
Git Cheat Sheet
 The essential Git commands every developer must know

This cheat sheet covers all of the Git commands I’ve covered in my Ultimate Git
Mastery course.

✓ Creating snapshots

✓ Browsing history

✓ Branching & merging

✓ Collaboration using Git & GitHub

✓ Rewriting history

Check out the links below to master the coding skills you need:

https://codewithmosh.com

https://youtube.com/user/programmingwithmosh

https://twitter.com/moshhamedani

https://facebook.com/programmingwithmosh/

Hi! My name is Mosh Hamedani. I’m a software engineer with

two decades of experience. I’ve taught millions of people how
to code or how to become a professional software engineer
through my YouTube channel and online coding school. It’s my

mission to make software engineering simple and accessible
to everyone.

https://codewithmosh.com
https://www.youtube.com/user/programmingwithmosh
https://twitter.com/moshhamedani
https://www.facebook.com/programmingwithmosh/

Want to master Git?

Stop wasting your time memorizing Git commands or browsing disconnected

tutorials. If you don’t know how Git works, you won’t get far.

My Ultimate Git Mastery course teaches you everything you need to know to use

Git like a pro.

✓ Learn & understand Git inside out

✓ Master the command line

✓ Version your code and confidently recover from mistakes

✓ Collaborate effectively with others using Git and GitHub

✓ Boost your career opportunities

Click below to enroll today:

https://codewithmosh.com/p/the-ultimate-git-course/

https://codewithmosh.com/p/the-ultimate-git-course/

Table of Content

Creating Snapshots 6

Browsing History 8

Branching & Merging 10

Collaboration 12

Rewriting History 13

Creating Snapshots
Initializing a repository
git init

 
Staging files
git add file1.js # Stages a single file
git add file1.js file2.js # Stages multiple files 
git add *.js # Stages with a pattern 
git add . # Stages the current directory and all its content

Viewing the status  
git status # Full status
git status -s # Short status

 
Committing the staged files  
git commit -m “Message” # Commits with a one-line message
git commit # Opens the default editor to type a long message

Skipping the staging area  
git commit -am “Message”

Removing files 
git rm file1.js # Removes from working directory and staging area  
git rm --cached file1.js # Removes from staging area only

Renaming or moving files  
git mv file1.js file1.txt

Viewing the staged/unstaged changes  
git diff # Shows unstaged changes 
git diff --staged # Shows staged changes
git diff --cached # Same as the above

Viewing the history 
git log # Full history

git log --oneline # Summary
git log --reverse # Lists the commits from the oldest to the newest

Viewing a commit  
git show 921a2ff # Shows the given commit
git show HEAD # Shows the last commit

git show HEAD~2 # Two steps before the last commit
git show HEAD:file.js # Shows the version of file.js stored in the last commit

Unstaging files (undoing git add) 
git restore --staged file.js # Copies the last version of file.js from repo to index

Discarding local changes  
git restore file.js # Copies file.js from index to working directory
git restore file1.js file2.js # Restores multiple files in working directory

git restore . # Discards all local changes (except untracked files)
git clean -fd # Removes all untracked files

Restoring an earlier version of a file 
git restore --source=HEAD~2 file.js

Browsing History
Viewing the history
git log --stat # Shows the list of modified files

git log --patch # Shows the actual changes (patches)

Filtering the history
git log -3 # Shows the last 3 entries
git log --author=“Mosh”
git log --before=“2020-08-17”

git log --after=“one week ago”
git log --grep=“GUI” # Commits with “GUI” in their message
git log -S“GUI” # Commits with “GUI” in their patches

git log hash1..hash2 # Range of commits
git log file.txt # Commits that touched file.txt

Formatting the log output
git log --pretty=format:”%an committed %H”

Creating an alias
git config --global alias.lg “log --oneline"

Viewing a commit
git show HEAD~2
git show HEAD~2:file1.txt # Shows the version of file stored in this commit

Comparing commits
git diff HEAD~2 HEAD # Shows the changes between two commits
git diff HEAD~2 HEAD file.txt # Changes to file.txt only

Checking out a commit
git checkout dad47ed # Checks out the given commit

git checkout master # Checks out the master branch

Finding a bad commit
git bisect start
git bisect bad # Marks the current commit as a bad commit
git bisect good ca49180 # Marks the given commit as a good commit

git bisect reset # Terminates the bisect session

Finding contributors
git shortlog

Viewing the history of a file
git log file.txt # Shows the commits that touched file.txt
git log --stat file.txt # Shows statistics (the number of changes) for file.txt
git log --patch file.txt # Shows the patches (changes) applied to file.txt

Finding the author of lines
git blame file.txt # Shows the author of each line in file.txt

Tagging
git tag v1.0 # Tags the last commit as v1.0

git tag v1.0 5e7a828 # Tags an earlier commit
git tag # Lists all the tags
git tag -d v1.0 # Deletes the given tag

Branching & Merging

Managing branches
git branch bugfix # Creates a new branch called bugfix
git checkout bugfix # Switches to the bugfix branch
git switch bugfix # Same as the above

git switch -C bugfix # Creates and switches
git branch -d bugfix # Deletes the bugfix branch

Comparing branches
git log master..bugfix # Lists the commits in the bugfix branch not in master
git diff master..bugfix # Shows the summary of changes

Stashing
git stash push -m “New tax rules” # Creates a new stash

git stash list # Lists all the stashes
git stash show stash@{1} # Shows the given stash
git stash show 1 # shortcut for stash@{1}

git stash apply 1 # Applies the given stash to the working dir
git stash drop 1 # Deletes the given stash
git stash clear # Deletes all the stashes

Merging
git merge bugfix # Merges the bugfix branch into the current branch

git merge --no-ff bugfix # Creates a merge commit even if FF is possible
git merge --squash bugfix # Performs a squash merge
git merge --abort # Aborts the merge

Viewing the merged branches
git branch --merged # Shows the merged branches

git branch --no-merged # Shows the unmerged branches

Rebasing
git rebase master # Changes the base of the current branch

Cherry picking
git cherry-pick dad47ed # Applies the given commit on the current branch

Collaboration
Cloning a repository
git clone url

Syncing with remotes
git fetch origin master # Fetches master from origin

git fetch origin # Fetches all objects from origin
git fetch # Shortcut for “git fetch origin”
git pull # Fetch + merge

git push origin master # Pushes master to origin
git push # Shortcut for “git push origin master”

Sharing tags
git push origin v1.0 # Pushes tag v1.0 to origin
git push origin —delete v1.0

Sharing branches

git branch -r # Shows remote tracking branches
git branch -vv # Shows local & remote tracking branches
git push -u origin bugfix # Pushes bugfix to origin

git push -d origin bugfix # Removes bugfix from origin

Managing remotes
git remote # Shows remote repos
git remote add upstream url # Adds a new remote called upstream

git remote rm upstream # Remotes upstream

Rewriting History
Undoing commits
git reset --soft HEAD^ # Removes the last commit, keeps changed staged

git reset --mixed HEAD^ # Unstages the changes as well
git reset --hard HEAD^ # Discards local changes

Reverting commits
git revert 72856ea # Reverts the given commit
git revert HEAD~3.. # Reverts the last three commits

git revert --no-commit HEAD~3..

Recovering lost commits
git reflog # Shows the history of HEAD
git reflog show bugfix # Shows the history of bugfix pointer

Amending the last commit
git commit --amend

Interactive rebasing
git rebase -i HEAD~5

	Creating Snapshots
	Browsing History
	Branching & Merging
	Collaboration
	Rewriting History

