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Debugging Techniques

Kernel programming brings its own, unique debugging challenges. Kernel code can-
not be easily executed under a debugger, nor can it be easily traced, because it is a set
of functionalities not related to a specific process. Kernel code errors can also be
exceedingly hard to reproduce and can bring down the entire system with them, thus
destroying much of the evidence that could be used to track them down.

This chapter introduces techniques you can use to monitor kernel code and trace
errors under such trying circumstances.

Debugging Support in the Kernel
In Chapter 2, we recommended that you build and install your own kernel, rather
than running the stock kernel that comes with your distribution. One of the stron-
gest reasons for running your own kernel is that the kernel developers have built sev-
eral debugging features into the kernel itself. These features can create extra output
and slow performance, so they tend not to be enabled in production kernels from
distributors. As a kernel developer, however, you have different priorities and will
gladly accept the (minimal) overhead of the extra kernel debugging support.

Here, we list the configuration options that should be enabled for kernels used for
development. Except where specified otherwise, all of these options are found under
the “kernel hacking” menu in whatever kernel configuration tool you prefer. Note
that some of these options are not supported by all architectures.

CONFIG_DEBUG_KERNEL
This option just makes other debugging options available; it should be turned on
but does not, by itself, enable any features.

CONFIG_DEBUG_SLAB
This crucial option turns on several types of checks in the kernel memory alloca-
tion functions; with these checks enabled, it is possible to detect a number of
memory overrun and missing initialization errors. Each byte of allocated memory
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is set to 0xa5 before being handed to the caller and then set to 0x6b when it is
freed. If you ever see either of those “poison” patterns repeating in output from
your driver (or often in an oops listing), you’ll know exactly what sort of error to
look for. When debugging is enabled, the kernel also places special guard values
before and after every allocated memory object; if those values ever get changed,
the kernel knows that somebody has overrun a memory allocation, and it com-
plains loudly. Various checks for more obscure errors are enabled as well.

CONFIG_DEBUG_PAGEALLOC
Full pages are removed from the kernel address space when freed. This option
can slow things down significantly, but it can also quickly point out certain
kinds of memory corruption errors.

CONFIG_DEBUG_SPINLOCK
With this option enabled, the kernel catches operations on uninitialized spin-
locks and various other errors (such as unlocking a lock twice).

CONFIG_DEBUG_SPINLOCK_SLEEP
This option enables a check for attempts to sleep while holding a spinlock. In
fact, it complains if you call a function that could potentially sleep, even if the
call in question would not sleep.

CONFIG_INIT_DEBUG
Items marked with __init (or __initdata) are discarded after system initializa-
tion or module load time. This option enables checks for code that attempts to
access initialization-time memory after initialization is complete.

CONFIG_DEBUG_INFO
This option causes the kernel to be built with full debugging information
included. You’ll need that information if you want to debug the kernel with gdb.
You may also want to enable CONFIG_FRAME_POINTER if you plan to use gdb.

CONFIG_MAGIC_SYSRQ
Enables the “magic SysRq” key. We look at this key in the section “System
Hangs,” later in this chapter.

CONFIG_DEBUG_STACKOVERFLOW
CONFIG_DEBUG_STACK_USAGE

These options can help track down kernel stack overflows. A sure sign of a stack
overflow is an oops listing without any sort of reasonable back trace. The first
option adds explicit overflow checks to the kernel; the second causes the kernel
to monitor stack usage and make some statistics available via the magic SysRq
key.

CONFIG_KALLSYMS
This option (under “General setup/Standard features”) causes kernel symbol
information to be built into the kernel; it is enabled by default. The symbol
information is used in debugging contexts; without it, an oops listing can give
you a kernel traceback only in hexadecimal, which is not very useful.
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CONFIG_IKCONFIG
CONFIG_IKCONFIG_PROC

These options (found in the “General setup” menu) cause the full kernel config-
uration state to be built into the kernel and to be made available via /proc. Most
kernel developers know which configuration they used and do not need these
options (which make the kernel bigger). They can be useful, though, if you are
trying to debug a problem in a kernel built by somebody else.

CONFIG_ACPI_DEBUG
Under “Power management/ACPI.” This option turns on verbose ACPI
(Advanced Configuration and Power Interface) debugging information, which
can be useful if you suspect a problem related to ACPI.

CONFIG_DEBUG_DRIVER
Under “Device drivers.” Turns on debugging information in the driver core,
which can be useful for tracking down problems in the low-level support code.
We’ll look at the driver core in Chapter 14.

CONFIG_SCSI_CONSTANTS
This option, found under “Device drivers/SCSI device support,” builds in infor-
mation for verbose SCSI error messages. If you are working on a SCSI driver, you
probably want this option.

CONFIG_INPUT_EVBUG
This option (under “Device drivers/Input device support”) turns on verbose log-
ging of input events. If you are working on a driver for an input device, this
option may be helpful. Be aware of the security implications of this option, how-
ever: it logs everything you type, including your passwords.

CONFIG_PROFILING
This option is found under “Profiling support.” Profiling is normally used for
system performance tuning, but it can also be useful for tracking down some
kernel hangs and related problems.

We will revisit some of the above options as we look at various ways of tracking
down kernel problems. But first, we will look at the classic debugging technique:
print statements.

Debugging by Printing
The most common debugging technique is monitoring, which in applications pro-
gramming is done by calling printf at suitable points. When you are debugging ker-
nel code, you can accomplish the same goal with printk.

,ch04.7697  Page 75  Friday, January 21, 2005  10:39 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 4: Debugging Techniques

printk
We used the printk function in earlier chapters with the simplifying assumption that
it works like printf. Now it’s time to introduce some of the differences.

One of the differences is that printk lets you classify messages according to their
severity by associating different loglevels, or priorities, with the messages. You usu-
ally indicate the loglevel with a macro. For example, KERN_INFO, which we saw
prepended to some of the earlier print statements, is one of the possible loglevels of
the message. The loglevel macro expands to a string, which is concatenated to the
message text at compile time; that’s why there is no comma between the priority and
the format string in the following examples. Here are two examples of printk com-
mands, a debug message and a critical message:

printk(KERN_DEBUG "Here I am: %s:%i\n", __FILE__, __LINE__);
printk(KERN_CRIT "I'm trashed; giving up on %p\n", ptr);

There are eight possible loglevel strings, defined in the header <linux/kernel.h>; we
list them in order of decreasing severity:

KERN_EMERG
Used for emergency messages, usually those that precede a crash.

KERN_ALERT
A situation requiring immediate action.

KERN_CRIT
Critical conditions, often related to serious hardware or software failures.

KERN_ERR
Used to report error conditions; device drivers often use KERN_ERR to report hard-
ware difficulties.

KERN_WARNING
Warnings about problematic situations that do not, in themselves, create seri-
ous problems with the system.

KERN_NOTICE
Situations that are normal, but still worthy of note. A number of security-related
conditions are reported at this level.

KERN_INFO
Informational messages. Many drivers print information about the hardware
they find at startup time at this level.

KERN_DEBUG
Used for debugging messages.

Each string (in the macro expansion) represents an integer in angle brackets. Inte-
gers range from 0 to 7, with smaller values representing higher priorities.
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A printk statement with no specified priority defaults to DEFAULT_MESSAGE_LOGLEVEL,
specified in kernel/printk.c as an integer. In the 2.6.10 kernel, DEFAULT_MESSAGE_LOGLEVEL
is KERN_WARNING, but that has been known to change in the past.

