

MOLE CALCULATIONS

Avogadro's Constant = 6.02 x 10²³ atoms or molecules = 1 mole

MOLAR GAS CONSTANT

1 mole of ANY gas occupies 24.0 dm³ at room temperature & pressure

IDEAL GAS EQUATION

\mathbf{P} = Pressure (pa)	\mathbf{V} = volume (m ³)	n = no. of moles
R = Gas Const	ant (8.31 J.K ⁻¹ .mol ⁻¹)	T = Temperature (K)

PV = nRT

	P = <u>nRT</u>	V = <u>nRT</u>	n = <u>PV</u>	T = <u>PV</u>
	V	Р	RT	nR
For changes in co	onditions:	$\frac{P_1V_1}{T_1} =$	$\frac{P_2V_2}{T_2}$	

Copyright © tailored tutors limited 2019

MASS SPECTROSCOPY

Relative Atomic Mass = (mass isotope 1 x abundance) + (mass isotope 2 x abundance) + ... $(Ar) <math>\sum abundance$

OTHER EQUATIONS

% by mass = <u>mass of element in 1 mole</u> Mr

Empirical formula = M1: M2: M3Mr1: Mr2: Mr2 Where M1, M2 etc is the mass or % composition of element 1, 2 etc

then divide each by the smallest number to give empirical formula

% Atom Economy = mass of desired product x100 total mass of all products You can use mass or number of moles here!

x100 You can replace masses with Mr values here too!

% Yield = actual yield

theoretical yield

ENTHALPY

 $\label{eq:Q} \begin{array}{l} \mathsf{Q} = \mathsf{energy} \ \mathsf{transferred} \ (\mathsf{J}) \\ \mathsf{c} = \mathsf{specific} \ \mathsf{heat} \ \mathsf{capacity} \ (\mathsf{J}.\mathsf{K}^{\text{-1}}.\mathsf{mol}^{\text{-1}}) \end{array}$

 $\label{eq:m} \begin{array}{l} m = mass \mbox{ of solution (g)} \\ \bigtriangleup T = \mbox{ change in temperature (°C \mbox{ or } K)} \end{array}$

$$\triangle \mathbf{H} = \mathbf{Q}$$

Don't forget to add a sign for $\triangle H!$

Divide by 1000 for kJ.mol⁻¹

\triangle H reaction = \sum reactant mean bond enthalpies - \sum product mean bond enthalpies

(kJ.mol⁻¹)

(kJ.mol⁻¹)

ol⁻¹)

(kJ.mol⁻¹)

EQUILIBRIA

 $aA + bB \rightleftharpoons cC + dD$

$$Kc = \begin{bmatrix} C \end{bmatrix}^{c} \begin{bmatrix} D \end{bmatrix}^{d}$$
$$\begin{bmatrix} A \end{bmatrix}^{a} \begin{bmatrix} B \end{bmatrix}^{b}$$

Where: [A] = concentration (mol.dm⁻³) a = no. of moles from equation

COMMON IONS

POSITIVE

NEGATIVE

GROUP 1 = +	GROUP 7 = -
GROUP 2 = 2+	GROUP 6 = 2-
H⁺	GROUP 5 = 3-
Ag⁺	
Zn ²⁺	
Pb ²⁺	
Al ³⁺	

(Transition metals are variable)

e.g. Fe²⁺, Fe³⁺

MOLECULAR IONS

NH_4^+	
ammonium	

H₃O⁺ hydronium

NO3⁻ nitrate

CO₃²⁻ SO₄²⁻ sulfate

PO4³⁻ phosphate

ACIDS & BASES

ACIDS

BASES

HClhydrochloric acidHNO3nitric acidH2SO4sulphuric acidH3PO4phosphoric acidCH3COOHethanoic acid

NaOH KOH Ca(OH)2 CuO sodium hydroxide potassium hydroxide calcium hydroxide copper (II) oxide

COMMON OXIDATION STATES

POSITIVE

GROUP 1 = +I GROUP 2 = +II H = +I Ag = +I Zn = +II Pb = +II or +IV AI = + III (Transition metals are variable) Fe = +II or +III Cu = +II (sometimes +I) C = +II or +IV

NEGATIVE

GROUP 1 SALTS: ALL SOLUBLE

NITRATE SALTS = ALL SOLUBLE

GROUP 2 SALTS: HYDROXIDES INCREASE IN SOLUBILITY DOWN THE GROUP SULFATES DECREASE IN SOLUBILITY DOWN THE GROUP CARBONATES ARE NOT SOLUBLE

