MOLE CALCULATIONS

number of moles $=$ mass $/$ molar mass
(g) (g.mol ${ }^{-1}$)

number of moles $=$ concentration x volume $\left(\mathrm{mol}^{2} \mathrm{dm}^{-3}\right) \quad\left(\mathrm{dm}^{3}\right)$

Avogadro's Constant $=\mathbf{6 . 0 2} \times 10^{\mathbf{2 3}}$ atoms or molecules $=\mathbf{1} \mathbf{~ m o l e}$

MOLAR GAS CONSTANT

1 mole of ANY gas occupies $24.0 \mathrm{dm}^{3}$ at room temperature \& pressure

IDEAL GAS EQUATION

$$
\begin{gathered}
\mathbf{P}=\text { Pressure (pa) } \quad \mathbf{V}=\text { volume }\left(\mathrm{m}^{3}\right) \quad \mathbf{n}=\text { no. of moles } \\
\mathbf{R}=\text { Gas Constant }\left(8.31 \mathrm{~J} . \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right) \quad \mathbf{T}=\text { Temperature }(\mathrm{K})
\end{gathered}
$$

$$
\begin{gathered}
P V=n R T \\
P=\frac{n R T}{V} \quad V=\frac{n R T}{P} \quad n=\frac{P V}{R T} \quad T=\frac{P V}{n R}
\end{gathered}
$$

For changes in conditions:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

MASS SPECTROSCOPY

Relative Atomic Mass = (mass isotope $1 \times$ abundance $)+($ mass isotope $2 \times$ abundance $+\ldots$ (Ar) \quad abundance

OTHER EQUATIONS

$\%$ by mass $=\frac{\text { mass of element in } 1 \text { mole }}{M r}$

$$
\text { Empirical formula }=\frac{\mathrm{M} 1}{\mathrm{Mr} 1}: \frac{\mathrm{M} 2}{\mathrm{Mr} 2}: \frac{\mathrm{M} 3}{\mathrm{Mr} 2}
$$

Where Ml, M2 etc is the mass or \% composition of element l, 2 etc
then divide each by the smallest number to give empirical formula
\% Atom Economy $=\frac{\text { mass of desired product }}{\text { total mass of all products }} \times 100$

You can use mass or number of moles here!
$\%$ Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100$

You can replace masses with Mr values here too!

YEAR 1 PHYSICAL CHEMISTRY (EDEXCEL)

ENTHALPY

$Q=$ energy transferred (J)	$m=$ mass of solution (g)
$\mathrm{c}=$ specific heat capacity $\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$	$\triangle T=$ change in temperature $\left({ }^{\circ} \mathrm{C}\right.$ or K$)$

$Q=m . c . \Delta T$
$\Delta H=\mathbf{Q}$
$\left(\mathrm{J} . \mathrm{mol}^{-1}\right) \frac{\mathbf{n}}{\mathbf{n}}$
Don't forget to add a sign for $\triangle H!$
Divide by 1000 for $\mathrm{kJ.mol}^{-1}$
$\Delta \mathbf{H}$ reaction $=\sum$ reactant mean bond enthalpies $\boldsymbol{\sum}$ product mean bond enthalpies
(kJ.mol ${ }^{-1}$)
(kJ.mol ${ }^{-1}$)
(k. mol^{-1})

EQUILIBRIA

$$
\begin{gathered}
a A+b B \rightleftharpoons c C+d D \\
K c=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{gathered}
$$

Where:
[A] = concentration

$a=$ no. of moles from equation

COMMON IONS

POSITIVE

GROUP $1=+$
GROUP 2 = 2+
H^{+}
Ag^{+}
Zn^{2+}
Pb^{2+}
Al^{3+}
(Transition metals are variable)
e.g. $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$

NEGATIVE

GROUP 7 = -
GROUP 6 = 2-
GROUP $5=3$ -

MOLECULAR IONS

$\mathrm{NH}_{4}{ }^{+}$
ammonium
$\mathrm{H}_{3} \mathrm{O}^{+}$
hydronium

OH^{-}	$\underset{\text { hydroxide }}{\mathrm{NO}_{3}{ }^{-}}$
$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$
carbonate	sulfate