Based on the loglevel, the kernel may print the message to the current console, be it a
text-mode terminal, a serial port, or a parallel printer. If the priority is less than the
integer variable console_loglevel, the message is delivered to the console one line at
a time (nothing is sent unless a trailing newline is provided). If both klogd and sys-
logd are running on the system, kernel messages are appended to /var/log/messages
(or otherwise treated depending on your syslogd configuration), independent of
console_loglevel. If klogd is not running, the message won’t reach user space unless
you read /proc/kmsg (which is often most easily done with the dmesg command).
When using klogd, you should remember that it doesn’t save consecutive identical
lines; it only saves the first such line and, at a later time, the number of repetitions it
received.

The variable console_loglevel is initialized to DEFAULT_CONSOLE_LOGLEVEL and can be
modified through the sys_syslog system call. One way to change it is by specifying
the –c switch when invoking klogd, as specified in the klogd manpage. Note that to
change the current value, you must first kill klogd and then restart it with the –c
option. Alternatively, you can write a program to change the console loglevel. You’ll
find a version of such a program in misc-progs/setlevel.c in the source files provided
on O’Reilly’s FTP site. The new level is specified as an integer value between 1 and 8,
inclusive. If it is set to 1, only messages of level 0 (KERN_EMERG) reach the console; if it
is set to 8, all messages, including debugging ones, are displayed.

It is also possible to read and modify the console loglevel using the text file /proc/sys/
kernel/printk. The file hosts four integer values: the current loglevel, the default level
for messages that lack an explicit loglevel, the minimum allowed loglevel, and the
boot-time default loglevel. Writing a single value to this file changes the current
loglevel to that value; thus, for example, you can cause all kernel messages to appear
at the console by simply entering:

 # echo 8 > /proc/sys/kernel/printk

It should now be apparent why the hello.c sample had the KERN_ALERT; markers; they
are there to make sure that the messages appear on the console.

Redirecting Console Messages
Linux allows for some flexibility in console logging policies by letting you send mes-
sages to a specific virtual console (if your console lives on the text screen). By default,
the “console” is the current virtual terminal. To select a different virtual terminal to
receive messages, you can issue ioctl(TIOCLINUX) on any console device. The follow-
ing program, setconsole, can be used to choose which console receives kernel mes-
sages; it must be run by the superuser and is available in the misc-progs directory.
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The following is the program in its entirety. You should invoke it with a single argu-
ment specifying the number of the console that is to receive messages.

int main(int argc, char **argv)
{
    char bytes[2] = {11,0}; /* 11 is the TIOCLINUX cmd number */

    if (argc= =2) bytes[1] = atoi(argv[1]); /* the chosen console */
    else {
        fprintf(stderr, "%s: need a single arg\n",argv[0]); exit(1);
    }
    if (ioctl(STDIN_FILENO, TIOCLINUX, bytes)<0) {    /* use stdin */
        fprintf(stderr,"%s: ioctl(stdin, TIOCLINUX): %s\n",
                argv[0], strerror(errno));
        exit(1);
    }
    exit(0);
}

setconsole uses the special ioctl command TIOCLINUX, which implements Linux-
specific functions. To use TIOCLINUX, you pass it an argument that is a pointer to a
byte array. The first byte of the array is a number that specifies the requested sub-
command, and the following bytes are subcommand specific. In setconsole, subcom-
mand 11 is used, and the next byte (stored in bytes[1]) identifies the virtual console.
The complete description of TIOCLINUX can be found in drivers/char/tty_io.c, in the
kernel sources.

How Messages Get Logged
The printk function writes messages into a circular buffer that is __LOG_BUF_LEN bytes
long: a value from 4 KB to 1 MB chosen while configuring the kernel. The function
then wakes any process that is waiting for messages, that is, any process that is sleep-
ing in the syslog system call or that is reading /proc/kmsg. These two interfaces to the
logging engine are almost equivalent, but note that reading from /proc/kmsg con-
sumes the data from the log buffer, whereas the syslog system call can optionally
return log data while leaving it for other processes as well. In general, reading the
/proc file is easier and is the default behavior for klogd. The dmesg command can be
used to look at the content of the buffer without flushing it; actually, the command
returns to stdout the whole content of the buffer, whether or not it has already been
read.

If you happen to read the kernel messages by hand, after stopping klogd, you’ll find
that the /proc file looks like a FIFO, in that the reader blocks, waiting for more data.
Obviously, you can’t read messages this way if klogd or another process is already
reading the same data, because you’ll contend for it.

If the circular buffer fills up, printk wraps around and starts adding new data to the
beginning of the buffer, overwriting the oldest data. Therefore, the logging process
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loses the oldest data. This problem is negligible compared with the advantages of
using such a circular buffer. For example, a circular buffer allows the system to run
even without a logging process, while minimizing memory waste by overwriting old
data should nobody read it. Another feature of the Linux approach to messaging is
that printk can be invoked from anywhere, even from an interrupt handler, with no
limit on how much data can be printed. The only disadvantage is the possibility of
losing some data.

If the klogd process is running, it retrieves kernel messages and dispatches them to
syslogd, which in turn checks /etc/syslog.conf to find out how to deal with them. sys-
logd differentiates between messages according to a facility and a priority; allowable
values for both the facility and the priority are defined in <sys/syslog.h>. Kernel mes-
sages are logged by the LOG_KERN facility at a priority corresponding to the one used in
printk (for example, LOG_ERR is used for KERN_ERR messages). If klogd isn’t running,
data remains in the circular buffer until someone reads it or the buffer overflows.

If you want to avoid clobbering your system log with the monitoring messages from
your driver, you can either specify the –f (file) option to klogd to instruct it to save
messages to a specific file, or customize /etc/syslog.conf to suit your needs. Yet
another possibility is to take the brute-force approach: kill klogd and verbosely print
messages on an unused virtual terminal,* or issue the command cat /proc/kmsg from
an unused xterm.

Turning the Messages On and Off
During the early stages of driver development, printk can help considerably in debug-
ging and testing new code. When you officially release the driver, on the other hand,
you should remove, or at least disable, such print statements. Unfortunately, you’re
likely to find that as soon as you think you no longer need the messages and remove
them, you implement a new feature in the driver (or somebody finds a bug), and you
want to turn at least one of the messages back on. There are several ways to solve
both issues, to globally enable or disable your debug messages and to turn individ-
ual messages on or off.

Here we show one way to code printk calls so you can turn them on and off individu-
ally or globally; the technique depends on defining a macro that resolves to a printk
(or printf) call when you want it to:

• Each print statement can be enabled or disabled by removing or adding a single
letter to the macro’s name.

• All the messages can be disabled at once by changing the value of the CFLAGS
variable before compiling.

* For example, use setlevel 8; setconsole 10 to set up terminal 10 to display messages.
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• The same print statement can be used in kernel code and user-level code, so that
the driver and test programs can be managed in the same way with regard to
extra messages.

