7 The following reversible reaction is used in industry to make methanol, CH₃OH:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = -91 \text{ kJ mol}^{-1}$

(a) Which change would affect both the value of the equilibrium constant, K_c , and the proportion of methanol present in an equilibrium mixture of the three gases?

(1)

- A adding a catalyst
- **B** changing the temperature
- C increasing the concentration of carbon monoxide
- **D** increasing the pressure
- (b) The expression for the equilibrium constant, K_{c} , for this reaction is

$$K_{c} = \frac{[CH_{3}OH(g)]}{[CO(g)][H_{2}(g)]^{2}}$$

0.200 mol of CO(g) and $0.400 \text{ mol of H}_2(g)$ are mixed in a sealed container of volume 1.2 dm^3 at a temperature of 500 K and a pressure of 100 atmospheres and allowed to reach equilibrium.

The equilibrium mixture is found to contain 0.086 mol of CH₃OH(g).

(i) Calculate K_c for this reaction. Give your answer to an appropriate number of significant figures and state the units.

(5)

remains the same, the increased temperature results in an increase in pressure. Explain why it is difficult to predict the effect on the yield of CH ₃ OH.			
explain why h	t is difficult to predict the	effect on the yield of Ci	1 ₃ OH. (3)
		(Total for Qu	estion 7 = 9 marks)