
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

An Introduction to
Device Drivers

One of the many advantages of free operating systems, as typified by Linux, is that
their internals are open for all to view. The operating system, once a dark and myste-
rious area whose code was restricted to a small number of programmers, can now be
readily examined, understood, and modified by anybody with the requisite skills.
Linux has helped to democratize operating systems. The Linux kernel remains a
large and complex body of code, however, and would-be kernel hackers need an
entry point where they can approach the code without being overwhelmed by com-
plexity. Often, device drivers provide that gateway.

Device drivers take on a special role in the Linux kernel. They are distinct “black
boxes” that make a particular piece of hardware respond to a well-defined internal
programming interface; they hide completely the details of how the device works.
User activities are performed by means of a set of standardized calls that are indepen-
dent of the specific driver; mapping those calls to device-specific operations that act
on real hardware is then the role of the device driver. This programming interface is
such that drivers can be built separately from the rest of the kernel and “plugged in”
at runtime when needed. This modularity makes Linux drivers easy to write, to the
point that there are now hundreds of them available.

There are a number of reasons to be interested in the writing of Linux device drivers.
The rate at which new hardware becomes available (and obsolete!) alone guarantees
that driver writers will be busy for the foreseeable future. Individuals may need to
know about drivers in order to gain access to a particular device that is of interest to
them. Hardware vendors, by making a Linux driver available for their products, can
add the large and growing Linux user base to their potential markets. And the open
source nature of the Linux system means that if the driver writer wishes, the source
to a driver can be quickly disseminated to millions of users.

This book teaches you how to write your own drivers and how to hack around in
related parts of the kernel. We have taken a device-independent approach; the pro-
gramming techniques and interfaces are presented, whenever possible, without being
tied to any specific device. Each driver is different; as a driver writer, you need to

,ch01.2168 Page 1 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: An Introduction to Device Drivers

understand your specific device well. But most of the principles and basic tech-
niques are the same for all drivers. This book cannot teach you about your device,
but it gives you a handle on the background you need to make your device work.

As you learn to write drivers, you find out a lot about the Linux kernel in general;
this may help you understand how your machine works and why things aren’t
always as fast as you expect or don’t do quite what you want. We introduce new
ideas gradually, starting off with very simple drivers and building on them; every new
concept is accompanied by sample code that doesn’t need special hardware to be
tested.

This chapter doesn’t actually get into writing code. However, we introduce some
background concepts about the Linux kernel that you’ll be glad you know later,
when we do launch into programming.

The Role of the Device Driver
As a programmer, you are able to make your own choices about your driver, and
choose an acceptable trade-off between the programming time required and the flexi-
bility of the result. Though it may appear strange to say that a driver is “flexible,” we
like this word because it emphasizes that the role of a device driver is providing
mechanism, not policy.

The distinction between mechanism and policy is one of the best ideas behind the
Unix design. Most programming problems can indeed be split into two parts: “what
capabilities are to be provided” (the mechanism) and “how those capabilities can be
used” (the policy). If the two issues are addressed by different parts of the program,
or even by different programs altogether, the software package is much easier to
develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between the X server,
which knows the hardware and offers a unified interface to user programs, and the
window and session managers, which implement a particular policy without know-
ing anything about the hardware. People can use the same window manager on dif-
ferent hardware, and different users can run different configurations on the same
workstation. Even completely different desktop environments, such as KDE and
GNOME, can coexist on the same system. Another example is the layered structure
of TCP/IP networking: the operating system offers the socket abstraction, which
implements no policy regarding the data to be transferred, while different servers are
in charge of the services (and their associated policies). Moreover, a server like ftpd
provides the file transfer mechanism, while users can use whatever client they prefer;
both command-line and graphic clients exist, and anyone can write a new user inter-
face to transfer files.