The following code fragment implements these features and comes directly from the
header scull.h:

#undef PDEBUG             /* undef it, just in case */
#ifdef SCULL_DEBUG
#  ifdef __KERNEL__
     /* This one if debugging is on, and kernel space */
#    define PDEBUG(fmt, args...) printk( KERN_DEBUG "scull: " fmt, ## args)
#  else
     /* This one for user space */
#    define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)
#  endif
#else
#  define PDEBUG(fmt, args...) /* not debugging: nothing */
#endif

#undef PDEBUGG
#define PDEBUGG(fmt, args...) /* nothing: it's a placeholder */

The symbol PDEBUG is defined or undefined, depending on whether SCULL_DEBUG is
defined, and displays information in whatever manner is appropriate to the environ-
ment where the code is running: it uses the kernel call printk when it’s in the kernel
and the libc call fprintf to the standard error when run in user space. The PDEBUGG
symbol, on the other hand, does nothing; it can be used to easily “comment” print
statements without removing them entirely.

To simplify the process further, add the following lines to your makefile:

# Comment/uncomment the following line to disable/enable debugging
DEBUG = y

# Add your debugging flag (or not) to CFLAGS
ifeq ($(DEBUG),y)
  DEBFLAGS = -O -g -DSCULL_DEBUG # "-O" is needed to expand inlines
else
  DEBFLAGS = -O2
endif

CFLAGS += $(DEBFLAGS)

The macros shown in this section depend on a gcc extension to the ANSI C prepro-
cessor that supports macros with a variable number of arguments. This gcc depen-
dency shouldn’t be a problem, because the kernel proper depends heavily on gcc
features anyway. In addition, the makefile depends on GNU’s version of make; once
again, the kernel already depends on GNU make, so this dependency is not a problem.
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If you’re familiar with the C preprocessor, you can expand on the given definitions to
implement the concept of a “debug level,” defining different levels and assigning an
integer (or bit mask) value to each level to determine how verbose it should be.

But every driver has its own features and monitoring needs. The art of good pro-
gramming is in choosing the best trade-off between flexibility and efficiency, and we
can’t tell what is the best for you. Remember that preprocessor conditionals (as well
as constant expressions in the code) are executed at compile time, so you must
recompile to turn messages on or off. A possible alternative is to use C conditionals,
which are executed at runtime and, therefore, permit you to turn messaging on and
off during program execution. This is a nice feature, but it requires additional pro-
cessing every time the code is executed, which can affect performance even when the
messages are disabled. Sometimes this performance hit is unacceptable.

The macros shown in this section have proven themselves useful in a number of situ-
ations, with the only disadvantage being the requirement to recompile a module after
any changes to its messages.

Rate Limiting
If you are not careful, you can find yourself generating thousands of messages with
printk, overwhelming the console and, possibly, overflowing the system log file.
When using a slow console device (e.g., a serial port), an excessive message rate can
also slow down the system or just make it unresponsive. It can be very hard to get a
handle on what is wrong with a system when the console is spewing out data non-
stop. Therefore, you should be very careful about what you print, especially in pro-
duction versions of drivers and especially once initialization is complete. In general,
production code should never print anything during normal operation; printed out-
put should be an indication of an exceptional situation requiring attention.

On the other hand, you may want to emit a log message if a device you are driving
stops working. But you should be careful not to overdo things. An unintelligent pro-
cess that continues forever in the face of failures can generate thousands of retries per
second; if your driver prints a “my device is broken” message every time, it could cre-
ate vast amounts of output and possibly hog the CPU if the console device is slow—
no interrupts can be used to driver the console, even if it is a serial port or a line
printer.

In many cases, the best behavior is to set a flag saying, “I have already complained
about this,” and not print any further messages once the flag gets set. In others,
though, there are reasons to emit an occasional “the device is still broken” notice.
The kernel has provided a function that can be helpful in such cases:

int printk_ratelimit(void);
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This function should be called before you consider printing a message that could be
repeated often. If the function returns a nonzero value, go ahead and print your mes-
sage, otherwise skip it. Thus, typical calls look like this:

if (printk_ratelimit( ))
    printk(KERN_NOTICE "The printer is still on fire\n");

printk_ratelimit works by tracking how many messages are sent to the console.
When the level of output exceeds a threshold, printk_ratelimit starts returning 0 and
causing messages to be dropped.

The behavior of printk_ratelimit can be customized by modifying /proc/sys/kernel/
printk_ratelimit (the number of seconds to wait before re-enabling messages) and are
/proc/sys/kernel/printk_ratelimit_burst (the number of messages accepted before rate-
limiting).

Printing Device Numbers
Occasionally, when printing a message from a driver, you will want to print the
device number associated withp the hardware of interest. It is not particularly hard
to print the major and minor numbers, but, in the interest of consistency, the kernel
provides a couple of utility macros (defined in <linux/kdev_t.h>) for this purpose:

int print_dev_t(char *buffer, dev_t dev);
char *format_dev_t(char *buffer, dev_t dev);

Both macros encode the device number into the given buffer; the only difference is
that print_dev_t returns the number of characters printed, while format_dev_t returns
buffer; therefore, it can be used as a parameter to a printk call directly, although one
must remember that printk doesn’t flush until a trailing newline is provided. The
buffer should be large enough to hold a device number; given that 64-bit device
numbers are a distinct possibility in future kernel releases, the buffer should proba-
bly be at least 20 bytes long.

Debugging by Querying
The previous section described how printk works and how it can be used. What it
didn’t talk about are its disadvantages.

A massive use of printk can slow down the system noticeably, even if you lower
console_loglevel to avoid loading the console device, because syslogd keeps syncing
its output files; thus, every line that is printed causes a disk operation. This is the
right implementation from syslogd’s perspective. It tries to write everything to disk in
case the system crashes right after printing the message; however, you don’t want to
slow down your system just for the sake of debugging messages. This problem can be
solved by prefixing the name of your log file as it appears in /etc/syslogd.conf with a
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hyphen.* The problem with changing the configuration file is that the modification
will likely remain there after you are done debugging, even though during normal
system operation you do want messages to be flushed to disk as soon as possible. An
alternative to such a permanent change is running a program other than klogd (such
as cat /proc/kmsg, as suggested earlier), but this may not provide a suitable environ-
ment for normal system operation.

More often than not, the best way to get relevant information is to query the system
when you need the information, instead of continually producing data. In fact, every
Unix system provides many tools for obtaining system information: ps, netstat,
vmstat, and so on.

A few techniques are available to driver developers for querying the system: creating
a file in the /proc filesystem, using the ioctl driver method, and exporting attributes
via sysfs. The use of sysfs requires quite some background on the driver model. It is
discussed in Chapter 14.

Using the /proc Filesystem
The /proc filesystem is a special, software-created filesystem that is used by the ker-
nel to export information to the world. Each file under /proc is tied to a kernel func-
tion that generates the file’s “contents” on the fly when the file is read. We have
already seen some of these files in action; /proc/modules, for example, always returns
a list of the currently loaded modules.

/proc is heavily used in the Linux system. Many utilities on a modern Linux distribu-
tion, such as ps, top, and uptime, get their information from /proc. Some device driv-
ers also export information via /proc, and yours can do so as well. The /proc
filesystem is dynamic, so your module can add or remove entries at any time.

Fully featured /proc entries can be complicated beasts; among other things, they can
be written to as well as read from. Most of the time, however, /proc entries are read-
only files. This section concerns itself with the simple read-only case. Those who are
interested in implementing something more complicated can look here for the basics;
the kernel source may then be consulted for the full picture.

