Topic: Distance between points in three dimensions

Question: Find the distance between the points.
(4, - 1,2)
$(3,2,-1)$

Answer choices:

A $\sqrt{19}$
B $\quad 7$
$\begin{array}{ll}\text { C } & \sqrt{7}\end{array}$
D 19

Solution: A

To find the distance between two points in three dimensions, we'll use

$$
D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

where $\left(x_{1}, y_{1}, z_{1}\right)$ is one point and $\left(x_{2}, y_{2}, z_{2}\right)$ is the other point.

$$
\begin{aligned}
& D=\sqrt{(3-4)^{2}+[2-(-1)]^{2}+(-1-2)^{2}} \\
& D=\sqrt{1+9+9} \\
& D=\sqrt{19}
\end{aligned}
$$

The distance between the points is $\sqrt{19}$.

Topic: Distance between points in three dimensions

Question: In which plane does the point lie?

$$
(6,0,-1)
$$

Answer choices:

A $y z$-plane
B $r \theta$-plane

C $x y$-plane
D $x z$-plane

Solution: D

We know that

- a point with a zero x-value lies in the $y z$-plane.
- a point with a zero y-value lies in the $x z$-plane.
- a point with a zero z-value lies in the $x y$-plane.

Since $(6,0,-1)$ has a zero y-value, it lies in the $x z$-plane.