Where drivers are concerned, the same separation of mechanism and policy applies.
The floppy driver is policy free—its role is only to show the diskette as a continuous

,ch01.2168 Page 2 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Role of the Device Driver | 3

array of data blocks. Higher levels of the system provide policies, such as who may
access the floppy drive, whether the drive is accessed directly or via a filesystem, and
whether users may mount filesystems on the drive. Since different environments usu-
ally need to use hardware in different ways, it’s important to be as policy free as
possible.

When writing drivers, a programmer should pay particular attention to this funda-
mental concept: write kernel code to access the hardware, but don’t force particular
policies on the user, since different users have different needs. The driver should deal
with making the hardware available, leaving all the issues about how to use the hard-
ware to the applications. A driver, then, is flexible if it offers access to the hardware
capabilities without adding constraints. Sometimes, however, some policy decisions
must be made. For example, a digital I/O driver may only offer byte-wide access to
the hardware in order to avoid the extra code needed to handle individual bits.

You can also look at your driver from a different perspective: it is a software layer
that lies between the applications and the actual device. This privileged role of the
driver allows the driver programmer to choose exactly how the device should appear:
different drivers can offer different capabilities, even for the same device. The actual
driver design should be a balance between many different considerations. For
instance, a single device may be used concurrently by different programs, and the
driver programmer has complete freedom to determine how to handle concurrency.
You could implement memory mapping on the device independently of its hardware
capabilities, or you could provide a user library to help application programmers
implement new policies on top of the available primitives, and so forth. One major
consideration is the trade-off between the desire to present the user with as many
options as possible and the time you have to write the driver, as well as the need to
keep things simple so that errors don’t creep in.

Policy-free drivers have a number of typical characteristics. These include support for
both synchronous and asynchronous operation, the ability to be opened multiple
times, the ability to exploit the full capabilities of the hardware, and the lack of soft-
ware layers to “simplify things” or provide policy-related operations. Drivers of this
sort not only work better for their end users, but also turn out to be easier to write
and maintain as well. Being policy-free is actually a common target for software
designers.

Many device drivers, indeed, are released together with user programs to help with
configuration and access to the target device. Those programs can range from simple
utilities to complete graphical applications. Examples include the tunelp program,
which adjusts how the parallel port printer driver operates, and the graphical cardctl
utility that is part of the PCMCIA driver package. Often a client library is provided as
well, which provides capabilities that do not need to be implemented as part of the
driver itself.

,ch01.2168 Page 3 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: An Introduction to Device Drivers

The scope of this book is the kernel, so we try not to deal with policy issues or with
application programs or support libraries. Sometimes we talk about different poli-
cies and how to support them, but we won’t go into much detail about programs
using the device or the policies they enforce. You should understand, however, that
user programs are an integral part of a software package and that even policy-free
packages are distributed with configuration files that apply a default behavior to the
underlying mechanisms.

Splitting the Kernel
In a Unix system, several concurrent processes attend to different tasks. Each process
asks for system resources, be it computing power, memory, network connectivity, or
some other resource. The kernel is the big chunk of executable code in charge of han-
dling all such requests. Although the distinction between the different kernel tasks
isn’t always clearly marked, the kernel’s role can be split (as shown in Figure 1-1)
into the following parts:

Process management
The kernel is in charge of creating and destroying processes and handling their
connection to the outside world (input and output). Communication among dif-
ferent processes (through signals, pipes, or interprocess communication primi-
tives) is basic to the overall system functionality and is also handled by the
kernel. In addition, the scheduler, which controls how processes share the CPU,
is part of process management. More generally, the kernel’s process manage-
ment activity implements the abstraction of several processes on top of a single
CPU or a few of them.

Memory management
The computer’s memory is a major resource, and the policy used to deal with it
is a critical one for system performance. The kernel builds up a virtual address-
ing space for any and all processes on top of the limited available resources. The
different parts of the kernel interact with the memory-management subsystem
through a set of function calls, ranging from the simple malloc/free pair to much
more complex functionalities.

Filesystems
Unix is heavily based on the filesystem concept; almost everything in Unix can
be treated as a file. The kernel builds a structured filesystem on top of unstruc-
tured hardware, and the resulting file abstraction is heavily used throughout the
whole system. In addition, Linux supports multiple filesystem types, that is, dif-
ferent ways of organizing data on the physical medium. For example, disks may
be formatted with the Linux-standard ext3 filesystem, the commonly used FAT
filesystem or several others.