Before we continue, however, we should mention that adding files under /proc is dis-
couraged. The /proc filesystem is seen by the kernel developers as a bit of an uncon-
trolled mess that has gone far beyond its original purpose (which was to provide
information about the processes running in the system). The recommended way of
making information available in new code is via sysfs. As suggested, working with
sysfs requires an understanding of the Linux device model, however, and we do not

* The hyphen, or minus sign, is a “magic” marker to prevent syslogd from flushing the file to disk at every new
message, documented in syslog.conf(5), a manpage worth reading.
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get to that until Chapter 14. Meanwhile, files under /proc are slightly easier to cre-
ate, and they are entirely suitable for debugging purposes, so we cover them here.

Implementing files in /proc

All modules that work with /proc should include <linux/proc_fs.h> to define the
proper functions.

To create a read-only /proc file, your driver must implement a function to produce
the data when the file is read. When some process reads the file (using the read sys-
tem call), the request reaches your module by means of this function. We’ll look at
this function first and get to the registration interface later in this section.

When a process reads from your /proc file, the kernel allocates a page of memory (i.e.,
PAGE_SIZE bytes) where the driver can write data to be returned to user space. That
buffer is passed to your function, which is a method called read_proc:

int (*read_proc)(char *page, char **start, off_t offset, int count,
                 int *eof, void *data);

The page pointer is the buffer where you’ll write your data; start is used by the func-
tion to say where the interesting data has been written in page (more on this later);
offset and count have the same meaning as for the read method. The eof argument
points to an integer that must be set by the driver to signal that it has no more
data to return, while data is a driver-specific data pointer you can use for internal
bookkeeping.

This function should return the number of bytes of data actually placed in the page
buffer, just like the read method does for other files. Other output values are *eof
and *start. eof is a simple flag, but the use of the start value is somewhat more
complicated; its purpose is to help with the implementation of large (greater than
one page) /proc files.

The start parameter has a somewhat unconventional use. Its purpose is to indicate
where (within page) the data to be returned to the user is found. When your proc_read
method is called, *start will be NULL. If you leave it NULL, the kernel assumes that the
data has been put into page as if offset were 0; in other words, it assumes a simple-
minded version of proc_read, which places the entire contents of the virtual file in page
without paying attention to the offset parameter. If, instead, you set *start to a non-
NULL value, the kernel assumes that the data pointed to by *start takes offset into
account and is ready to be returned directly to the user. In general, simple proc_read
methods that return tiny amounts of data just ignore start. More complex methods set
*start to page and only place data beginning at the requested offset there.

There has long been another major issue with /proc files, which start is meant to
solve as well. Sometimes the ASCII representation of kernel data structures changes
between successive calls to read, so the reader process could find inconsistent data
from one call to the next. If *start is set to a small integer value, the caller uses it to
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increment filp->f_pos independently of the amount of data you return, thus mak-
ing f_pos an internal record number of your read_proc procedure. If, for example,
your read_proc function is returning information from a big array of structures, and
five of those structures were returned in the first call, *start could be set to 5. The
next call provides that same value as the offset; the driver then knows to start return-
ing data from the sixth structure in the array. This is acknowledged as a “hack” by its
authors and can be seen in fs/proc/generic.c.

Note that there is a better way to implement large /proc files; it’s called seq_file, and
we’ll discuss it shortly. First, though, it is time for an example. Here is a simple (if
somewhat ugly) read_proc implementation for the scull device:

int scull_read_procmem(char *buf, char **start, off_t offset,
                   int count, int *eof, void *data)
{
    int i, j, len = 0;
    int limit = count - 80; /* Don't print more than this */

    for (i = 0; i < scull_nr_devs && len <= limit; i++) {
        struct scull_dev *d = &scull_devices[i];
        struct scull_qset *qs = d->data;
        if (down_interruptible(&d->sem))
            return -ERESTARTSYS;
        len += sprintf(buf+len,"\nDevice %i: qset %i, q %i, sz %li\n",
                i, d->qset, d->quantum, d->size);
        for (; qs && len <= limit; qs = qs->next) { /* scan the list */
            len += sprintf(buf + len, "  item at %p, qset at %p\n",
                    qs, qs->data);
            if (qs->data && !qs->next) /* dump only the last item */
                for (j = 0; j < d->qset; j++) {
                    if (qs->data[j])
                        len += sprintf(buf + len,
                                "    % 4i: %8p\n",
                                j, qs->data[j]);
                }
        }
        up(&scull_devices[i].sem);
    }
    *eof = 1;
    return len;
}

This is a fairly typical read_proc implementation. It assumes that there will never be a
need to generate more than one page of data and so ignores the start and offset val-
ues. It is, however, careful not to overrun its buffer, just in case.

An older interface

If you read through the kernel source, you may encounter code implementing /proc
files with an older interface:

int (*get_info)(char *page, char **start, off_t offset, int count);
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All of the arguments have the same meaning as they do for read_proc, but the eof
and data arguments are missing. This interface is still supported, but it could go
away in the future; new code should use the read_proc interface instead.

Creating your /proc file

Once you have a read_proc function defined, you need to connect it to an entry in
the /proc hierarchy. This is done with a call to create_proc_read_entry:

struct proc_dir_entry *create_proc_read_entry(const char *name,
                              mode_t mode, struct proc_dir_entry *base,
                              read_proc_t *read_proc, void *data);

Here, name is the name of the file to create, mode is the protection mask for the file (it
can be passed as 0 for a system-wide default), base indicates the directory in which the
file should be created (if base is NULL, the file is created in the /proc root), read_proc is
the read_proc function that implements the file, and data is ignored by the kernel (but
passed to read_proc). Here is the call used by scull to make its /proc function available
as /proc/scullmem:

create_proc_read_entry("scullmem", 0 /* default mode */,
        NULL /* parent dir */, scull_read_procmem,
        NULL /* client data */);

Here, we create a file called scullmem directly under /proc, with the default, world-
readable protections.

The directory entry pointer can be used to create entire directory hierarchies under
/proc. Note, however, that an entry may be more easily placed in a subdirectory of
/proc simply by giving the directory name as part of the name of the entry—as long
as the directory itself already exists. For example, an (often ignored) convention says
that /proc entries associated with device drivers should go in the subdirectory driver/;
scull could place its entry there simply by giving its name as driver/scullmem.

Entries in /proc, of course, should be removed when the module is unloaded.
remove_proc_entry is the function that undoes what create_proc_read_entry already
did:

remove_proc_entry("scullmem", NULL /* parent dir */);

Failure to remove entries can result in calls at unwanted times, or, if your module has
been unloaded, kernel crashes.

When using /proc files as shown, you must remember a few nuisances of the imple-
mentation—no surprise its use is discouraged nowadays.

The most important problem is with removal of /proc entries. Such removal may well
happen while the file is in use, as there is no owner associated to /proc entries, so
using them doesn’t act on the module’s reference count. This problem is simply trig-
gered by running sleep 100 < /proc/myfile just before removing the module, for example.
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Another issue is about registering two entries with the same name. The kernel trusts
the driver and doesn’t check if the name is already registered, so if you are not care-
ful you might end up with two or more entries with the same name. This is a prob-
lem known to happen in classrooms, and such entries are indistinguishable, both
when you access them and when you call remove_proc_entry.

The seq_file interface

As we noted above, the implementation of large files under /proc is a little awkward.
Over time, /proc methods have become notorious for buggy implementations when
the amount of output grows large. As a way of cleaning up the /proc code and mak-
ing life easier for kernel programmers, the seq_file interface was added. This inter-
face provides a simple set of functions for the implementation of large kernel virtual
files.