ACIDS \& BASES

ACIDS

HCl	hydrochloric acid
HNO_{3}	nitric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulphuric acid
$\mathrm{H}_{3} \mathrm{PO}_{4}$	phosphoric acid
$\mathrm{CH}_{3} \mathrm{COOH}$	ethanoic acid

BASES
$\mathrm{NaOH} \quad$ sodium hydroxide
KOH potassium hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2} \quad$ calcium hydroxide
$\mathrm{CuO} \quad$ copper (II) oxide

COMMON OXIDATION STATES

POSITIVE

GROUP $1=+1$
GROUP 2 = +II
$H=+1$
Ag $=+1$
$\mathrm{Zn}=+\|$
Pb $=+1 l$ or + IV
Al $=+$ III
(Transition metals are variable)
Fe $=+$ II or + III
$\mathrm{Cu}=+$ II (sometimes + I)
C $=+$ II or + IV

NEGATIVE

$F=-1$
$\mathrm{O}=-\mathrm{II}$
$\mathrm{Cl}=-\mathrm{I}$
$B r=-1$
I = -
N = -III
$S=-I I$
P=-III

Most common oxidation states, but may be positive when covalently bonded to more highly electronegative elements. i.e. F or O

GROUP 1 SALTS: ALL SOLUBLE

NITRATE SALTS = ALL SOLUBLE

GROUP 2 SALTS: HYDROXIDES INCREASE IN SOLUBILITY DOWN THE GROUP SULFATES DECREASE IN SOLUBILITY DOWN THE GROUP CARBONATES ARE NOT SOLUBLE

Ag SALTS: ALL INSOLUBLE EXCEPT AgNO_{3}

Pb SALTS ALL INSOLUBLE EXCEPT Pb $\left(\mathrm{NO}_{3}\right)_{2}$

GROUP 7 SALTS: ALL SOLUBLE EXCEPT AgX and PbX_{2}
CO_{3} SALTS: ALL INSOLUBLE EXEPT GROUP 1 Tutors

No.	Practical	Detail	Done?
1	Moles Determination	Use apparatus to record the volume of a gas	
2	Prepare a Standard Solution \& Titration	Prepare a standard solution from a solid acid and use it to find the concentration of a solution of sodium hydroxide	
3	Titration	Use titration tofu the concentration of a solution f hydrochloric acid	
4	Rates of Reaction	Investigate the rates of hydrolysis of haloalkanes	
5	Oxidation of ethanol	Use reflux and distillation techniques to oxidise and alcohol and isolate the product	
6	Nucleophilic Subsctitution	Chlorination of a 2-methylpropan-2-ol using conc. hydrochloric acid	
7	Testing for inorganic and organic substances	Use chemical tests to identify: - Group 2, Group 7, $\mathrm{OH}^{-}, \mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{SO}_{4}{ }^{2-}$ ions in solution. - A carboxylic acid, an alcohol and an aldehyde.	
8	Enthalpy Changes	Determine the enthalpy change of a reaction using Hess' law. i.e. Determine the ΔH experimentally for two reactions and apply to Hess' Law to find another unknown $\triangle \mathrm{H}$.	

THERMODYNAMICS

$$
\Delta \mathbf{H}_{\text {solution }}^{\ominus}=\underset{\text { (ENDOTHERMIC) }}{\Delta} \mathbf{H}_{\text {latt diss }}^{\ominus}+\sum \underset{\text { (EXOTHERMIC) }}{\Delta} \mathbf{H}_{\text {hydration }}^{\ominus}
$$

$$
\begin{gathered}
\Delta \boldsymbol{S}_{\text {system }}^{\left(\mathrm{U} \cdot \mathrm{~K}^{-1}\right. \text {.mol }}=\sum \Delta \mathbf{S}_{\text {products }}-\sum \Delta \boldsymbol{S}_{\text {reactants }} \quad \Delta \boldsymbol{S}_{\text {surroundings }}=\frac{-\Delta \boldsymbol{H}}{\mathbf{T}} \\
\Delta \mathbf{S}_{\text {total }}=\Delta \mathbf{S}_{\text {system }}+\Delta \mathbf{S}_{\text {surroundings }}
\end{gathered}
$$

$$
\Delta \mathbf{G}=\Delta \mathbf{H}-\mathbf{T} \Delta \mathbf{S}
$$

(kJ. mol^{-1})

