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Allocating Memory

Thus far, we have used kmalloc and kfree for the allocation and freeing of memory.
The Linux kernel offers a richer set of memory allocation primitives, however. In this
chapter, we look at other ways of using memory in device drivers and how to opti-
mize your system’s memory resources. We do not get into how the different architec-
tures actually administer memory. Modules are not involved in issues of
segmentation, paging, and so on, since the kernel offers a unified memory manage-
ment interface to the drivers. In addition, we won’t describe the internal details of
memory management in this chapter, but defer it to Chapter 15.

The Real Story of kmalloc
The kmalloc allocation engine is a powerful tool and easily learned because of its
similarity to malloc. The function is fast (unless it blocks) and doesn’t clear the mem-
ory it obtains; the allocated region still holds its previous content.* The allocated
region is also contiguous in physical memory. In the next few sections, we talk in
detail about kmalloc, so you can compare it with the memory allocation techniques
that we discuss later.

The Flags Argument
Remember that the prototype for kmalloc is:

#include <linux/slab.h>

void *kmalloc(size_t size, int flags);

* Among other things, this implies that you should explicitly clear any memory that might be exposed to user
space or written to a device; otherwise, you risk disclosing information that should be kept private.
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The first argument to kmalloc is the size of the block to be allocated. The second
argument, the allocation flags, is much more interesting, because it controls the
behavior of kmalloc in a number of ways.

The most commonly used flag, GFP_KERNEL, means that the allocation (internally per-
formed by calling, eventually, __get_free_pages, which is the source of the GFP_ pre-
fix) is performed on behalf of a process running in kernel space. In other words, this
means that the calling function is executing a system call on behalf of a process.
Using GFP_KERNEL means that kmalloc can put the current process to sleep waiting for
a page when called in low-memory situations. A function that allocates memory
using GFP_KERNEL must, therefore, be reentrant and cannot be running in atomic con-
text. While the current process sleeps, the kernel takes proper action to locate some
free memory, either by flushing buffers to disk or by swapping out memory from a
user process.

GFP_KERNEL isn’t always the right allocation flag to use; sometimes kmalloc is called
from outside a process’s context. This type of call can happen, for instance, in inter-
rupt handlers, tasklets, and kernel timers. In this case, the current process should
not be put to sleep, and the driver should use a flag of GFP_ATOMIC instead. The ker-
nel normally tries to keep some free pages around in order to fulfill atomic alloca-
tion. When GFP_ATOMIC is used, kmalloc can use even the last free page. If that last
page does not exist, however, the allocation fails.

Other flags can be used in place of or in addition to GFP_KERNEL and GFP_ATOMIC,
although those two cover most of the needs of device drivers. All the flags are defined
in <linux/gfp.h>, and individual flags are prefixed with a double underscore, such
as __GFP_DMA. In addition, there are symbols that represent frequently used combina-
tions of flags; these lack the prefix and are sometimes called allocation priorities. The
latter include:

GFP_ATOMIC
Used to allocate memory from interrupt handlers and other code outside of a
process context. Never sleeps.

GFP_KERNEL
Normal allocation of kernel memory. May sleep.

GFP_USER
Used to allocate memory for user-space pages; it may sleep.

GFP_HIGHUSER
Like GFP_USER, but allocates from high memory, if any. High memory is
described in the next subsection.

GFP_NOIO
GFP_NOFS

These flags function like GFP_KERNEL, but they add restrictions on what the ker-
nel can do to satisfy the request. A GFP_NOFS allocation is not allowed to perform
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any filesystem calls, while GFP_NOIO disallows the initiation of any I/O at all.
They are used primarily in the filesystem and virtual memory code where an allo-
cation may be allowed to sleep, but recursive filesystem calls would be a bad
idea.

The allocation flags listed above can be augmented by an ORing in any of the follow-
ing flags, which change how the allocation is carried out:

__GFP_DMA
This flag requests allocation to happen in the DMA-capable memory zone. The
exact meaning is platform-dependent and is explained in the following section.

__GFP_HIGHMEM
This flag indicates that the allocated memory may be located in high memory.

__GFP_COLD
Normally, the memory allocator tries to return “cache warm” pages—pages that
are likely to be found in the processor cache. Instead, this flag requests a “cold”
page, which has not been used in some time. It is useful for allocating pages for
DMA reads, where presence in the processor cache is not useful. See the section
“Direct Memory Access” in Chapter 1 for a full discussion of how to allocate
DMA buffers.

__GFP_NOWARN
This rarely used flag prevents the kernel from issuing warnings (with printk)
when an allocation cannot be satisfied.

__GFP_HIGH
This flag marks a high-priority request, which is allowed to consume even the
last pages of memory set aside by the kernel for emergencies.

__GFP_REPEAT
__GFP_NOFAIL
__GFP_NORETRY

These flags modify how the allocator behaves when it has difficulty satisfying an
allocation. __GFP_REPEAT means “try a little harder” by repeating the attempt—
but the allocation can still fail. The __GFP_NOFAIL flag tells the allocator never to
fail; it works as hard as needed to satisfy the request. Use of __GFP_NOFAIL is very
strongly discouraged; there will probably never be a valid reason to use it in a
device driver. Finally, __GFP_NORETRY tells the allocator to give up immediately if
the requested memory is not available.

Memory zones

Both __GFP_DMA and __GFP_HIGHMEM have a platform-dependent role, although their
use is valid for all platforms.