The seq_file interface assumes that you are creating a virtual file that steps through
a sequence of items that must be returned to user space. To use seq_file, you must
create a simple “iterator” object that can establish a position within the sequence,
step forward, and output one item in the sequence. It may sound complicated, but,
in fact, the process is quite simple. We’ll step through the creation of a /proc file in
the scull driver to show how it is done.

The first step, inevitably, is the inclusion of <linux/seq_file.h>. Then you must create
four iterator methods, called start, next, stop, and show.

The start method is always called first. The prototype for this function is:

void *start(struct seq_file *sfile, loff_t *pos);

The sfile argument can almost always be ignored. pos is an integer position indicat-
ing where the reading should start. The interpretation of the position is entirely up to
the implementation; it need not be a byte position in the resulting file. Since seq_file
implementations typically step through a sequence of interesting items, the position
is often interpreted as a cursor pointing to the next item in the sequence. The scull
driver interprets each device as one item in the sequence, so the incoming pos is sim-
ply an index into the scull_devices array. Thus, the start method used in scull is:

static void *scull_seq_start(struct seq_file *s, loff_t *pos)
{
    if (*pos >= scull_nr_devs)
        return NULL;   /* No more to read */
    return scull_devices + *pos;
}

The return value, if non-NULL, is a private value that can be used by the iterator
implementation.

The next function should move the iterator to the next position, returning NULL if
there is nothing left in the sequence. This method’s prototype is:

void *next(struct seq_file *sfile, void *v, loff_t *pos);
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Here, v is the iterator as returned from the previous call to start or next, and pos is
the current position in the file. next should increment the value pointed to by pos;
depending on how your iterator works, you might (though probably won’t) want to
increment pos by more than one. Here’s what scull does:

static void *scull_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
    (*pos)++;
    if (*pos >= scull_nr_devs)
        return NULL;
    return scull_devices + *pos;
}

When the kernel is done with the iterator, it calls stop to clean up:

void stop(struct seq_file *sfile, void *v);

The scull implementation has no cleanup work to do, so its stop method is empty.

It is worth noting that the seq_file code, by design, does not sleep or perform other
nonatomic tasks between the calls to start and stop. You are also guaranteed to see
one stop call sometime shortly after a call to start. Therefore, it is safe for your start
method to acquire semaphores or spinlocks. As long as your other seq_file meth-
ods are atomic, the whole sequence of calls is atomic. (If this paragraph does not
make sense to you, come back to it after you’ve read the next chapter.)

In between these calls, the kernel calls the show method to actually output some-
thing interesting to the user space. This method’s prototype is:

int show(struct seq_file *sfile, void *v);

This method should create output for the item in the sequence indicated by the itera-
tor v. It should not use printk, however; instead, there is a special set of functions for
seq_file output:

int seq_printf(struct seq_file *sfile, const char *fmt, ...);
This is the printf equivalent for seq_file implementations; it takes the usual for-
mat string and additional value arguments. You must also pass it the seq_file
structure given to the show function, however. If seq_printf returns a nonzero
value, it means that the buffer has filled, and output is being discarded. Most
implementations ignore the return value, however.

int seq_putc(struct seq_file *sfile, char c);
int seq_puts(struct seq_file *sfile, const char *s);

These are the equivalents of the user-space putc and puts functions.

int seq_escape(struct seq_file *m, const char *s, const char *esc);
This function is equivalent to seq_puts with the exception that any character in
s that is also found in esc is printed in octal format. A common value for esc is
" \t\n\\", which keeps embedded white space from messing up the output and
possibly confusing shell scripts.
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int seq_path(struct seq_file *sfile, struct vfsmount *m, struct dentry
  *dentry, char *esc);

This function can be used for outputting the file name associated with a given
directory entry. It is unlikely to be useful in device drivers; we have included it
here for completeness.

Getting back to our example; the show method used in scull is:

static int scull_seq_show(struct seq_file *s, void *v)
{
    struct scull_dev *dev = (struct scull_dev *) v;
    struct scull_qset *d;
    int i;

    if (down_interruptible(&dev->sem))
        return -ERESTARTSYS;
    seq_printf(s, "\nDevice %i: qset %i, q %i, sz %li\n",
            (int) (dev - scull_devices), dev->qset,
            dev->quantum, dev->size);
    for (d = dev->data; d; d = d->next) { /* scan the list */
        seq_printf(s, "  item at %p, qset at %p\n", d, d->data);
        if (d->data && !d->next) /* dump only the last item */
            for (i = 0; i < dev->qset; i++) {
                if (d->data[i])
                    seq_printf(s, "    % 4i: %8p\n",
                            i, d->data[i]);
            }
    }
    up(&dev->sem);
    return 0;
}

Here, we finally interpret our “iterator” value, which is simply a pointer to a scull_dev
structure.

Now that it has a full set of iterator operations, scull must package them up and
connect them to a file in /proc. The first step is done by filling in a seq_operations
structure:

static struct seq_operations scull_seq_ops = {
    .start = scull_seq_start,
    .next  = scull_seq_next,
    .stop  = scull_seq_stop,
    .show  = scull_seq_show
};

With that structure in place, we must create a file implementation that the kernel
understands. We do not use the read_proc method described previously; when using
seq_file, it is best to connect in to /proc at a slightly lower level. That means creat-
ing a file_operations structure (yes, the same structure used for char drivers) imple-
menting all of the operations needed by the kernel to handle reads and seeks on the
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file. Fortunately, this task is straightforward. The first step is to create an open
method that connects the file to the seq_file operations:

static int scull_proc_open(struct inode *inode, struct file *file)
{
    return seq_open(file, &scull_seq_ops);
}

The call to seq_open connects the file structure with our sequence operations
defined above. As it turns out, open is the only file operation we must implement
ourselves, so we can now set up our file_operations structure:

static struct file_operations scull_proc_ops = {
    .owner   = THIS_MODULE,
    .open    = scull_proc_open,
    .read    = seq_read,
    .llseek  = seq_lseek,
    .release = seq_release
};

Here we specify our own open method, but use the canned methods seq_read, seq_
lseek, and seq_release for everything else.

The final step is to create the actual file in /proc:

entry = create_proc_entry("scullseq", 0, NULL);
if (entry)
    entry->proc_fops = &scull_proc_ops;

Rather than using create_proc_read_entry, we call the lower-level create_proc_entry,
which has this prototype:

struct proc_dir_entry *create_proc_entry(const char *name,
                              mode_t mode,
                              struct proc_dir_entry *parent);

The arguments are the same as their equivalents in create_proc_read_entry: the name
of the file, its protections, and the parent directory.

With the above code, scull has a new /proc entry that looks much like the previous
one. It is superior, however, because it works regardless of how large its output
becomes, it handles seeks properly, and it is generally easier to read and maintain.
We recommend the use of seq_file for the implementation of files that contain more
than a very small number of lines of output.

The ioctl Method
ioctl, which we show you how to use in Chapter 1, is a system call that acts on a file
descriptor; it receives a number that identifies a command to be performed and
(optionally) another argument, usually a pointer. As an alternative to using the /proc
filesystem, you can implement a few ioctl commands tailored for debugging. These
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commands can copy relevant data structures from the driver to user space where you
can examine them.

Using ioctl this way to get information is somewhat more difficult than using /proc,
because you need another program to issue the ioctl and display the results. This pro-
gram must be written, compiled, and kept in sync with the module you’re testing.
On the other hand, the driver-side code can be easier than what is needed to imple-
ment a /proc file.

