Creating NIC Bonding:
· Add a new NIC if it does not exist
· Install bonding driver = modprobe bonding
· To list the bonding module info = modinfo bonding
	You will see the driver version as seen below if the driver is installed and loaded

[image: ]

Create Bond Interface File
· vi /etc/sysconfig/network-scripts/ifcfg-bond0
· Add the following parameters
DEVICE=bond0
TYPE=Bond
NAME=bond0
BONDING_MASTER=yes
BOOTPROTO=none
ONBOOT=yes
[bookmark: _GoBack]IPADDR=192.168.1.80
NETMASK=255.255.255.0
GATEWAY=192.168.1.1
BONDING_OPTS=”mode=5 miimon=100”

· Save and exit the file
· The bonding options details are can be found on the following table
[image: ]

miimon 
Specifies the MII link monitoring frequency in milliseconds. This determines how often the link state of each slave is inspected for link failures


Edit the First NIC File (enp0s3)
· vi /etc/sysconfig/network-scripts/ifcfg-enp0s3
· Delete the entire content
· Add the following parameters
TYPE=Ethernet
BOOTPROTO=none
DEVICE=enp0s3
ONBOOT=yes
HWADDR=”MAC from the ifconfig command”
MASTER=bond0
SLAVE=yes
· Save and exit the file

Create the Second NIC File (enp0s8) or Copy enp0s3
· vi /etc/sysconfig/network-scripts/ifcfg-enp0s8
· Add the following parameters
TYPE=Ethernet
BOOTPROTO=none
DEVICE=enp0s8
ONBOOT=yes
HWADDR=”MAC from the ifconfig command”
MASTER=bond0
SLAVE=yes
· Save and exit the file

Restart the Network Service
· systemctl restart network

Test and verify the configuration
· ifconfig 	or 	ifconfig | more

Use following command to view bond interface settings like bonding mode & slave interface
· cat /proc/net/bonding/bond0
image1.png
iafzal @MyFirstLinuxOS:~ - B x

File Edit View Search Terminal Help

filename:
author:
description:

retpoline:
rhelversion:
srcversion:
depends :
intree:
vermagic:
signer:

sig key:

sig_hashalgo:

/lib/modules/3.10.0-693.21.1.e17.x86_64/kernel/drivers/net/bonding/bonding.ko.xz
Thomas Davis, tadavis@lbl.gov and many others

Ethernet Channel Bonding Driver, v3.7.1

3.7.1

GPL

rtnl-link-bond

Y

7.4
33C47E3DOODF16A17A5ABIC

Y
3.10.0-693.21.1.e17.x86_64 SHP mod_unload modversions
Cent0S Linux kernel signing key
03:DA:60:92:F6:71:13:21:B5:AC: E1:2E:8;
sha256

max_bonds:Max number of bonded devices (int)

tx_queues:Max number of transmit queues (default = 16) (int)

num_grat_arp:Nunber of peer notifications to send on failover event (alias of num unsol na)

D:A9:73:36:F7:

7:4D

nun_unsol_na:Number of peer notifications to send on failover event (alias of num grat arp)

miimon:Link check interval in milliseconds (int)

updelay:Delay before considering link up, in milliseconds (int)

downdelay:Delay before considering link down, in milliseconds (int

use_carrier:Use netif carrier ok (vs MIT ioctls) in miimon; 0 for off, 1 for on (default) (in

B mode:Mode of operation; @ for balance-rr, 1 for active-backup, 2 for balance-xor, 3 for broad
4 for 802.3ad, 5 for balance-tlb, 6 for balance-alb (charp)





image2.png
Round Robin

Active Backup

XOR [exclusive
OR]

Broadcast

Dynamic Link
Aggregation

Transmit Load
Balancing (TLE)

Adaptive Load
Balancing
(aL8)

How it works

packets are sequentially transmitted/received through each
interfaces one by one.

one NIC active while another NIC is asleep. If the active NIC
goes down, another NIC becomes active. only supported in
X86 environments.

In this mode the, the MAC address of the slave NIC is
matched up against the incoming requests MAC and once
this connection is established same NIC is used to
transmit/receive for the destination MAC.

All transmissions are sent on all slaves

aggregated NICs act as one NIC which results in a higher
throughput, but also provides failover in the case that a NIC
fails. Dynamic Link Aggregation requires a switch that
supports IEEE 802.3ad.

‘The outgoing traffic is distributed depending on the current
load on each slave interface. Incoming traffic is received by
the current slave. If the receiving slave fails, another slave
takes over the MAC address of the failed slave.

Unlike Dynamic Link Aggregation, Adaptive Load Balancing
does not require any particular switch configuration.
Adaptive Load Balancing is only supported in x86
environments. The receiving packets are load balanced
through ARP negotiation.

Fault
Tolerance

No

Yes

Yes

Yes

Yes

Yes

Yes

Load
balancing

Yes

No

Yes

No

Yes

Yes

Yes