,ch01.2168 Page 4 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Classes of Devices and Modules | 5

Device control
Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a very few other entities, any and all
device control operations are performed by code that is specific to the device
being addressed. That code is called a device driver. The kernel must have
embedded in it a device driver for every peripheral present on a system, from the
hard drive to the keyboard and the tape drive. This aspect of the kernel’s func-
tions is our primary interest in this book.

Networking
Networking must be managed by the operating system, because most network
operations are not specific to a process: incoming packets are asynchronous
events. The packets must be collected, identified, and dispatched before a pro-
cess takes care of them. The system is in charge of delivering data packets across
program and network interfaces, and it must control the execution of programs
according to their network activity. Additionally, all the routing and address res-
olution issues are implemented within the kernel.

Loadable Modules
One of the good features of Linux is the ability to extend at runtime the set of fea-
tures offered by the kernel. This means that you can add functionality to the kernel
(and remove functionality as well) while the system is up and running.

Each piece of code that can be added to the kernel at runtime is called a module. The
Linux kernel offers support for quite a few different types (or classes) of modules,
including, but not limited to, device drivers. Each module is made up of object code
(not linked into a complete executable) that can be dynamically linked to the run-
ning kernel by the insmod program and can be unlinked by the rmmod program.

Figure 1-1 identifies different classes of modules in charge of specific tasks—a mod-
ule is said to belong to a specific class according to the functionality it offers. The
placement of modules in Figure 1-1 covers the most important classes, but is far from
complete because more and more functionality in Linux is being modularized.

Classes of Devices and Modules
The Linux way of looking at devices distinguishes between three fundamental device
types. Each module usually implements one of these types, and thus is classifiable as a
char module, a block module, or a network module. This division of modules into dif-
ferent types, or classes, is not a rigid one; the programmer can choose to build huge
modules implementing different drivers in a single chunk of code. Good program-
mers, nonetheless, usually create a different module for each new functionality they
implement, because decomposition is a key element of scalability and extendability.

,ch01.2168 Page 5 Thursday, January 20, 2005 9:21 AM

sagar
Highlight

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: An Introduction to Device Drivers

The three classes are:

Character devices
A character (char) device is one that can be accessed as a stream of bytes (like a
file); a char driver is in charge of implementing this behavior. Such a driver usu-
ally implements at least the open, close, read, and write system calls. The text
console (/dev/console) and the serial ports (/dev/ttyS0 and friends) are examples
of char devices, as they are well represented by the stream abstraction. Char
devices are accessed by means of filesystem nodes, such as /dev/tty1 and /dev/lp0.
The only relevant difference between a char device and a regular file is that you
can always move back and forth in the regular file, whereas most char devices
are just data channels, which you can only access sequentially. There exist,
nonetheless, char devices that look like data areas, and you can move back and
forth in them; for instance, this usually applies to frame grabbers, where the
applications can access the whole acquired image using mmap or lseek.

Figure 1-1. A split view of the kernel

features implemented as modules

Process
management

Memory
management

Filesystems Device
control

Networking

Arch-
dependent

code

Memory
manager

Character
devices

Network
subsystem

CPU Memory

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

Kernel
subsystems

Features
implemented

Software
support

Hardware

IF driversBlock devices

File system
types

Ttys &
device access Connectivity

Disks & CDs Consoles,
etc.

Network
interfaces

The System Call Interface

,ch01.2168 Page 6 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Classes of Devices and Modules | 7

Block devices
Like char devices, block devices are accessed by filesystem nodes in the /dev
directory. A block device is a device (e.g., a disk) that can host a filesystem. In
most Unix systems, a block device can only handle I/O operations that transfer
one or more whole blocks, which are usually 512 bytes (or a larger power of
two) bytes in length. Linux, instead, allows the application to read and write a
block device like a char device—it permits the transfer of any number of bytes at
a time. As a result, block and char devices differ only in the way data is managed
internally by the kernel, and thus in the kernel/driver software interface. Like a
char device, each block device is accessed through a filesystem node, and the dif-
ference between them is transparent to the user. Block drivers have a completely
different interface to the kernel than char drivers.