There are times when ioctl is the best way to get information, because it runs faster
than reading /proc. If some work must be performed on the data before it’s written to
the screen, retrieving the data in binary form is more efficient than reading a text file.
In addition, ioctl doesn’t require splitting data into fragments smaller than a page.

Another interesting advantage of the ioctl approach is that information-retrieval com-
mands can be left in the driver even when debugging would otherwise be disabled.
Unlike a /proc file, which is visible to anyone who looks in the directory (and too
many people are likely to wonder “what that strange file is”), undocumented ioctl
commands are likely to remain unnoticed. In addition, they will still be there should
something weird happen to the driver. The only drawback is that the module will be
slightly bigger.

Debugging by Watching
Sometimes minor problems can be tracked down by watching the behavior of an
application in user space. Watching programs can also help in building confidence
that a driver is working correctly. For example, we were able to feel confident about
scull after looking at how its read implementation reacted to read requests for differ-
ent amounts of data.

There are various ways to watch a user-space program working. You can run a
debugger on it to step through its functions, add print statements, or run the pro-
gram under strace. Here we’ll discuss just the last technique, which is most interest-
ing when the real goal is examining kernel code.

The strace command is a powerful tool that shows all the system calls issued by a
user-space program. Not only does it show the calls, but it can also show the argu-
ments to the calls and their return values in symbolic form. When a system call fails,
both the symbolic value of the error (e.g., ENOMEM) and the corresponding string (Out
of memory) are displayed. strace has many command-line options; the most useful of
which are -t to display the time when each call is executed, -T to display the time
spent in the call, -e to limit the types of calls traced, and -o to redirect the output to a
file. By default, strace prints tracing information on stderr.

strace receives information from the kernel itself. This means that a program can be
traced regardless of whether or not it was compiled with debugging support (the -g
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option to gcc) and whether or not it is stripped. You can also attach tracing to a run-
ning process, similar to the way a debugger can connect to a running process and
control it.

The trace information is often used to support bug reports sent to application devel-
opers, but it’s also invaluable to kernel programmers. We’ve seen how driver code
executes by reacting to system calls; strace allows us to check the consistency of
input and output data of each call.

For example, the following screen dump shows (most of) the last lines of running the
command strace ls /dev > /dev/scull0:

open("/dev", O_RDONLY|O_NONBLOCK|O_LARGEFILE|O_DIRECTORY) = 3
fstat64(3, {st_mode=S_IFDIR|0755, st_size=24576, ...}) = 0
fcntl64(3, F_SETFD, FD_CLOEXEC)         = 0
getdents64(3, /* 141 entries */, 4096)  = 4088
[...]
getdents64(3, /* 0 entries */, 4096)    = 0
close(3)                                = 0
[...]
fstat64(1, {st_mode=S_IFCHR|0664, st_rdev=makedev(254, 0), ...}) = 0
write(1, "MAKEDEV\nadmmidi0\nadmmidi1\nadmmid"..., 4096) = 4000
write(1, "b\nptywc\nptywd\nptywe\nptywf\nptyx0\n"..., 96) = 96
write(1, "b\nptyxc\nptyxd\nptyxe\nptyxf\nptyy0\n"..., 4096) = 3904
write(1, "s17\nvcs18\nvcs19\nvcs2\nvcs20\nvcs21"..., 192) = 192
write(1, "\nvcs47\nvcs48\nvcs49\nvcs5\nvcs50\nvc"..., 673) = 673
close(1)                                = 0
exit_group(0)                           = ?

It’s apparent from the first write call that after ls finished looking in the target direc-
tory, it tried to write 4 KB. Strangely (for ls), only 4000 bytes were written, and the
operation was retried. However, we know that the write implementation in scull
writes a single quantum at a time, so we could have expected the partial write. After
a few steps, everything sweeps through, and the program exits successfully.

As another example, let’s read the scull device (using the wc command):

[...]
open("/dev/scull0", O_RDONLY|O_LARGEFILE) = 3
fstat64(3, {st_mode=S_IFCHR|0664, st_rdev=makedev(254, 0), ...}) = 0
read(3, "MAKEDEV\nadmmidi0\nadmmidi1\nadmmid"..., 16384) = 4000
read(3, "b\nptywc\nptywd\nptywe\nptywf\nptyx0\n"..., 16384) = 4000
read(3, "s17\nvcs18\nvcs19\nvcs2\nvcs20\nvcs21"..., 16384) = 865
read(3, "", 16384)                      = 0
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...}) = 0
write(1, "8865 /dev/scull0\n", 17)      = 17
close(3)                                = 0
exit_group(0)                           = ?

As expected, read is able to retrieve only 4000 bytes at a time, but the total amount
of data is the same that was written in the previous example. It’s interesting to note
how retries are organized in this example, as opposed to the previous trace. wc is
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optimized for fast reading and, therefore, bypasses the standard library, trying to
read more data with a single system call. You can see from the read lines in the trace
how wc tried to read 16 KB at a time.

Linux experts can find much useful information in the output of strace. If you’re put
off by all the symbols, you can limit yourself to watching how the file methods (open,
read, and so on) work with the efile flag.

Personally, we find strace most useful for pinpointing runtime errors from system
calls. Often the perror call in the application or demo program isn’t verbose enough
to be useful for debugging, and being able to tell exactly which arguments to which
system call triggered the error can be a great help.

Debugging System Faults
Even if you’ve used all the monitoring and debugging techniques, sometimes bugs
remain in the driver, and the system faults when the driver is executed. When this
happens, it’s important to be able to collect as much information as possible to solve
the problem.

Note that “fault” doesn’t mean “panic.” The Linux code is robust enough to respond
gracefully to most errors: a fault usually results in the destruction of the current pro-
cess while the system goes on working. The system can panic, and it may if a fault
happens outside of a process’s context or if some vital part of the system is compro-
mised. But when the problem is due to a driver error, it usually results only in the
sudden death of the process unlucky enough to be using the driver. The only unre-
coverable damage when a process is destroyed is that some memory allocated to the
process’s context is lost; for instance, dynamic lists allocated by the driver through
kmalloc might be lost. However, since the kernel calls the close operation for any
open device when a process dies, your driver can release what was allocated by the
open method.

Even though an oops usually does not bring down the entire system, you may well
find yourself needing to reboot after one happens. A buggy driver can leave hardware
in an unusable state, leave kernel resources in an inconsistent state, or, in the worst
case, corrupt kernel memory in random places. Often you can simply unload your
buggy driver and try again after an oops. If, however, you see anything that suggests
that the system as a whole is not well, your best bet is usually to reboot immediately.

We’ve already said that when kernel code misbehaves, an informative message is
printed on the console. The next section explains how to decode and use such mes-
sages. Even though they appear rather obscure to the novice, processor dumps are
full of interesting information, often sufficient to pinpoint a program bug without the
need for additional testing.
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Oops Messages
Most bugs show themselves in NULL pointer dereferences or by the use of other incor-
rect pointer values. The usual outcome of such bugs is an oops message.

Almost any address used by the processor is a virtual address and is mapped to phys-
ical addresses through a complex structure of page tables (the exceptions are physi-
cal addresses used with the memory management subsystem itself). When an invalid
pointer is dereferenced, the paging mechanism fails to map the pointer to a physical
address, and the processor signals a page fault to the operating system. If the address
is not valid, the kernel is not able to “page in” the missing address; it (usually) gener-
ates an oops if this happens while the processor is in supervisor mode.

