Course: Algebra 1 (02052) WA Alg1A
Unit: 1. FOUNDATIONS OF ALGEBRA
Assignment: 5. Classifying and Comparing Number

CLASSIFYING AND COMPARING NUMBERS

Vocabulary

	Definition	Example/Illustration
Additive inverse		
Integer		
Irrational number		
Natural number		
Rational number		
Whole number		

SETS OF NUMBERS

Real Numbers

Irrational Numbers

INTEGERS AND RATIONAL NUMBERS

The opposite is the negative version of a number. What are the opposites of these numbers?

- $1 \rightarrow$ \qquad
- $-2 \rightarrow$ \qquad
- $3 \rightarrow$ \qquad
These are also called the additive \qquad . If you add a number with its opposite (the additive inverse), then the sum is \qquad .

What are four ways to read this number? -5

- \qquad five
- \qquad five
- The \qquad of five
- The \qquad
\qquad of five

Rational Numbers

- Can be written as a ratio of two integers in the form

- B (the bottom) cannot equal \qquad
- These can be expressed easily as either \qquad or fractions

In other words, rational numbers include all real numbers except decimals that DO NOT end or repeat.

OPERATIONS WITH RATIONAL AND IRRATIONAL NUMBERS

When you add, subtract, multiply, and divide:

- Two rational numbers = \qquad number
- An irrational and rational number $=$ \qquad number (except if the rational number is 0 , then it's rational)
- Two irrational numbers = can be \qquad or \qquad number
**Make sure you simplify any numbers to double-check if they are rational.
**If you have two irrational numbers, double check if the irrational parts cancel out

THE NUMBER LINE

- A point is graphed on a number line by a heavy \qquad
- To show a continuation of points, enlarged \qquad are used at the ends of the line.
- Integers have a \qquad (+/-), so numbers on the \qquad side are bigger than numbers on the \qquad side
- Numbers less than $0(a<0)$ are \qquad
- Numbers bigger than $0(a>0)$ are \qquad
- You can graph infinitely many integers and non-integers on a number line
$A<B$ means that A is to the \qquad of B on the number line.
$A<B$ is the order of A and B.
Graph A and B on the number line:

Key things to remember about the real number system:

- Every real number is either \qquad or \qquad .
- As decimals, rational numbers \qquad or \qquad .
- Irrational numbers never \qquad and never \qquad -.
- Rational numbers can be graphed as \qquad on a number line.
- Numbers to the left of the number line are \qquad than the numbers to the right.

HINT: to change ALL fractions to decimals to compare them, treat the "fraction" line as a division line. In other words $\frac{5}{6}$ is the same as $5 \div 6$, or .83333333... (repeating).