Network interfaces
Any network transaction is made through an interface, that is, a device that is
able to exchange data with other hosts. Usually, an interface is a hardware
device, but it might also be a pure software device, like the loopback interface. A
network interface is in charge of sending and receiving data packets, driven by
the network subsystem of the kernel, without knowing how individual transac-
tions map to the actual packets being transmitted. Many network connections
(especially those using TCP) are stream-oriented, but network devices are, usu-
ally, designed around the transmission and receipt of packets. A network driver
knows nothing about individual connections; it only handles packets.

Not being a stream-oriented device, a network interface isn’t easily mapped to a
node in the filesystem, as /dev/tty1 is. The Unix way to provide access to inter-
faces is still by assigning a unique name to them (such as eth0), but that name
doesn’t have a corresponding entry in the filesystem. Communication between
the kernel and a network device driver is completely different from that used
with char and block drivers. Instead of read and write, the kernel calls functions
related to packet transmission.

There are other ways of classifying driver modules that are orthogonal to the above
device types. In general, some types of drivers work with additional layers of kernel
support functions for a given type of device. For example, one can talk of universal
serial bus (USB) modules, serial modules, SCSI modules, and so on. Every USB
device is driven by a USB module that works with the USB subsystem, but the device
itself shows up in the system as a char device (a USB serial port, say), a block device
(a USB memory card reader), or a network device (a USB Ethernet interface).

Other classes of device drivers have been added to the kernel in recent times, includ-
ing FireWire drivers and I2O drivers. In the same way that they handled USB and
SCSI drivers, kernel developers collected class-wide features and exported them to
driver implementers to avoid duplicating work and bugs, thus simplifying and
strengthening the process of writing such drivers.

,ch01.2168 Page 7 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: An Introduction to Device Drivers

In addition to device drivers, other functionalities, both hardware and software, are
modularized in the kernel. One common example is filesystems. A filesystem type
determines how information is organized on a block device in order to represent a
tree of directories and files. Such an entity is not a device driver, in that there’s no
explicit device associated with the way the information is laid down; the filesystem
type is instead a software driver, because it maps the low-level data structures to
high-level data structures. It is the filesystem that determines how long a filename
can be and what information about each file is stored in a directory entry. The file-
system module must implement the lowest level of the system calls that access direc-
tories and files, by mapping filenames and paths (as well as other information, such
as access modes) to data structures stored in data blocks. Such an interface is com-
pletely independent of the actual data transfer to and from the disk (or other
medium), which is accomplished by a block device driver.

If you think of how strongly a Unix system depends on the underlying filesystem,
you’ll realize that such a software concept is vital to system operation. The ability to
decode filesystem information stays at the lowest level of the kernel hierarchy and is
of utmost importance; even if you write a block driver for your new CD-ROM, it is
useless if you are not able to run ls or cp on the data it hosts. Linux supports the con-
cept of a filesystem module, whose software interface declares the different opera-
tions that can be performed on a filesystem inode, directory, file, and superblock. It’s
quite unusual for a programmer to actually need to write a filesystem module,
because the official kernel already includes code for the most important filesystem
types.

Security Issues
Security is an increasingly important concern in modern times. We will discuss secu-
rity-related issues as they come up throughout the book. There are a few general con-
cepts, however, that are worth mentioning now.

Any security check in the system is enforced by kernel code. If the kernel has secu-
rity holes, then the system as a whole has holes. In the official kernel distribution,
only an authorized user can load modules; the system call init_module checks if the
invoking process is authorized to load a module into the kernel. Thus, when run-
ning an official kernel, only the superuser,* or an intruder who has succeeded in
becoming privileged, can exploit the power of privileged code.