An oops displays the processor status at the time of the fault, including the contents
of the CPU registers and other seemingly incomprehensible information. The mes-
sage is generated by printk statements in the fault handler (arch/*/kernel/traps.c) and
is dispatched as described earlier in the section “printk.”

Let’s look at one such message. Here’s what results from dereferencing a NULL pointer
on a PC running Version 2.6 of the kernel. The most relevant information here is the
instruction pointer (EIP), the address of the faulty instruction.

Unable to handle kernel NULL pointer dereference at virtual address 00000000
 printing eip:
d083a064
Oops: 0002 [#1]
SMP
CPU:    0
EIP:    0060:[<d083a064>]    Not tainted
EFLAGS: 00010246   (2.6.6)
EIP is at faulty_write+0x4/0x10 [faulty]
eax: 00000000   ebx: 00000000   ecx: 00000000   edx: 00000000
esi: cf8b2460   edi: cf8b2480   ebp: 00000005   esp: c31c5f74
ds: 007b   es: 007b   ss: 0068
Process bash (pid: 2086, threadinfo=c31c4000 task=cfa0a6c0)
Stack: c0150558 cf8b2460 080e9408 00000005 cf8b2480 00000000 cf8b2460 cf8b2460
       fffffff7 080e9408 c31c4000 c0150682 cf8b2460 080e9408 00000005 cf8b2480
       00000000 00000001 00000005 c0103f8f 00000001 080e9408 00000005 00000005
Call Trace:
 [<c0150558>] vfs_write+0xb8/0x130
 [<c0150682>] sys_write+0x42/0x70
 [<c0103f8f>] syscall_call+0x7/0xb

Code: 89 15 00 00 00 00 c3 90 8d 74 26 00 83 ec 0c b8 00 a6 83 d0

This message was generated by writing to a device owned by the faulty module, a
module built deliberately to demonstrate failures. The implementation of the write
method of faulty.c is trivial:

ssize_t faulty_write (struct file *filp, const char __user *buf, size_t count,
        loff_t *pos)
{
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    /* make a simple fault by dereferencing a NULL pointer */
    *(int *)0 = 0;
    return 0;
}

As you can see, what we do here is dereference a NULL pointer. Since 0 is never a valid
pointer value, a fault occurs, which the kernel turns into the oops message shown
earlier. The calling process is then killed.

The faulty module has a different fault condition in its read implementation:

ssize_t faulty_read(struct file *filp, char __user *buf,
            size_t count, loff_t *pos)
{
    int ret;
    char stack_buf[4];

    /* Let's try a buffer overflow  */
    memset(stack_buf, 0xff, 20);
    if (count > 4)
        count = 4; /* copy 4 bytes to the user */
    ret = copy_to_user(buf, stack_buf, count);
    if (!ret)
        return count;
    return ret;
}

This method copies a string into a local variable; unfortunately, the string is longer
than the destination array. The resulting buffer overflow causes an oops when the
function returns. Since the return instruction brings the instruction pointer to
nowhere land, this kind of fault is much harder to trace, and you can get something
such as the following:

EIP:    0010:[<00000000>]
Unable to handle kernel paging request at virtual address ffffffff
 printing eip:
ffffffff
Oops: 0000 [#5]
SMP
CPU:    0
EIP:    0060:[<ffffffff>]    Not tainted
EFLAGS: 00010296   (2.6.6)
EIP is at 0xffffffff
eax: 0000000c   ebx: ffffffff   ecx: 00000000   edx: bfffda7c
esi: cf434f00   edi: ffffffff   ebp: 00002000   esp: c27fff78
ds: 007b   es: 007b   ss: 0068
Process head (pid: 2331, threadinfo=c27fe000 task=c3226150)
Stack: ffffffff bfffda70 00002000 cf434f20 00000001 00000286 cf434f00 fffffff7
       bfffda70 c27fe000 c0150612 cf434f00 bfffda70 00002000 cf434f20 00000000
       00000003 00002000 c0103f8f 00000003 bfffda70 00002000 00002000 bfffda70
Call Trace:
 [<c0150612>] sys_read+0x42/0x70
 [<c0103f8f>] syscall_call+0x7/0xb

Code:  Bad EIP value.
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In this case, we see only part of the call stack (vfs_read and faulty_read are missing),
and the kernel complains about a “bad EIP value.” That complaint, and the offend-
ing address (ffffffff) listed at the beginning are both hints that the kernel stack has
been corrupted.

In general, when you are confronted with an oops, the first thing to do is to look at
the location where the problem happened, which is usually listed separately from the
call stack. In the first oops shown above, the relevant line is:

EIP is at faulty_write+0x4/0x10 [faulty]

Here we see that we were in the function faulty_write, which is located in the faulty
module (which is listed in square brackets). The hex numbers indicate that the
instruction pointer was 4 bytes into the function, which appears to be 10 (hex) bytes
long. Often that is enough to figure out what the problem is.

If you need more information, the call stack shows you how you got to where things
fell apart. The stack itself is printed in hex form; with a bit of work, you can often
determine the values of local variables and function parameters from the stack list-
ing. Experienced kernel developers can benefit from a certain amount of pattern rec-
ognition here; for example, if we look at the stack listing from the faulty_read oops:

Stack: ffffffff bfffda70 00002000 cf434f20 00000001 00000286 cf434f00 fffffff7
       bfffda70 c27fe000 c0150612 cf434f00 bfffda70 00002000 cf434f20 00000000
       00000003 00002000 c0103f8f 00000003 bfffda70 00002000 00002000 bfffda70

The ffffffff at the top of the stack is part of our string that broke things. On the
x86 architecture, by default, the user-space stack starts just below 0xc0000000; thus,
the recurring value 0xbfffda70 is probably a user-space stack address; it is, in fact,
the address of the buffer passed to the read system call, replicated each time it is
passed down the kernel call chain. On the x86 (again, by default), kernel space starts
at 0xc0000000, so values above that are almost certainly kernel-space addresses, and
so on.

Finally, when looking at oops listings, always be on the lookout for the “slab poison-
ing” values discussed at the beginning of this chapter. Thus, for example, if you get a
kernel oops where the offending address is 0xa5a5a5a5, you are almost certainly for-
getting to initialize dynamic memory somewhere.

Please note that you see a symbolic call stack (as shown above) only if your kernel is
built with the CONFIG_KALLSYMS option turned on. Otherwise, you see a bare, hexa-
decimal listing, which is far less useful until you have decoded it in other ways.

System Hangs
Although most bugs in kernel code end up as oops messages, sometimes they can
completely hang the system. If the system hangs, no message is printed. For example,

,ch04.7697  Page 96  Friday, January 21, 2005  10:39 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Debugging System Faults | 97

if the code enters an endless loop, the kernel stops scheduling,* and the system doesn’t
respond to any action, including the magic Ctrl-Alt-Del combination. You have two
choices for dealing with system hangs—either prevent them beforehand or be able to
debug them after the fact.

You can prevent an endless loop by inserting schedule invocations at strategic points.
The schedule call (as you might guess) invokes the scheduler and, therefore, allows
other processes to steal CPU time from the current process. If a process is looping in
kernel space due to a bug in your driver, the schedule calls enable you to kill the pro-
cess after tracing what is happening.

You should be aware, of course, that any call to schedule may create an additional
source of reentrant calls to your driver, since it allows other processes to run. This
reentrancy should not normally be a problem, assuming that you have used suitable
locking in your driver. Be sure, however, not to call schedule any time that your
driver is holding a spinlock.

