
Java Programming AP Edition
U4C10 Object-Oriented Thinking

DESIGN OF CLASSES

ERIC Y. CHOU, PH.D. IEEE SENIOR MEMBER

Object-Oriented Programming
(scope, visibility modifiers, static modifiers, and final modifier)

Static Variable/Static Method:
Constants: (final static variables)
Class Variable: (static variables)
Utility Method: (static methods)

Instance Variable/Instance Method:
encapsulated data fields: (private data)
un-protected data: (public data)
accessor/mutator methods: (public method)
client methods: (private method)

Encapsulated Data Class: private data/public method
Immutable Data Class: private data/no mutator methods/

no returned pointer

Memory Allocation

Object-Oriented Programming
(scope, visibility modifiers, static modifiers, and final modifier)

Static Variable/Static Method:
Constants: (final static variables)

Math.PI, Integer.MIN_VALUE
Class Variable: (static variables)

Circle.count
Utility Method: (static methods)

Math.random(), Math.abs(),
Integer.parseInt()

Object-Oriented Programming
(scope, visibility modifiers, static modifiers, and final modifier)

Instance Variable/Instance Method:
encapsulated data fields: (private data)
un-protected data: (public data)
accessor/mutator methods: (public method)
client methods: (private method)

Object-Oriented Thinking
Part 1-Chapters 1-8 introduced fundamental programming
techniques for problem solving using loops, methods, and
arrays. The studies of these techniques lay a solid foundation for
object-oriented programming. Classes provide more flexibility
and modularity for building reusable software.

This chapter reviews chapter 9 and improves the solution for a
problem introduced in Part-1 using the object-oriented
approach. From the improvements, you will gain the insight on
the differences between the procedural programming and
object-oriented programming and see the benefits of developing
reusable code using objects and classes.

Class Abstraction and Encapsulation

Class abstraction means to separate class implementation from
the use of the class. The creator of the class provides a description
of the class and let the user know how the class can be used. The
user of the class does not need to know how the class is
implemented. The detail of implementation is encapsulated and
hidden from the user.

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

Designing a Class

(Coherence) A class should describe a single entity, and all the class
operations should logically fit together to support a coherent
purpose. You can use a class for students, for example, but you
should not combine students and staff in the same class, because
students and staff have different entities.

e.g. Student, Subject, ScoreSheet, Card, Deck, and Hand

Designing a Class, cont.

(Separating responsibilities) A single entity with too many
responsibilities can be broken into several classes to separate
responsibilities.

The classes String, StringBuilder, and StringBuffer all deal with strings,
for example, but have different responsibilities. The String class deals
with immutable strings, the StringBuilder class is for creating mutable
strings, and the StringBuffer class is similar to StringBuilder except that
StringBuffer contains synchronized methods for updating strings.

Designing a Class, cont.
Classes are designed for reuse. Users can incorporate classes in
many different combinations, orders, and environments. Therefore,
you should design a class that imposes no restrictions on what or
when the user can do with it, design the properties to ensure that
the user can set properties in any order, with any combination of
values, and design methods to function independently of their order
of occurrence.

Designing a Class, cont.
Provide a public no-arg constructor and override the equals method
and the toString method defined in the Object class whenever
possible.

Overriding standard methods inherited from Object class.

Designing a Class, cont.
Follow standard Java programming style and naming conventions.
Choose informative names for classes, data fields, and methods.

Always place the data declaration before the constructor, and
place constructors before methods.

Always provide a constructor and initialize variables to avoid
programming errors.