Always divide \triangle S by 1000 to match your units!

$$
T=\frac{\Delta \mathbf{H}}{\Delta \mathbf{S}}
$$

$$
\Delta \mathbf{G}=-\Delta \mathbf{S} \mathbf{T}+\Delta \mathbf{H}
$$

For the $\triangle G$ Vs T Graph! Equivalent to: $y=m x+c$
When calculating the temperature at which a reaction becomes / ceases being feasible

$$
\begin{array}{lll}
\triangle G=-R T \operatorname{lnK} & \ln K=\frac{\Delta G}{-R T} & T=\frac{\Delta G}{-R \operatorname{lnK}} \\
\begin{array}{c}
\triangle \mathbf{L i n k s} \text { Gibbs Free Energy } \\
\text { and the Equilibrium } \\
\text { Constant "K" }
\end{array} &
\end{array}
$$

RATE EQUATIONS \& ARRHENIUS

$$
\text { Rate }=\mathbf{k}[A]^{\text {order }}[B]^{\text {order }}
$$

(mol.dm ${ }^{-3} . \mathrm{s}^{-1}$)

$$
K=\frac{\text { Rate }}{[A]^{\text {order }}[B]^{\text {order }}}
$$

$K=A e^{\left(\frac{-\mathrm{Ea}}{\mathrm{RT}}\right)} \quad \mathrm{OR} \quad \ln K=\left(\frac{-\mathrm{Ea}}{\mathrm{RT}}\right)+\ln A \quad O R \quad \ln K=\frac{-\mathrm{Ea}_{\mathrm{a}}}{\mathrm{R}} \times \frac{1}{\mathrm{~T}}+\ln A$

Standard Arrhenius

Natural Log of Arrhenius

For the InK Vs $1 / T$ Graph!
Equivalent to: $y=m x+c$

ELECTROCHEMISTRY

EMF = Most Positive \mathbf{E}° - Most Negative E° M

OR
EMF $=\mathrm{E}^{\circ}$ Cell being Reduced $-\mathrm{E}^{\circ}$ Cell being Oxidised

ACIDS \& BASES

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \text { and } \quad\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} \\
\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right][\mathrm{X}]}{[\mathrm{HX}]}
\end{gathered}
$$

$$
\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$$
\begin{aligned}
& \mathrm{Kw}= \\
& =1.00 \times 10^{-14} \mathrm{~mol}^{2} \cdot \mathrm{dm}^{-6} \\
& \text { at }
\end{aligned}
$$

Then $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

COMMON OXIDATION STATES

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
+111	+IV	$\begin{aligned} & +11,+1111 \\ & +V,+V \end{aligned}$	$\begin{gathered} +1 I I+1 I I I \\ +V I I \end{gathered}$	$\begin{gathered} +\\| I N+1 I I I I \\ ++V+V I V \\ +V I I \end{gathered}$	+II, + III	+II, + III	+II	+1, +II	+11	