The Linux kernel knows about a minimum of three memory zones: DMA-capable
memory, normal memory, and high memory. While allocation normally happens in

,ch08.10042  Page 215  Friday, January 21, 2005  10:50 AM

sagar
Highlight

sagar
Highlight

sagar
Highlight



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 8: Allocating Memory

the normal zone, setting either of the bits just mentioned requires memory to be allo-
cated from a different zone. The idea is that every computer platform that must
know about special memory ranges (instead of considering all RAM equivalents) will
fall into this abstraction.

DMA-capable memory is memory that lives in a preferential address range, where
peripherals can perform DMA access. On most sane platforms, all memory lives in
this zone. On the x86, the DMA zone is used for the first 16 MB of RAM, where leg-
acy ISA devices can perform DMA; PCI devices have no such limit.

High memory is a mechanism used to allow access to (relatively) large amounts of
memory on 32-bit platforms. This memory cannot be directly accessed from the ker-
nel without first setting up a special mapping and is generally harder to work with. If
your driver uses large amounts of memory, however, it will work better on large sys-
tems if it can use high memory. See the section “High and Low Memory” in
Chapter 1 for a detailed description of how high memory works and how to use it.

Whenever a new page is allocated to fulfill a memory allocation request, the kernel
builds a list of zones that can be used in the search. If __GFP_DMA is specified, only the
DMA zone is searched: if no memory is available at low addresses, allocation fails. If no
special flag is present, both normal and DMA memory are searched; if __GFP_HIGHMEM is
set, all three zones are used to search a free page. (Note, however, that kmalloc cannot
allocate high memory.)

The situation is more complicated on nonuniform memory access (NUMA) systems.
As a general rule, the allocator attempts to locate memory local to the processor per-
forming the allocation, although there are ways of changing that behavior.

The mechanism behind memory zones is implemented in mm/page_alloc.c, while ini-
tialization of the zone resides in platform-specific files, usually in mm/init.c within
the arch tree. We’ll revisit these topics in Chapter 15.

The Size Argument
The kernel manages the system’s physical memory, which is available only in page-
sized chunks. As a result, kmalloc looks rather different from a typical user-space
malloc implementation. A simple, heap-oriented allocation technique would quickly
run into trouble; it would have a hard time working around the page boundaries.
Thus, the kernel uses a special page-oriented allocation technique to get the best use
from the system’s RAM.

Linux handles memory allocation by creating a set of pools of memory objects of
fixed sizes. Allocation requests are handled by going to a pool that holds sufficiently
large objects and handing an entire memory chunk back to the requester. The mem-
ory management scheme is quite complex, and the details of it are not normally all
that interesting to device driver writers.
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The one thing driver developers should keep in mind, though, is that the kernel can
allocate only certain predefined, fixed-size byte arrays. If you ask for an arbitrary
amount of memory, you’re likely to get slightly more than you asked for, up to twice
as much. Also, programmers should remember that the smallest allocation that
kmalloc can handle is as big as 32 or 64 bytes, depending on the page size used by
the system’s architecture.

There is an upper limit to the size of memory chunks that can be allocated by kmal-
loc. That limit varies depending on architecture and kernel configuration options. If
your code is to be completely portable, it cannot count on being able to allocate any-
thing larger than 128 KB. If you need more than a few kilobytes, however, there are
better ways than kmalloc to obtain memory, which we describe later in this chapter.

Lookaside Caches
A device driver often ends up allocating many objects of the same size, over and over.
Given that the kernel already maintains a set of memory pools of objects that are all
the same size, why not add some special pools for these high-volume objects? In fact,
the kernel does implement a facility to create this sort of pool, which is often called a
lookaside cache. Device drivers normally do not exhibit the sort of memory behavior
that justifies using a lookaside cache, but there can be exceptions; the USB and SCSI
drivers in Linux 2.6 use caches.

The cache manager in the Linux kernel is sometimes called the “slab allocator.” For
that reason, its functions and types are declared in <linux/slab.h>. The slab allocator
implements caches that have a type of kmem_cache_t; they are created with a call to
kmem_cache_create:

kmem_cache_t *kmem_cache_create(const char *name, size_t size,
                                size_t offset,
                                unsigned long flags,
                                void (*constructor)(void *, kmem_cache_t *,
                                                    unsigned long flags),
                                void (*destructor)(void *, kmem_cache_t *,
                                                   unsigned long flags));

The function creates a new cache object that can host any number of memory areas
all of the same size, specified by the size argument. The name argument is associated
with this cache and functions as housekeeping information usable in tracking prob-
lems; usually, it is set to the name of the type of structure that is cached. The cache
keeps a pointer to the name, rather than copying it, so the driver should pass in a
pointer to a name in static storage (usually the name is just a literal string). The name
cannot contain blanks.

The offset is the offset of the first object in the page; it can be used to ensure a par-
ticular alignment for the allocated objects, but you most likely will use 0 to request
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the default value. flags controls how allocation is done and is a bit mask of the fol-
lowing flags:

SLAB_NO_REAP
Setting this flag protects the cache from being reduced when the system is look-
ing for memory. Setting this flag is normally a bad idea; it is important to avoid
restricting the memory allocator’s freedom of action unnecessarily.

SLAB_HWCACHE_ALIGN
This flag requires each data object to be aligned to a cache line; actual alignment
depends on the cache layout of the host platform. This option can be a good
choice if your cache contains items that are frequently accessed on SMP
machines. The padding required to achieve cache line alignment can end up
wasting significant amounts of memory, however.

SLAB_CACHE_DMA
This flag requires each data object to be allocated in the DMA memory zone.