Ag SALTS: ALL INSOLUBLE EXCEPT AgNO3

Pb SALTS ALL INSOLUBLE EXCEPT Pb(NO₃)₂

GROUP 7 SALTS: ALL SOLUBLE EXCEPT AgX and PbX₂

CO3 SALTS: ALL INSOLUBLE EXEPT GROUP 1

Tailored YEAR 1 CHEMISTRY PRACTICALS (EDEXCEL)

No.	Practical	Detail	Done?
1	Moles Determination	Use apparatus to record the volume of a gas	
2	Prepare a Standard Solution & Titration	Prepare a standard solution from a solid acid and use it to find the concentration of a solution of sodium hydroxide	
3	Titration	Use titration tofu the concentration of a solution f hydrochloric acid	
4	Rates of Reaction	Investigate the rates of hydrolysis of haloalkanes	
5	Oxidation of ethanol	Use reflux and distillation techniques to oxidise and alcohol and isolate the product	
6	Nucleophilic Subsctitution	Chlorination of a 2-methylpropan-2-ol using conc. hydrochloric acid	
7	Testing for inorganic and organic substances	Use chemical tests to identify: - Group 2, Group 7, OH ⁻ , CO ₃ ²⁻ and SO ₄ ²⁻ ions in solution. - A carboxylic acid, an alcohol and an aldehyde.	
8	Enthalpy Changes	Determine the enthalpy change of a reaction using Hess' law. i.e. Determine the △H experimentally for two reactions and apply to Hess' Law to find another unknown △H.	

THERMODYNAMICS

$$\Delta \mathbf{H}^{\Theta}_{\text{solution}} = \Delta \mathbf{H}^{\Theta}_{\text{latt diss}} + \sum \Delta \mathbf{H}^{\Theta}_{\text{hydration}}$$
(ENDOTHERMIC) (EXOTHERMIC)

$$\triangle S_{\text{surroundings}} = -\underline{\triangle H}_{T}$$

$$\triangle S$$
 total = $\triangle S$ system + $\triangle S$ surroundings

$$\begin{split} & \triangle \mathbf{G} = \triangle \mathbf{H} - \mathbf{T} \triangle \mathbf{S} & \mathbf{T} = \underline{\triangle \mathbf{H}} \\ & (k!.mol^{-1}) & \mathbf{L} = \underline{\triangle \mathbf{H}} \\ & \Delta \mathbf{G} = -\Delta \mathbf{S} \mathbf{T} + \Delta \mathbf{H} \\ & \Delta \mathbf{G} = -\Delta \mathbf{S} \mathbf{T} + \Delta \mathbf{H} \\ & \Delta \mathbf{G} = -\Delta \mathbf{S} \mathbf{T} + \Delta \mathbf{H} \\ & \mathbf{A} \mathbf{W} \\ & \mathbf{M} \\ \text{Mays divide } \Delta \mathbf{S} \text{ by 1000} \\ & \mathbf{to match your units!} & \mathbf{W} \\ & \text{Men calculating the} \\ & \text{temperature at which a} \\ & \text{reaction becomes / ceases} \\ & \text{being feasible} & \mathbf{For the } \Delta \mathbf{G} \mathbf{V} \mathbf{S} \mathbf{T} \\ & \mathbf{G} = \mathbf{T} \mathbf{T} \mathbf{In} \mathbf{K} \\ & \mathbf{M} \mathbf{K} = \underline{\Delta \mathbf{G}} \\ & \mathbf{R} \mathbf{T} \\ & \mathbf{T} = \underline{\Delta \mathbf{G}} \\ & \mathbf{R} \mathbf{In} \mathbf{K} \\ & \mathbf{K}''' \\ \\ & \text{Links Gibbs Free Energy} \\ & \text{and the Equilibrium} \\ & \text{Constant "K''} \\ \end{split}$$

RATE EQUATIONS & ARRHENIUS

 $K = \frac{Rate}{[A]^{order}[B]^{order}}$

ELECTROCHEMISTRY

OR

EMF = E° Cell being Reduced - E° Cell being Oxidised

ACIDS & BASES

 $pH = -log [H^{+}] and [H^{+}] = 10^{-pH}$ $Ka = [H^{+}] [X] \\ [HX]$ $Kw = [H^{+}] [OH^{-}]$ $Kw = 1.00 \times 10^{-14} \text{ mol}^{2} \text{ dm}^{-6}$ $Kw = [H^{+}] [OH^{-}]$ $Kw = 1.00 \times 10^{-14} \text{ mol}^{2} \text{ dm}^{-6}$ CID BUFFERS Weak Acid Concentration $[H^{+}] = Ka \times [HX]$ Salt Concentration