When possible, driver writers should avoid encoding security policy in their code.
Security is a policy issue that is often best handled at higher levels within the kernel,
under the control of the system administrator. There are always exceptions, however.

* Technically, only somebody with the CAP_SYS_MODULE capability can perform this operation. We discuss
capabilities in Chapter 6.

,ch01.2168 Page 8 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Security Issues | 9

As a device driver writer, you should be aware of situations in which some types of
device access could adversely affect the system as a whole and should provide ade-
quate controls. For example, device operations that affect global resources (such as
setting an interrupt line), which could damage the hardware (loading firmware, for
example), or that could affect other users (such as setting a default block size on a
tape drive), are usually only available to sufficiently privileged users, and this check
must be made in the driver itself.

Driver writers must also be careful, of course, to avoid introducing security bugs.
The C programming language makes it easy to make several types of errors. Many
current security problems are created, for example, by buffer overrun errors, in which
the programmer forgets to check how much data is written to a buffer, and data ends
up written beyond the end of the buffer, thus overwriting unrelated data. Such errors
can compromise the entire system and must be avoided. Fortunately, avoiding these
errors is usually relatively easy in the device driver context, in which the interface to
the user is narrowly defined and highly controlled.

Some other general security ideas are worth keeping in mind. Any input received
from user processes should be treated with great suspicion; never trust it unless you
can verify it. Be careful with uninitialized memory; any memory obtained from the
kernel should be zeroed or otherwise initialized before being made available to a user
process or device. Otherwise, information leakage (disclosure of data, passwords,
etc.) could result. If your device interprets data sent to it, be sure the user cannot
send anything that could compromise the system. Finally, think about the possible
effect of device operations; if there are specific operations (e.g., reloading the firm-
ware on an adapter board or formatting a disk) that could affect the system, those
operations should almost certainly be restricted to privileged users.

Be careful, also, when receiving software from third parties, especially when the ker-
nel is concerned: because everybody has access to the source code, everybody can
break and recompile things. Although you can usually trust precompiled kernels
found in your distribution, you should avoid running kernels compiled by an
untrusted friend—if you wouldn’t run a precompiled binary as root, then you’d bet-
ter not run a precompiled kernel. For example, a maliciously modified kernel could
allow anyone to load a module, thus opening an unexpected back door via init_module.

Note that the Linux kernel can be compiled to have no module support whatsoever,
thus closing any module-related security holes. In this case, of course, all needed
drivers must be built directly into the kernel itself. It is also possible, with 2.2 and
later kernels, to disable the loading of kernel modules after system boot via the capa-
bility mechanism.

,ch01.2168 Page 9 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: An Introduction to Device Drivers

Version Numbering
Before digging into programming, we should comment on the version numbering
scheme used in Linux and which versions are covered by this book.

First of all, note that every software package used in a Linux system has its own
release number, and there are often interdependencies across them: you need a par-
ticular version of one package to run a particular version of another package. The
creators of Linux distributions usually handle the messy problem of matching pack-
ages, and the user who installs from a prepackaged distribution doesn’t need to deal
with version numbers. Those who replace and upgrade system software, on the other
hand, are on their own in this regard. Fortunately, almost all modern distributions
support the upgrade of single packages by checking interpackage dependencies; the
distribution’s package manager generally does not allow an upgrade until the depen-
dencies are satisfied.

To run the examples we introduce during the discussion, you won’t need particular
versions of any tool beyond what the 2.6 kernel requires; any recent Linux distribu-
tion can be used to run our examples. We won’t detail specific requirements,
because the file Documentation/Changes in your kernel sources is the best source of
such information if you experience any problems.

As far as the kernel is concerned, the even-numbered kernel versions (i.e., 2.6.x) are
the stable ones that are intended for general distribution. The odd versions (such as
2.7.x), on the contrary, are development snapshots and are quite ephemeral; the lat-
est of them represents the current status of development, but becomes obsolete in a
few days or so.