There is also a set of flags that can be used during the debugging of cache alloca-
tions; see mm/slab.c for the details. Usually, however, these flags are set globally via a
kernel configuration option on systems used for development.

The constructor and destructor arguments to the function are optional functions
(but there can be no destructor without a constructor); the former can be used to ini-
tialize newly allocated objects, and the latter can be used to “clean up” objects prior
to their memory being released back to the system as a whole.

Constructors and destructors can be useful, but there are a few constraints that you
should keep in mind. A constructor is called when the memory for a set of objects is
allocated; because that memory may hold several objects, the constructor may be
called multiple times. You cannot assume that the constructor will be called as an
immediate effect of allocating an object. Similarly, destructors can be called at some
unknown future time, not immediately after an object has been freed. Constructors
and destructors may or may not be allowed to sleep, according to whether they are
passed the SLAB_CTOR_ATOMIC flag (where CTOR is short for constructor).

For convenience, a programmer can use the same function for both the constructor
and destructor; the slab allocator always passes the SLAB_CTOR_CONSTRUCTOR flag when
the callee is a constructor.

Once a cache of objects is created, you can allocate objects from it by calling
kmem_cache_alloc:

void *kmem_cache_alloc(kmem_cache_t *cache, int flags);

Here, the cache argument is the cache you have created previously; the flags are the
same as you would pass to kmalloc and are consulted if kmem_cache_alloc needs to
go out and allocate more memory itself.

To free an object, use kmem_cache_free:

 void kmem_cache_free(kmem_cache_t *cache, const void *obj);
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When driver code is finished with the cache, typically when the module is unloaded,
it should free its cache as follows:

 int kmem_cache_destroy(kmem_cache_t *cache);

The destroy operation succeeds only if all objects allocated from the cache have
been returned to it. Therefore, a module should check the return status from
kmem_cache_destroy; a failure indicates some sort of memory leak within the mod-
ule (since some of the objects have been dropped).

One side benefit to using lookaside caches is that the kernel maintains statistics on
cache usage. These statistics may be obtained from /proc/slabinfo.

A scull Based on the Slab Caches: scullc
Time for an example. scullc is a cut-down version of the scull module that imple-
ments only the bare device—the persistent memory region. Unlike scull, which uses
kmalloc, scullc uses memory caches. The size of the quantum can be modified at
compile time and at load time, but not at runtime—that would require creating a
new memory cache, and we didn’t want to deal with these unneeded details.

scullc is a complete example that can be used to try out the slab allocator. It differs
from scull only in a few lines of code. First, we must declare our own slab cache:

/* declare one cache pointer: use it for all devices */
kmem_cache_t *scullc_cache;

The creation of the slab cache is handled (at module load time) in this way:

/* scullc_init: create a cache for our quanta */
scullc_cache = kmem_cache_create("scullc", scullc_quantum,
        0, SLAB_HWCACHE_ALIGN, NULL, NULL); /* no ctor/dtor */
if (!scullc_cache) {
    scullc_cleanup( );
    return -ENOMEM;
}

This is how it allocates memory quanta:

/* Allocate a quantum using the memory cache */
if (!dptr->data[s_pos]) {
    dptr->data[s_pos] = kmem_cache_alloc(scullc_cache, GFP_KERNEL);
    if (!dptr->data[s_pos])
        goto nomem;
    memset(dptr->data[s_pos], 0, scullc_quantum);
}

And these lines release memory:

for (i = 0; i < qset; i++)
if (dptr->data[i])
        kmem_cache_free(scullc_cache, dptr->data[i]);
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Finally, at module unload time, we have to return the cache to the system:

/* scullc_cleanup: release the cache of our quanta */
if (scullc_cache)
    kmem_cache_destroy(scullc_cache);

The main differences in passing from scull to scullc are a slight speed improvement
and better memory use. Since quanta are allocated from a pool of memory fragments
of exactly the right size, their placement in memory is as dense as possible, as
opposed to scull quanta, which bring in an unpredictable memory fragmentation.

Memory Pools
There are places in the kernel where memory allocations cannot be allowed to fail.
As a way of guaranteeing allocations in those situations, the kernel developers cre-
ated an abstraction known as a memory pool (or “mempool”). A memory pool is
really just a form of a lookaside cache that tries to always keep a list of free memory
around for use in emergencies.

A memory pool has a type of mempool_t (defined in <linux/mempool.h>); you can cre-
ate one with mempool_create:

mempool_t *mempool_create(int min_nr,
                          mempool_alloc_t *alloc_fn,
                          mempool_free_t *free_fn,
                          void *pool_data);

The min_nr argument is the minimum number of allocated objects that the pool
should always keep around. The actual allocation and freeing of objects is handled
by alloc_fn and free_fn, which have these prototypes:

typedef void *(mempool_alloc_t)(int gfp_mask, void *pool_data);
typedef void (mempool_free_t)(void *element, void *pool_data);

The final parameter to mempool_create (pool_data) is passed to alloc_fn and free_fn.

If need be, you can write special-purpose functions to handle memory allocations for
mempools. Usually, however, you just want to let the kernel slab allocator handle that
task for you. There are two functions (mempool_alloc_slab and mempool_free_slab)
that perform the impedance matching between the memory pool allocation proto-
types and kmem_cache_alloc and kmem_cache_free. Thus, code that sets up memory
pools often looks like the following:

cache = kmem_cache_create(. . .);
pool = mempool_create(MY_POOL_MINIMUM,
                      mempool_alloc_slab, mempool_free_slab,
                      cache);

Once the pool has been created, objects can be allocated and freed with:

void *mempool_alloc(mempool_t *pool, int gfp_mask);
void mempool_free(void *element, mempool_t *pool);
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When the mempool is created, the allocation function will be called enough times to
create a pool of preallocated objects. Thereafter, calls to mempool_alloc attempt to
acquire additional objects from the allocation function; should that allocation fail,
one of the preallocated objects (if any remain) is returned. When an object is freed
with mempool_free, it is kept in the pool if the number of preallocated objects is cur-
rently below the minimum; otherwise, it is to be returned to the system.