[X[·]] _____ Then pH = -log [H⁺]

COMMON OXIDATION STATES

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
+111	+IV	+11, +111 +1V, +V	+II, +III +VI	+II, +III +IV, +VI +VII	+11, +111	+11, +111	+11	+1, +11	+11

COMMON COMPLEX COLOURS

	+H ₂ O	+ limited OH (aq) or NH3(aq)	+ Excess OH (aq)	+ Excess NH _{3(aq)}	+ conc. HCl _(aq)	
	[Fe(H ₂ O) ₆] ²⁺ (aq)	[Fe(H ₂ O) ₄ (OH) ₂] _(s)			NVR	
Iron II	GREEN SOLUTION	GREEN PRECIPITATE (may oxidise to brown)	NVR	NVR		
	[Fe(H ₂ O) ₆] ³⁺ (aq)	[Fe(H ₂ O) ₃ (OH) ₃] _(s)			FeCl4	
Iron III	YELLOW SOLUTION	BROWN PRECIPITATE	NVR	NVR	YELLOW SOLUTION	
	[Co(H ₂ O) ₆] ²⁺ (aq)	[Co(H ₂ O) ₄ (OH) ₂] _(s)		[Co(NH ₃) ₆] ²⁺ (aq)	CoCl4	
Cobalt	PINK SOLUTION	BLUE/GREEN PRECIPITATE	NVR	BROWN SOLUTION	BLUE SOLUTION	
	[Cu(H ₂ O) ₆] ²⁺ (aq)	[Cu(H ₂ O) ₄ (OH) ₂] _(s)		[Cu(H2O)2(NH3)4] ²⁺ (aq)	CuCl4 ²⁻	
Copper	LIGHT BLUE SOLUTION	BLUE PRECIPITATE	NVR	ROYAL BLUE SOLUTION	YELLOW / GREEN SOLUTION	
Chromium	[Cr(H ₂ O) ₆] ³⁺ (aq)	[Cr(H ₂ O) ₃ (OH) ₃] _(s)	[Cr(OH) ₆] ³⁻ (aq)	[Cr(NH3)6] ³⁺ (aq)		
	*VIOLET SOLUTION	GREY/GREEN PRECIPITATE	GREEN SOLUTION	PURPLE SOLUTION	NVR	

* Officially violet in colour, but is green when produced from the oxidation of alcohols using acidified potassium dichromate

VANADIUM

 H^{+} / Zn can reduce vanadium in $VO_{3^{-}(aq)}$

Species	VO ₃ -	VO ₂ ⁺	VO ²⁺	V ³⁺	V ²⁺
Oxidation State	+V	+V	+IV	+111	+11
Colour of solution	YELLOW	YELLOW	BLUE	GREEN	PURPLE

WHY COMPLEXES ARE COLOURED

△E = h.f

 $\Delta \mathbf{E} = \text{Difference in energy between d orbitals}$ $\mathbf{h} = \text{Planck's Constant} (6.63 \times 10^{-34} \text{ J.S}^{-1}) \qquad \mathbf{f} = \text{Frequency (Hz)}$

c =λ.f

- $c = Speed of light (3.00 \times 10^8 m.s^{-1})$
- λ = Wavelength (nm) **f** = Frequency (Hz)

Tailored YEAR 2 CHEMISTRY PRACTICALS (EDEXCEL)

No.	Practical	Detail	Done?
9	pH Curve: Find the Ka for a Weak Acid	Investigate how pH changes when a weak acid reacts with a strong base and determine the Ka for the weak acid	
10	Set up an electrochemical cell	Set up an electrochemical cell and measure EMF	
11	REDOX Titration	Use the REDOX to determine the concentration of an unknown solution	
12	Preparation of a Transition Metal Complex	Produce transition metal complexes via the addition of NaOH(aq) and NH3(aq)	
13	Measure rate by initial rate method	The "lodine Clock" Reaction lodide (M) + H ₂ O ₂	
14	Find the Activation Energy of a Reaction	Measure the rate of reaction. Use Arrhenius to determine the activation energy for that reaction	
15	Analysis of Unknowns	Use test tube reactions to determine the identity of some organic and inorganic unknowns	
16	Preparation of an organic solid	Produce a pure sample of an organic solid (e.g. Aspirin) and test its purity	