This book covers Version 2.6 of the kernel. Our focus has been to show all the fea-
tures available to device driver writers in 2.6.10, the current version at the time we
are writing. This edition of the book does not cover prior versions of the kernel. For
those of you who are interested, the second edition covered Versions 2.0 through 2.4
in detail. That edition is still available online at http://lwn.net/Kernel/LDD2/.

Kernel programmers should be aware that the development process changed with 2.6.
The 2.6 series is now accepting changes that previously would have been considered
too large for a “stable” kernel. Among other things, that means that internal kernel
programming interfaces can change, thus potentially obsoleting parts of this book;
for this reason, the sample code accompanying the text is known to work with 2.6.10,
but some modules don’t compile under earlier versions. Programmers wanting to
keep up with kernel programming changes are encouraged to join the mailing lists
and to make use of the web sites listed in the bibliography. There is also a web page
maintained at http://lwn.net/Articles/2.6-kernel-api/, which contains information
about API changes that have happened since this book was published.

,ch01.2168 Page 10 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

License Terms | 11

This text doesn’t talk specifically about odd-numbered kernel versions. General users
never have a reason to run development kernels. Developers experimenting with new
features, however, want to be running the latest development release. They usually
keep upgrading to the most recent version to pick up bug fixes and new implementa-
tions of features. Note, however, that there’s no guarantee on experimental kernels,*

and nobody helps you if you have problems due to a bug in a noncurrent odd-num-
bered kernel. Those who run odd-numbered versions of the kernel are usually skilled
enough to dig in the code without the need for a textbook, which is another reason
why we don’t talk about development kernels here.

Another feature of Linux is that it is a platform-independent operating system, not
just “a Unix clone for PC clones” anymore: it currently supports some 20 architec-
tures. This book is platform independent as far as possible, and all the code samples
have been tested on at least the x86 and x86-64 platforms. Because the code has been
tested on both 32-bit and 64-bit processors, it should compile and run on all other
platforms. As you might expect, the code samples that rely on particular hardware
don’t work on all the supported platforms, but this is always stated in the source
code.

License Terms
Linux is licensed under Version 2 of the GNU General Public License (GPL), a docu-
ment devised for the GNU project by the Free Software Foundation. The GPL allows
anybody to redistribute, and even sell, a product covered by the GPL, as long as the
recipient has access to the source and is able to exercise the same rights. Addition-
ally, any software product derived from a product covered by the GPL must, if it is
redistributed at all, be released under the GPL.

The main goal of such a license is to allow the growth of knowledge by permitting
everybody to modify programs at will; at the same time, people selling software to
the public can still do their job. Despite this simple objective, there’s a never-ending
discussion about the GPL and its use. If you want to read the license, you can find it
in several places in your system, including the top directory of your kernel source
tree in the COPYING file.

Vendors often ask whether they can distribute kernel modules in binary form only.
The answer to that question has been deliberately left ambiguous. Distribution of
binary modules—as long as they adhere to the published kernel interface—has been
tolerated so far. But the copyrights on the kernel are held by many developers, and
not all of them agree that kernel modules are not derived products. If you or your
employer wish to distribute kernel modules under a nonfree license, you really need

* Note that there’s no guarantee on even-numbered kernels as well, unless you rely on a commercial provider
that grants its own warranty.

,ch01.2168 Page 11 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: An Introduction to Device Drivers

to discuss the situation with your legal counsel. Please note also that the kernel
developers have no qualms against breaking binary modules between kernel releases,
even in the middle of a stable kernel series. If it is at all possible, both you and your
users are better off if you release your module as free software.

If you want your code to go into the mainline kernel, or if your code requires patches
to the kernel, you must use a GPL-compatible license as soon as you release the code.
Although personal use of your changes doesn’t force the GPL on you, if you distrib-
ute your code, you must include the source code in the distribution—people acquir-
ing your package must be allowed to rebuild the binary at will.

As far as this book is concerned, most of the code is freely redistributable, either in
source or binary form, and neither we nor O’Reilly retain any right on any derived
works. All the programs are available at ftp://ftp.ora.com/pub/examples/linux/drivers/,
and the exact license terms are stated in the LICENSE file in the same directory.