A mempool can be resized with:

int mempool_resize(mempool_t *pool, int new_min_nr, int gfp_mask);

This call, if successful, resizes the pool to have at least new_min_nr objects.

If you no longer need a memory pool, return it to the system with:

void mempool_destroy(mempool_t *pool);

You must return all allocated objects before destroying the mempool, or a kernel
oops results.

If you are considering using a mempool in your driver, please keep one thing in
mind: mempools allocate a chunk of memory that sits in a list, idle and unavailable
for any real use. It is easy to consume a great deal of memory with mempools. In
almost every case, the preferred alternative is to do without the mempool and simply
deal with the possibility of allocation failures instead. If there is any way for your
driver to respond to an allocation failure in a way that does not endanger the integ-
rity of the system, do things that way. Use of mempools in driver code should be
rare.

get_free_page and Friends
If a module needs to allocate big chunks of memory, it is usually better to use a page-
oriented technique. Requesting whole pages also has other advantages, which are
introduced in Chapter 15.

To allocate pages, the following functions are available:

get_zeroed_page(unsigned int flags);
Returns a pointer to a new page and fills the page with zeros.

__get_free_page(unsigned int flags);
Similar to get_zeroed_page, but doesn’t clear the page.

__get_free_pages(unsigned int flags, unsigned int order);
Allocates and returns a pointer to the first byte of a memory area that is poten-
tially several (physically contiguous) pages long but doesn’t zero the area.

The flags argument works in the same way as with kmalloc; usually either GFP_KERNEL
or GFP_ATOMIC is used, perhaps with the addition of the __GFP_DMA flag (for memory
that can be used for ISA direct-memory-access operations) or __GFP_HIGHMEM when
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high memory can be used.* order is the base-two logarithm of the number of pages
you are requesting or freeing (i.e., log2N). For example, order is 0 if you want one
page and 3 if you request eight pages. If order is too big (no contiguous area of that
size is available), the page allocation fails. The get_order function, which takes an inte-
ger argument, can be used to extract the order from a size (that must be a power of
two) for the hosting platform. The maximum allowed value for order is 10 or 11 (cor-
responding to 1024 or 2048 pages), depending on the architecture. The chances of an
order-10 allocation succeeding on anything other than a freshly booted system with a
lot of memory are small, however.

If you are curious, /proc/buddyinfo tells you how many blocks of each order are avail-
able for each memory zone on the system.

When a program is done with the pages, it can free them with one of the following
functions. The first function is a macro that falls back on the second:

void free_page(unsigned long addr);
void free_pages(unsigned long addr, unsigned long order);

If you try to free a different number of pages from what you allocated, the memory
map becomes corrupted, and the system gets in trouble at a later time.

It’s worth stressing that __get_free_pages and the other functions can be called at any
time, subject to the same rules we saw for kmalloc. The functions can fail to allocate
memory in certain circumstances, particularly when GFP_ATOMIC is used. Therefore,
the program calling these allocation functions must be prepared to handle an alloca-
tion failure.

Although kmalloc(GFP_KERNEL) sometimes fails when there is no available memory,
the kernel does its best to fulfill allocation requests. Therefore, it’s easy to degrade
system responsiveness by allocating too much memory. For example, you can bring
the computer down by pushing too much data into a scull device; the system starts
crawling while it tries to swap out as much as possible in order to fulfill the kmalloc
request. Since every resource is being sucked up by the growing device, the com-
puter is soon rendered unusable; at that point, you can no longer even start a new
process to try to deal with the problem. We don’t address this issue in scull, since it
is just a sample module and not a real tool to put into a multiuser system. As a pro-
grammer, you must be careful nonetheless, because a module is privileged code and
can open new security holes in the system (the most likely is a denial-of-service hole
like the one just outlined).

* Although alloc_pages (described shortly) should really be used for allocating high-memory pages, for reasons
we can’t really get into until Chapter 15.
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A scull Using Whole Pages: scullp
In order to test page allocation for real, we have released the scullp module together
with other sample code. It is a reduced scull, just like scullc introduced earlier.

Memory quanta allocated by scullp are whole pages or page sets: the scullp_order
variable defaults to 0 but can be changed at either compile or load time.

The following lines show how it allocates memory:

/* Here's the allocation of a single quantum */
if (!dptr->data[s_pos]) {
    dptr->data[s_pos] =
        (void *)__get_free_pages(GFP_KERNEL, dptr->order);
    if (!dptr->data[s_pos])
        goto nomem;
    memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);
}

The code to deallocate memory in scullp looks like this:

/* This code frees a whole quantum-set */
for (i = 0; i < qset; i++)
    if (dptr->data[i])
        free_pages((unsigned long)(dptr->data[i]),
                dptr->order);

At the user level, the perceived difference is primarily a speed improvement and bet-
ter memory use, because there is no internal fragmentation of memory. We ran some
tests copying 4 MB from scull0 to scull1 and then from scullp0 to scullp1; the results
showed a slight improvement in kernel-space processor usage.

