7 The following reversible reaction is used in industry to make methanol, CH₃OH: $$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$ $\Delta H = -91 \text{ kJ mol}^{-1}$ (a) Which change would affect both the value of the equilibrium constant, K_c , and the proportion of methanol present in an equilibrium mixture of the three gases? (1) - A adding a catalyst - **B** changing the temperature - C increasing the concentration of carbon monoxide - **D** increasing the pressure - (b) The expression for the equilibrium constant, K_{c} , for this reaction is $$K_{c} = \frac{[CH_{3}OH(g)]}{[CO(g)][H_{2}(g)]^{2}}$$ 0.200 mol of CO(g) and $0.400 \text{ mol of H}_2(g)$ are mixed in a sealed container of volume 1.2 dm^3 at a temperature of 500 K and a pressure of 100 atmospheres and allowed to reach equilibrium. The equilibrium mixture is found to contain 0.086 mol of CH₃OH(g). (i) Calculate K_c for this reaction. Give your answer to an appropriate number of significant figures and state the units. (5) | remains the same, the increased temperature results in an increase in pressure. Explain why it is difficult to predict the effect on the yield of CH ₃ OH. | | | | |--|-------------------------------|---------------------------|------------------------| | explain why h | t is difficult to predict the | effect on the yield of Ci | 1 ₃ OH. (3) | (Total for Qu | estion 7 = 9 marks) |