COMMON COMPLEX COLOURS

	$+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & +\underset{\text { or } \mathrm{NH}_{3}(\text { laq }}{\text { limited }} \mathrm{OH}^{-1} \end{aligned}$	+ Excess $\mathrm{OH}^{-}(\mathrm{aq})$	+ Excess $\mathrm{NH}_{3}(\mathrm{laq})$	+ conc. $\mathrm{HCl}_{(a q)}$
Iron II	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{(\mathrm{laq})}$	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]_{(s)}$	NVR	NVR	NVR
	GREEN SOLUTION	GREEN PRECIPITATE (may oxidise to brown)			
Iron III	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}{ }_{(\mathrm{laq})}$	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]_{\text {(s) }}$	NVR	NVR	$\mathrm{FeCl}_{4}{ }^{-}$
	YELLOW SOLUTION	BROWN PRECIPITATE			YELLOW SOLUTION
Cobalt	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }_{\text {aq }}{ }^{\text {a }}$	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]_{(s)}$	NVR	$\left[\mathrm{Co}\left(\mathrm{NH}_{3} / 6\right]^{2+}{ }_{(a q)}\right.$	$\mathrm{CoCl}_{4}{ }^{\text {- }}$
	PINK SOLUTION	BLUE/GREEN PRECIPITATE		BROWN SOLUTION	$\begin{aligned} & \text { BLUE } \\ & \text { SOLUTION } \end{aligned}$
Copper	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}{ }^{\text {aq }}$)	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]_{(s)}$	NVR	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}_{2}\left(\mathrm{NH}_{3} / 4\right]^{2+}(\right.\right.$ aq)	$\mathrm{CuCl}_{4}{ }^{2-}$
	LIGHT BLUE SOLUTION	BLUE PRECIPITATE		ROYAL BLUE SOLUTION	YELLOW I GREEN SOLUTION
Chromium	$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}{ }_{(\mathrm{laq})}$	$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]_{\text {s }}$	$\left.[\mathrm{Cr}(\mathrm{OH})]_{6}\right]^{3-}(\mathrm{aq})$	$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right) 6\right]^{3+}$ (aq)	NVR
	*VIOLET	GREY/GREEN PRECIPITATE	GREEN SOLUTION	PURPLE SOLUTION	

* Officially violet in colour, but is green when produced from the oxidation of alcohols using acidified potassium dichromate

VANADIUM

$\mathrm{H}^{+} / \mathrm{Zn}$ can reduce vanadium in $\mathrm{VO}_{3}{ }^{-}(\mathrm{aq})$

Species	$\mathrm{VO}_{3}{ }^{-}$	$\mathrm{VO}_{2}{ }^{+}$	VO^{2+}	V^{3+}	V^{2+}
Oxidation State	+V	+V	+IV	+III	+II
Colour of solution	YELLOW	YELLOW	BLUE	GREEN	PURPLE

WHY COMPLEXES ARE COLOURED

$$
\begin{gathered}
\Delta \mathbf{E}=\mathbf{h} . \mathbf{f} \\
\Delta \mathbf{E}=\text { Difference in energy between d orbitals } \\
\mathbf{h}=\text { Planck's Constant }\left(6.63 \times 10^{-34} \mathrm{~J} . \mathrm{S}^{-1}\right) \quad \mathbf{f}=\text { Frequency }(\mathrm{Hz}) \\
\mathbf{c}=\boldsymbol{\lambda} . \mathbf{f} \\
\mathbf{c}=\text { Speed of light }\left(3.00 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}\right) \\
\boldsymbol{\lambda}=\text { Wavelength }(\mathrm{nm}) \mathbf{f}=\text { Frequency }(\mathrm{Hz})
\end{gathered}
$$

No.	Practical	Detail	Done?
9	pH Curve: Find the Ka for a Weak Acid	Investigate how pH changes when a weak acid reacts with a strong base and determine the Ka for the weak acid	
10	Set up an electrochemical cell	Set up an electrochemical cell and measure EMF	
11	REDOX Titration	Use the REDOX to determine the concentration of an unknown solution	
12	Preparation of a Transition Metal Complex	Produce transition metal complexes via the addition of $\mathrm{NaOH}_{\text {(aq) }}$ and NH_{3} (aq)	
13	Measure rate by initial rate method	The "Iodine Clock" Reaction lodide $(\mathrm{V})+\mathrm{H}_{2} \mathrm{O}_{2}$	
14	Find the Activation Energy of a Reaction	Measure the rate of reaction. Use Arrhenius to determine the activation energy for that reaction	
15	Analysis of Unknowns	Use test tube reactions to determine the identity of some organic and inorganic unknowns	
16	Preparation of an organic solid	Produce a pure sample of an organic solid (e.g. Aspirin) and test its purity	