The performance improvement is not dramatic, because kmalloc is designed to be
fast. The main advantage of page-level allocation isn’t actually speed, but rather
more efficient memory usage. Allocating by pages wastes no memory, whereas using
kmalloc wastes an unpredictable amount of memory because of allocation granularity.

But the biggest advantage of the __get_free_page functions is that the pages obtained
are completely yours, and you could, in theory, assemble the pages into a linear area
by appropriate tweaking of the page tables. For example, you can allow a user pro-
cess to mmap memory areas obtained as single unrelated pages. We discuss this kind
of operation in Chapter 15, where we show how scullp offers memory mapping,
something that scull cannot offer.

The alloc_pages Interface
For completeness, we introduce another interface for memory allocation, even
though we will not be prepared to use it until after Chapter 15. For now, suffice it to
say that struct page is an internal kernel structure that describes a page of memory.
As we will see, there are many places in the kernel where it is necessary to work with
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page structures; they are especially useful in any situation where you might be deal-
ing with high memory, which does not have a constant address in kernel space.

The real core of the Linux page allocator is a function called alloc_pages_node:

struct page *alloc_pages_node(int nid, unsigned int flags,
                              unsigned int order);

This function also has two variants (which are simply macros); these are the versions
that you will most likely use:

struct page *alloc_pages(unsigned int flags, unsigned int order);
struct page *alloc_page(unsigned int flags);

The core function, alloc_pages_node, takes three arguments. nid is the NUMA node
ID* whose memory should be allocated, flags is the usual GFP_ allocation flags, and
order is the size of the allocation. The return value is a pointer to the first of (possi-
bly many) page structures describing the allocated memory, or, as usual, NULL on failure.

alloc_pages simplifies the situation by allocating the memory on the current NUMA
node (it calls alloc_pages_node with the return value from numa_node_id as the nid
parameter). And, of course, alloc_page omits the order parameter and allocates a sin-
gle page.

To release pages allocated in this manner, you should use one of the following:

void __free_page(struct page *page);
void __free_pages(struct page *page, unsigned int order);
void free_hot_page(struct page *page);
void free_cold_page(struct page *page);

If you have specific knowledge of whether a single page’s contents are likely to be
resident in the processor cache, you should communicate that to the kernel with
free_hot_page (for cache-resident pages) or free_cold_page. This information helps
the memory allocator optimize its use of memory across the system.

vmalloc and Friends
The next memory allocation function that we show you is vmalloc, which allocates a
contiguous memory region in the virtual address space. Although the pages are not con-
secutive in physical memory (each page is retrieved with a separate call to alloc_page),
the kernel sees them as a contiguous range of addresses. vmalloc returns 0 (the NULL
address) if an error occurs, otherwise, it returns a pointer to a linear memory area of size
at least size.

* NUMA (nonuniform memory access) computers are multiprocessor systems where memory is “local” to
specific groups of processors (“nodes”). Access to local memory is faster than access to nonlocal memory.
On such systems, allocating memory on the correct node is important. Driver authors do not normally have
to worry about NUMA issues, however.
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We describe vmalloc here because it is one of the fundamental Linux memory alloca-
tion mechanisms. We should note, however, that use of vmalloc is discouraged in
most situations. Memory obtained from vmalloc is slightly less efficient to work with,
and, on some architectures, the amount of address space set aside for vmalloc is rela-
tively small. Code that uses vmalloc is likely to get a chilly reception if submitted for
inclusion in the kernel. If possible, you should work directly with individual pages
rather than trying to smooth things over with vmalloc.

That said, let’s see how vmalloc works. The prototypes of the function and its rela-
tives (ioremap, which is not strictly an allocation function, is discussed later in this
section) are as follows:

#include <linux/vmalloc.h>

void *vmalloc(unsigned long size);
void vfree(void * addr);
void *ioremap(unsigned long offset, unsigned long size);
void iounmap(void * addr);

It’s worth stressing that memory addresses returned by kmalloc and _get_free_pages
are also virtual addresses. Their actual value is still massaged by the MMU (the mem-
ory management unit, usually part of the CPU) before it is used to address physical
memory.* vmalloc is not different in how it uses the hardware, but rather in how the
kernel performs the allocation task.

The (virtual) address range used by kmalloc and __get_free_pages features a one-to-
one mapping to physical memory, possibly shifted by a constant PAGE_OFFSET value;
the functions don’t need to modify the page tables for that address range. The
address range used by vmalloc and ioremap, on the other hand, is completely syn-
thetic, and each allocation builds the (virtual) memory area by suitably setting up the
page tables.

This difference can be perceived by comparing the pointers returned by the alloca-
tion functions. On some platforms (for example, the x86), addresses returned by
vmalloc are just beyond the addresses that kmalloc uses. On other platforms (for
example, MIPS, IA-64, and x86_64), they belong to a completely different address
range. Addresses available for vmalloc are in the range from VMALLOC_START to
VMALLOC_END. Both symbols are defined in <asm/pgtable.h>.

Addresses allocated by vmalloc can’t be used outside of the microprocessor, because
they make sense only on top of the processor’s MMU. When a driver needs a real
physical address (such as a DMA address, used by peripheral hardware to drive the
system’s bus), you can’t easily use vmalloc. The right time to call vmalloc is when

* Actually, some architectures define ranges of “virtual” addresses as reserved to address physical memory.
When this happens, the Linux kernel takes advantage of the feature, and both the kernel and __get_free_pages
addresses lie in one of those memory ranges. The difference is transparent to device drivers and other code
that is not directly involved with the memory-management kernel subsystem.
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you are allocating memory for a large sequential buffer that exists only in software.
It’s important to note that vmalloc has more overhead than __get_free_pages,
because it must both retrieve the memory and build the page tables. Therefore, it
doesn’t make sense to call vmalloc to allocate just one page.