Joining the Kernel Development Community
As you begin writing modules for the Linux kernel, you become part of a larger com-
munity of developers. Within that community, you can find not only people engaged
in similar work, but also a group of highly committed engineers working toward
making Linux a better system. These people can be a source of help, ideas, and criti-
cal review as well—they will be the first people you will likely turn to when you are
looking for testers for a new driver.

The central gathering point for Linux kernel developers is the linux-kernel mailing
list. All major kernel developers, from Linus Torvalds on down, subscribe to this list.
Please note that the list is not for the faint of heart: traffic as of this writing can run
up to 200 messages per day or more. Nonetheless, following this list is essential for
those who are interested in kernel development; it also can be a top-quality resource
for those in need of kernel development help.

To join the linux-kernel list, follow the instructions found in the linux-kernel mail-
ing list FAQ: http://www.tux.org/lkml. Read the rest of the FAQ while you are at it;
there is a great deal of useful information there. Linux kernel developers are busy
people, and they are much more inclined to help people who have clearly done their
homework first.

Overview of the Book
From here on, we enter the world of kernel programming. Chapter 2 introduces
modularization, explaining the secrets of the art and showing the code for running
modules. Chapter 3 talks about char drivers and shows the complete code for a

,ch01.2168 Page 12 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Overview of the Book | 13

memory-based device driver that can be read and written for fun. Using memory as
the hardware base for the device allows anyone to run the sample code without the
need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are introduced in
Chapter 4. Equally important for those who would hack on contemporary kernels is
the management of concurrency and race conditions. Chapter 5 concerns itself with
the problems posed by concurrent access to resources and introduces the Linux
mechanisms for controlling concurrency.

With debugging and concurrency management skills in place, we move to advanced
features of char drivers, such as blocking operations, the use of select, and the impor-
tant ioctl call; these topics are the subject of Chapter 6.

Before dealing with hardware management, we dissect a few more of the kernel’s
software interfaces: Chapter 7 shows how time is managed in the kernel, and
Chapter 8 explains memory allocation.

Next we focus on hardware. Chapter 9 describes the management of I/O ports and
memory buffers that live on the device; after that comes interrupt handling, in
Chapter 10. Unfortunately, not everyone is able to run the sample code for these
chapters, because some hardware support is actually needed to test the software
interface interrupts. We’ve tried our best to keep required hardware support to a
minimum, but you still need some simple hardware, such as a standard parallel port,
to work with the sample code for these chapters.

Chapter 11 covers the use of data types in the kernel and the writing of portable
code.

The second half of the book is dedicated to more advanced topics. We start by get-
ting deeper into the hardware and, in particular, the functioning of specific periph-
eral buses. Chapter 12 covers the details of writing drivers for PCI devices, and
Chapter 13 examines the API for working with USB devices.

With an understanding of peripheral buses in place, we can take a detailed look at the
Linux device model, which is the abstraction layer used by the kernel to describe the
hardware and software resources it is managing. Chapter 14 is a bottom-up look at
the device model infrastructure, starting with the kobject type and working up from
there. It covers the integration of the device model with real hardware; it then uses
that knowledge to cover topics like hot-pluggable devices and power management.

In Chapter 15, we take a diversion into Linux memory management. This chapter
shows how to map kernel memory into user space (the mmap system call), map user
memory into kernel space (with get_user_pages), and how to map either kind of
memory into device space (to perform direct memory access [DMA] operations).

,ch01.2168 Page 13 Thursday, January 20, 2005 9:21 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: An Introduction to Device Drivers

Our understanding of memory will be useful for the following two chapters, which
cover the other major driver classes. Chapter 16 introduces block drivers and shows
how they are different from the char drivers we have worked with so far. Then
Chapter 17 gets into the writing of network drivers. We finish up with a discussion
of serial drivers (Chapter 18) and a bibliography.

,ch01.2168 Page 14 Thursday, January 20, 2005 9:21 AM

