Question	Answer	Marks	Guidance
18 (a)	$K_{c} = \frac{[NO_{2}]^{2}}{[NO]^{2} [O_{2}]} \checkmark$ Units = dm ³ mol ⁻¹ \checkmark	2	Must be square brackets IGNORE state symbols ALLOW $mol^{-1} dm^3$ ALLOW $mol dm^{-3}$ as ECF from inverted K_c expression
(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.2 (mol) award 4 marks Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $[NO] = \frac{0.40}{4.0} = 0.1(0) \text{ (mol dm}^{-3}\text{)}$ AND $[O_2] = \frac{0.80}{4.0} = 0.2(0) \text{ (mol dm}^{-3}\text{)} \checkmark$ $[NO_2]^2 = 45 \times 0.10^2 \times 0.20 \text{ OR} = 0.09(0) \checkmark$ $[NO_2] = \sqrt{(45 \times 0.10^2 \times 0.20) \text{ OR}} = 0.3(0) \text{ (mol dm}^{-3}\text{)} \checkmark$ amount NO ₂ = 0.30 × 4 = 1.2 (mol) \checkmark	4	For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value Ignore rounding errors after second significant figure 1st mark is for realising that concentrations need to be calculated. ALLOW ECF Correct numerical answer with no working would score all previous calculation marks Making point 2 subsumes point 1 Making point 3 subsumes points 2 and 1 Common errors 9.6 = 3 marks mol of NO and O ₂ used 0.36 = 3 marks mol of NO ₂ calculated from [NO ₂] ² 2.4 = 2 marks mol of NO and O ₂ used and no mol of NO ₂ calculated

Question	Answer	Marks	Guidance
(c) (i)	Exothermic AND K _p decreases as temperature increases ✓	1	ALLOW K_c for K_p ALLOW Equilibrium shifts to left hand side as temperature increases
(c) (ii)	Equilibrium shift (Equilibrium position) shifts to right / forward / towards products ✓	3	FULL ANNOTATIONS NEEDED ALLOW K_c for K_p throughout the response.
	Effect of increased pressure on K_p expression Ratio (in K_p expression) decreases OR Denominator/bottom of K_p expression increases more (than numerator/top) \checkmark		ALLOW K_p (initially) decreases for second marking point IF K_p is seen to be restored later in the process.
	Equilibrium shift (K_p expression) Ratio (in K_p expression) increases to restore K_p OR Numerator/top of K_p expression increases to restore K_p		ALLOW more NO ₂ / product formed to restore K_p ALLOW ratio adjusts to restore K_p
	Total	10	