An example of a function in the kernel that uses vmalloc is the create_module system
call, which uses vmalloc to get space for the module being created. Code and data of
the module are later copied to the allocated space using copy_from_user. In this way,
the module appears to be loaded into contiguous memory. You can verify, by look-
ing in /proc/kallsyms, that kernel symbols exported by modules lie in a different
memory range from symbols exported by the kernel proper.

Memory allocated with vmalloc is released by vfree, in the same way that kfree
releases memory allocated by kmalloc.

Like vmalloc, ioremap builds new page tables; unlike vmalloc, however, it doesn’t
actually allocate any memory. The return value of ioremap is a special virtual address
that can be used to access the specified physical address range; the virtual address
obtained is eventually released by calling iounmap.

ioremap is most useful for mapping the (physical) address of a PCI buffer to (virtual)
kernel space. For example, it can be used to access the frame buffer of a PCI video
device; such buffers are usually mapped at high physical addresses, outside of the
address range for which the kernel builds page tables at boot time. PCI issues are
explained in more detail in Chapter 12.

It’s worth noting that for the sake of portability, you should not directly access
addresses returned by ioremap as if they were pointers to memory. Rather, you
should always use readb and the other I/O functions introduced in Chapter 9. This
requirement applies because some platforms, such as the Alpha, are unable to
directly map PCI memory regions to the processor address space because of differ-
ences between PCI specs and Alpha processors in how data is transferred.

Both ioremap and vmalloc are page oriented (they work by modifying the page
tables); consequently, the relocated or allocated size is rounded up to the nearest
page boundary. ioremap simulates an unaligned mapping by “rounding down” the
address to be remapped and by returning an offset into the first remapped page.

One minor drawback of vmalloc is that it can’t be used in atomic context because,
internally, it uses kmalloc(GFP_KERNEL) to acquire storage for the page tables, and
therefore could sleep. This shouldn’t be a problem—if the use of __get_free_page isn’t
good enough for an interrupt handler, the software design needs some cleaning up.
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A scull Using Virtual Addresses: scullv
Sample code using vmalloc is provided in the scullv module. Like scullp, this module
is a stripped-down version of scull that uses a different allocation function to obtain
space for the device to store data.

The module allocates memory 16 pages at a time. The allocation is done in large
chunks to achieve better performance than scullp and to show something that takes
too long with other allocation techniques to be feasible. Allocating more than one
page with __get_free_pages is failure prone, and even when it succeeds, it can be
slow. As we saw earlier, vmalloc is faster than other functions in allocating several
pages, but somewhat slower when retrieving a single page, because of the overhead
of page-table building. scullv is designed like scullp. order specifies the “order” of
each allocation and defaults to 4. The only difference between scullv and scullp is in
allocation management. These lines use vmalloc to obtain new memory:

/* Allocate a quantum using virtual addresses */
if (!dptr->data[s_pos]) {
    dptr->data[s_pos] =
        (void *)vmalloc(PAGE_SIZE << dptr->order);
    if (!dptr->data[s_pos])
        goto nomem;
    memset(dptr->data[s_pos], 0, PAGE_SIZE << dptr->order);
}

and these lines release memory:

/* Release the quantum-set */
for (i = 0; i < qset; i++)
    if (dptr->data[i])
        vfree(dptr->data[i]);

If you compile both modules with debugging enabled, you can look at their data
allocation by reading the files they create in /proc. This snapshot was taken on an
x86_64 system:

salma% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem
Device 0: qset 500, order 0, sz 1535135
  item at 000001001847da58, qset at 000001001db4c000
       0:1001db56000
       1:1003d1c7000

salma% cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem

Device 0: qset 500, order 4, sz 1535135
  item at 000001001847da58, qset at 0000010013dea000
       0:ffffff0001177000
       1:ffffff0001188000
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The following output, instead, came from an x86 system:

rudo% cat /tmp/bigfile > /dev/scullp0; head -5 /proc/scullpmem

Device 0: qset 500, order 0, sz 1535135
  item at ccf80e00, qset at cf7b9800
       0:ccc58000
       1:cccdd000

rudo%  cat /tmp/bigfile > /dev/scullv0; head -5 /proc/scullvmem

Device 0: qset 500, order 4, sz 1535135
  item at cfab4800, qset at cf8e4000
       0:d087a000
       1:d08d2000

The values show two different behaviors. On x86_64, physical addresses and virtual
addresses are mapped to completely different address ranges (0x100 and 0xffffff00),
while on x86 computers, vmalloc returns virtual addresses just above the mapping
used for physical memory.

Per-CPU Variables
Per-CPU variables are an interesting 2.6 kernel feature. When you create a per-CPU
variable, each processor on the system gets its own copy of that variable. This may
seem like a strange thing to want to do, but it has its advantages. Access to per-CPU
variables requires (almost) no locking, because each processor works with its own
copy. Per-CPU variables can also remain in their respective processors’ caches, which
leads to significantly better performance for frequently updated quantities.

A good example of per-CPU variable use can be found in the networking subsystem.
The kernel maintains no end of counters tracking how many of each type of packet
was received; these counters can be updated thousands of times per second. Rather
than deal with the caching and locking issues, the networking developers put the sta-
tistics counters into per-CPU variables. Updates are now lockless and fast. On the
rare occasion that user space requests to see the values of the counters, it is a simple
matter to add up each processor’s version and return the total.

