin{array}{c}-3 \\ 0 \\ 3\end{array}\right)$ or $\left(\begin{array}{c}-2 \\ 0 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 0 \\ -5\end{array}\right)$
(iv) $r=\left(\begin{array}{c}3 \\ 0 \\ -5\end{array}\right)$ or $\left(\begin{array}{l}4 \\ 3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)$
(v) $r=\left(\begin{array}{c}5 \\ 5 \\ -5\end{array}\right)$ or $\left(\begin{array}{c}-4 \\ 5 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-9 \\ 0 \\ 5\end{array}\right)$
10. Determine the vector equation of the line which passes through $(3,-2,3)$ and is parallel to the vector $\boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}$ in
(i) Vector form
(ii) Parametric form and
(iii) Cartesian form.

Ans: (i) $r=3 i-2 j+3 k+\lambda(i+3 j+4 k)$

$$
\text { (ii) }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3+\lambda \\
-2+3 \lambda \\
3+4 \lambda
\end{array}\right) \text { (iii) } 12 x-36=4 y+8=3 z-9
$$

11. The line L_{1} passes through the points $(2,-3,1)$ and $(-1,-2,-4)$. The line L_{2} passes through the point $(3,2,-9)$ and is parallel to the vector $4 i-4 j+5 k$.
(i) Find an equation for L_{1} in the form $r=a+t b$.
(ii) Prove that L_{1} and L_{2} are skewed.

$$
[r=(2 i+3 j+k \text { or }-i-2 j-4 k)+t(3 i-j+5 k)]
$$

12. Two lines have vector equations

$$
r=\left(\begin{array}{c}
4 \\
2 \\
-6
\end{array}\right)+t\left(\begin{array}{c}
-8 \\
1 \\
2
\end{array}\right) \text { and } r=\left(\begin{array}{c}
-2 \\
a \\
-2
\end{array}\right)+s\left(\begin{array}{c}
-9 \\
2 \\
-5
\end{array}\right)
$$

where a is a constant.
(i) Calculate the acute angle between the lines. [Hint: This is the angle between the two direction vectors]
(ii) Given that these two lines intersect, find a and the point of intersection.

$$
\left[\text { (i) } 15^{\circ} \quad \text { (ii) } a=1,\left(\begin{array}{c}
-20 \\
5 \\
-12
\end{array}\right)\right]
$$

13. Find the equation of the plane, in vector form and Cartesian form, through the point $(-4,3,1)$ that is perpendicular to the vector $a=-4 i+7 j-2 k$.

$$
\text { Ans: }-4 x+7 y-2 z=35
$$

14. Find an equation of the plane through the point $(6,3,2)$ and perpendicular to the vector $(-2,1,5)$. Check if $(2,-1,0)$ and $(1,-2,1)$ are in that plane.

$$
\text { Ans: } r \cdot\left(\begin{array}{c}
-2 \\
1 \\
5
\end{array}\right)=1 \text {, Does not lie on the line, Lies on the line }
$$