The declarations for per-CPU variables can be found in <linux/percpu.h>. To create a
per-CPU variable at compile time, use this macro:

DEFINE_PER_CPU(type, name);

If the variable (to be called name) is an array, include the dimension information with
the type. Thus, a per-CPU array of three integers would be created with:

DEFINE_PER_CPU(int[3], my_percpu_array);

Per-CPU variables can be manipulated without explicit locking—almost. Remember
that the 2.6 kernel is preemptible; it would not do for a processor to be preempted in
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the middle of a critical section that modifies a per-CPU variable. It also would not be
good if your process were to be moved to another processor in the middle of a per-
CPU variable access. For this reason, you must explicitly use the get_cpu_var macro
to access the current processor’s copy of a given variable, and call put_cpu_var when
you are done. The call to get_cpu_var returns an lvalue for the current processor’s
version of the variable and disables preemption. Since an lvalue is returned, it can be
assigned to or operated on directly. For example, one counter in the networking code
is incremented with these two statements:

get_cpu_var(sockets_in_use)++;
put_cpu_var(sockets_in_use);

You can access another processor’s copy of the variable with:

per_cpu(variable, int cpu_id);

If you write code that involves processors reaching into each other’s per-CPU vari-
ables, you, of course, have to implement a locking scheme that makes that access
safe.

Dynamically allocated per-CPU variables are also possible. These variables can be
allocated with:

void *alloc_percpu(type);
void *__alloc_percpu(size_t size, size_t align);

In most cases, alloc_percpu does the job; you can call __alloc_percpu in cases where
a particular alignment is required. In either case, a per-CPU variable can be returned
to the system with free_percpu. Access to a dynamically allocated per-CPU variable is
done via per_cpu_ptr:

per_cpu_ptr(void *per_cpu_var, int cpu_id);

This macro returns a pointer to the version of per_cpu_var corresponding to the given
cpu_id. If you are simply reading another CPU’s version of the variable, you can deref-
erence that pointer and be done with it. If, however, you are manipulating the current
processor’s version, you probably need to ensure that you cannot be moved out of
that processor first. If the entirety of your access to the per-CPU variable happens
with a spinlock held, all is well. Usually, however, you need to use get_cpu to block
preemption while working with the variable. Thus, code using dynamic per-CPU vari-
ables tends to look like this:

int cpu;

cpu = get_cpu( )
ptr = per_cpu_ptr(per_cpu_var, cpu);
/* work with ptr */
put_cpu( );

When using compile-time per-CPU variables, the get_cpu_var and put_cpu_var macros
take care of these details. Dynamic per-CPU variables require more explicit protection.
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Per-CPU variables can be exported to modules, but you must use a special version of
the macros:

EXPORT_PER_CPU_SYMBOL(per_cpu_var);
EXPORT_PER_CPU_SYMBOL_GPL(per_cpu_var);

To access such a variable within a module, declare it with:

DECLARE_PER_CPU(type, name);

The use of DECLARE_PER_CPU (instead of DEFINE_PER_CPU) tells the compiler
that an external reference is being made.

If you want to use per-CPU variables to create a simple integer counter, take a look
at the canned implementation in <linux/percpu_counter.h>. Finally, note that some
architectures have a limited amount of address space available for per-CPU vari-
ables. If you create per-CPU variables in your code, you should try to keep them
small.

Obtaining Large Buffers
As we have noted in previous sections, allocations of large, contiguous memory buff-
ers are prone to failure. System memory fragments over time, and chances are that a
truly large region of memory will simply not be available. Since there are usually
ways of getting the job done without huge buffers, the kernel developers have not
put a high priority on making large allocations work. Before you try to obtain a large
memory area, you should really consider the alternatives. By far the best way of per-
forming large I/O operations is through scatter/gather operations, which we discuss
in the section “Scatter-gather mappings” in Chapter 1.

Acquiring a Dedicated Buffer at Boot Time
If you really need a huge buffer of physically contiguous memory, the best approach
is often to allocate it by requesting memory at boot time. Allocation at boot time is
the only way to retrieve consecutive memory pages while bypassing the limits
imposed by __get_free_pages on the buffer size, both in terms of maximum allowed
size and limited choice of sizes. Allocating memory at boot time is a “dirty” tech-
nique, because it bypasses all memory management policies by reserving a private
memory pool. This technique is inelegant and inflexible, but it is also the least prone
to failure. Needless to say, a module can’t allocate memory at boot time; only driv-
ers directly linked to the kernel can do that.

One noticeable problem with boot-time allocation is that it is not a feasible option
for the average user, since this mechanism is available only for code linked in the ker-
nel image. A device driver using this kind of allocation can be installed or replaced
only by rebuilding the kernel and rebooting the computer.
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When the kernel is booted, it gains access to all the physical memory available in the
system. It then initializes each of its subsystems by calling that subsystem’s initializa-
tion function, allowing initialization code to allocate a memory buffer for private use
by reducing the amount of RAM left for normal system operation.

Boot-time memory allocation is performed by calling one of these functions:

#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);

The functions allocate either whole pages (if they end with _pages) or non-page-
aligned memory areas. The allocated memory may be high memory unless one of the
_low versions is used. If you are allocating this buffer for a device driver, you proba-
bly want to use it for DMA operations, and that is not always possible with high
memory; thus, you probably want to use one of the _low variants.

It is rare to free memory allocated at boot time; you will almost certainly be unable
to get it back later if you want it. There is an interface to free this memory, however:

void free_bootmem(unsigned long addr, unsigned long size);

Note that partial pages freed in this manner are not returned to the system—but, if
you are using this technique, you have probably allocated a fair number of whole
pages to begin with.

If you must use boot-time allocation, you need to link your driver directly into the
kernel. See the files in the kernel source under Documentation/kbuild for more infor-
mation on how this should be done.

Quick Reference
The functions and symbols related to memory allocation are:

#include <linux/slab.h>
void *kmalloc(size_t size, int flags);
void kfree(void *obj);

The most frequently used interface to memory allocation.

#include <linux/mm.h>
GFP_USER
GFP_KERNEL
GFP_NOFS
GFP_NOIO
GFP_ATOMIC

Flags that control how memory allocations are performed, from the least restric-
tive to the most. The GFP_USER and GFP_KERNEL priorities allow the current process
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to be put to sleep to satisfy the request. GFP_NOFS and GFP_NOIO disable filesystem
operations and all I/O operations, respectively, while GFP_ATOMIC allocations can-
not sleep at all.

__GFP_DMA
__GFP_HIGHMEM
__GFP_COLD
__GFP_NOWARN
__GFP_HIGH
__GFP_REPEAT
__GFP_NOFAIL
__GFP_NORETRY

These flags modify the kernel’s behavior when allocating memory.

#include <linux/malloc.h>
kmem_cache_t *kmem_cache_create(char *name, size_t size, size_t offset,
  unsigned long flags, constructor( ), destructor( ));
int kmem_cache_destroy(kmem_cache_t *cache);

Create and destroy a slab cache. The cache can be used to allocate several
objects of the same size.

SLAB_NO_REAP
SLAB_HWCACHE_ALIGN
SLAB_CACHE_DMA

Flags that can be specified while creating a cache.

SLAB_CTOR_ATOMIC
SLAB_CTOR_CONSTRUCTOR

Flags that the allocator can pass to the constructor and the destructor functions.

void *kmem_cache_alloc(kmem_cache_t *cache, int flags);
void kmem_cache_free(kmem_cache_t *cache, const void *obj);

Allocate and release a single object from the cache.

/proc/slabinfo
A virtual file containing statistics on slab cache usage.

#include <linux/mempool.h>
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, mempool_free_t
  *free_fn, void *data);
void mempool_destroy(mempool_t *pool);

Functions for the creation of memory pools, which try to avoid memory alloca-
tion failures by keeping an “emergency list” of allocated items.

void *mempool_alloc(mempool_t *pool, int gfp_mask);
void mempool_free(void *element, mempool_t *pool);

Functions for allocating items from (and returning them to) memory pools.
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unsigned long get_zeroed_page(int flags);
unsigned long __get_free_page(int flags);
unsigned long __get_free_pages(int flags, unsigned long order);

The page-oriented allocation functions. get_zeroed_page returns a single, zero-
filled page. All the other versions of the call do not initialize the contents of the
returned page(s).

int get_order(unsigned long size);
Returns the allocation order associated to size in the current platform, according
to PAGE_SIZE. The argument must be a power of two, and the return value is at
least 0.

void free_page(unsigned long addr);
void free_pages(unsigned long addr, unsigned long order);

Functions that release page-oriented allocations.

struct page *alloc_pages_node(int nid, unsigned int flags, unsigned int order);
struct page *alloc_pages(unsigned int flags, unsigned int order);
struct page *alloc_page(unsigned int flags);

All variants of the lowest-level page allocator in the Linux kernel.

void __free_page(struct page *page);
void __free_pages(struct page *page, unsigned int order);
void free_hot_page(struct page *page);
void free_cold_page(struct page *page);

Various ways of freeing pages allocated with one of the forms of alloc_page.

#include <linux/vmalloc.h>
void * vmalloc(unsigned long size);
void vfree(void * addr);
#include <asm/io.h>
void * ioremap(unsigned long offset, unsigned long size);
void iounmap(void *addr);

Functions that allocate or free a contiguous virtual address space. ioremap
accesses physical memory through virtual addresses, while vmalloc allocates free
pages. Regions mapped with ioremap are freed with iounmap, while pages
obtained from vmalloc are released with vfree.

#include <linux/percpu.h>
DEFINE_PER_CPU(type, name);
DECLARE_PER_CPU(type, name);

Macros that define and declare per-CPU variables.

per_cpu(variable, int cpu_id)
get_cpu_var(variable)
put_cpu_var(variable)

Macros that provide access to statically declared per-CPU variables.
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void *alloc_percpu(type);
void *__alloc_percpu(size_t size, size_t align);
void free_percpu(void *variable);

Functions that perform runtime allocation and freeing of per-CPU variables.

int get_cpu( );
void put_cpu( );
per_cpu_ptr(void *variable, int cpu_id)

get_cpu obtains a reference to the current processor (therefore, preventing pre-
emption and movement to another processor) and returns the ID number of the
processor; put_cpu returns that reference. To access a dynamically allocated per-
CPU variable, use per_cpu_ptr with the ID of the CPU whose version should be
accessed. Manipulations of the current CPU’s version of a dynamic, per-CPU
variable should probably be surrounded by calls to get_cpu and put_cpu.

#include <linux/bootmem.h>
void *alloc_bootmem(unsigned long size);
void *alloc_bootmem_low(unsigned long size);
void *alloc_bootmem_pages(unsigned long size);
void *alloc_bootmem_low_pages(unsigned long size);
void free_bootmem(unsigned long addr, unsigned long size);

Functions (which can be used only by drivers directly linked into the kernel) that
perform allocation and freeing of memory at system bootstrap time.
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