If your driver really hangs the system, and you don’t know where to insert schedule
calls, the best way to go may be to add some print messages and write them to the
console (by changing the console_loglevel value if need be).

Sometimes the system may appear to be hung, but it isn’t. This can happen, for
example, if the keyboard remains locked in some strange way. These false hangs can
be detected by looking at the output of a program you keep running for just this pur-
pose. A clock or system load meter on your display is a good status monitor; as long
as it continues to update, the scheduler is working.

An indispensable tool for many lockups is the “magic SysRq key,” which is available
on most architectures. Magic SysRq is invoked with the combination of the Alt and
SysRq keys on the PC keyboard, or with other special keys on other platforms (see
Documentation/sysrq.txt for details), and is available on the serial console as well. A
third key, pressed along with these two, performs one of a number of useful actions:

r Turns off keyboard raw mode; useful in situations where a crashed application
(such as the X server) may have left your keyboard in a strange state.

k Invokes the “secure attention key” (SAK) function. SAK kills all processes run-
ning on the current console, leaving you with a clean terminal.

s Performs an emergency synchronization of all disks.

u Umount. Attempts to remount all disks in a read-only mode. This operation,
usually invoked immediately after s, can save a lot of filesystem checking time in
cases where the system is in serious trouble.

* Actually, multiprocessor systems still schedule on the other processors, and even a uniprocessor machine
might reschedule if kernel preemption is enabled. For the most common case (uniprocessor with preemption
disabled), however, the system stops scheduling altogether.
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b Boot. Immediately reboots the system. Be sure to synchronize and remount the
disks first.

p Prints processor registers information.

t Prints the current task list.

m Prints memory information.

Other magic SysRq functions exist; see sysrq.txt in the Documentation directory of
the kernel source for the full list. Note that magic SysRq must be explicitly enabled in
the kernel configuration and that most distributions do not enable it, for obvious
security reasons. For a system used to develop drivers, however, enabling magic
SysRq is worth the trouble of building a new kernel in itself. Magic SysRq may be
disabled at runtime with a command such as the following:

echo 0 > /proc/sys/kernel/sysrq

You should consider disabling it if unprivileged users can reach your system key-
board, to prevent accidental or willing damages. Some previous kernel versions had
sysrq disabled by default, so you needed to enable it at runtime by writing 1 to that
same /proc/sys file.

The sysrq operations are exceedingly useful, so they have been made available to sys-
tem administrators who can’t reach the console. The file /proc/sysrq-trigger is a write-
only entry point, where you can trigger a specific sysrq action by writing the associ-
ated command character; you can then collect any output data from the kernel logs.
This entry point to sysrq is always working, even if sysrq is disabled on the console.

If you are experiencing a “live hang,” in which your driver is stuck in a loop but the
system as a whole is still functioning, there are a couple of techniques worth know-
ing. Often, the SysRq p function points the finger directly at the guilty routine. Fail-
ing that, you can also use the kernel profiling function. Build a kernel with profiling
enabled, and boot it with profile=2 on the command line. Reset the profile counters
with the readprofile utility, then send your driver into its loop. After a little while, use
readprofile again to see where the kernel is spending its time. Another more
advanced alternative is oprofile, that you may consider as well. The file
Documentation/basic_profiling.txt tells you everything you need to know to get
started with the profilers.

One precaution worth using when chasing system hangs is to mount all your disks as
read-only (or unmount them). If the disks are read-only or unmounted, there’s no
risk of damaging the filesystem or leaving it in an inconsistent state. Another possi-
bility is using a computer that mounts all of its filesystems via NFS, the network file
system. The “NFS-Root” capability must be enabled in the kernel, and special
parameters must be passed at boot time. In this case, you’ll avoid filesystem corrup-
tion without even resorting to SysRq, because filesystem coherence is managed by
the NFS server, which is not brought down by your device driver.
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Debuggers and Related Tools
The last resort in debugging modules is using a debugger to step through the code,
watching the value of variables and machine registers. This approach is time-con-
suming and should be avoided whenever possible. Nonetheless, the fine-grained per-
spective on the code that is achieved through a debugger is sometimes invaluable.

Using an interactive debugger on the kernel is a challenge. The kernel runs in its own
address space on behalf of all the processes on the system. As a result, a number of
common capabilities provided by user-space debuggers, such as breakpoints and sin-
gle-stepping, are harder to come by in the kernel. In this section we look at several
ways of debugging the kernel; each of them has advantages and disadvantages.

Using gdb
gdb can be quite useful for looking at the system internals. Proficient use of the
debugger at this level requires some confidence with gdb commands, some under-
standing of assembly code for the target platform, and the ability to match source
code and optimized assembly.

The debugger must be invoked as though the kernel were an application. In addition
to specifying the filename for the ELF kernel image, you need to provide the name of
a core file on the command line. For a running kernel, that core file is the kernel core
image, /proc/kcore. A typical invocation of gdb looks like the following:

gdb /usr/src/linux/vmlinux /proc/kcore

The first argument is the name of the uncompressed ELF kernel executable, not the
zImage or bzImage or anything built specifically for the boot environment.

The second argument on the gdb command line is the name of the core file. Like any
file in /proc, /proc/kcore is generated when it is read. When the read system call exe-
cutes in the /proc filesystem, it maps to a data-generation function rather than a data-
retrieval one; we’ve already exploited this feature in the section “Using the /proc
Filesystem” earlier in this chapter. kcore is used to represent the kernel “executable”
in the format of a core file; it is a huge file, because it represents the whole kernel
address space, which corresponds to all physical memory. From within gdb, you can
look at kernel variables by issuing the standard gdb commands. For example, p
jiffies prints the number of clock ticks from system boot to the current time.

When you print data from gdb, the kernel is still running, and the various data items
have different values at different times; gdb, however, optimizes access to the core
file by caching data that has already been read. If you try to look at the jiffies vari-
able once again, you’ll get the same answer as before. Caching values to avoid extra
disk access is a correct behavior for conventional core files but is inconvenient when
a “dynamic” core image is used. The solution is to issue the command core-file /proc/
kcore whenever you want to flush the gdb cache; the debugger gets ready to use a
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new core file and discards any old information. You won’t, however, always need to
issue core-file when reading a new datum; gdb reads the core in chunks of a few kilo-
bytes and caches only chunks it has already referenced.

Numerous capabilities normally provided by gdb are not available when you are
working with the kernel. For example, gdb is not able to modify kernel data; it
expects to be running a program to be debugged under its own control before play-
ing with its memory image. It is also not possible to set breakpoints or watchpoints,
or to single-step through kernel functions.

Note that, in order to have symbol information available for gdb, you must compile
your kernel with the CONFIG_DEBUG_INFO option set. The result is a far larger kernel
image on disk, but, without that information, digging through kernel variables is
almost impossible.

With the debugging information available, you can learn a lot about what is going on
inside the kernel. gdb happily prints out structures, follows pointers, etc. One thing
that is harder, however, is examining modules. Since modules are not part of the
vmlinux image passed to gdb, the debugger knows nothing about them. Fortunately,
as of kernel 2.6.7, it is possible to teach gdb what it needs to know to examine load-
able modules.

Linux loadable modules are ELF-format executable images; as such, they have been
divided up into numerous sections. A typical module can contain a dozen or more
sections, but there are typically three that are relevant in a debugging session:

.text
This section contains the executable code for the module. The debugger must
know where this section is to be able to give tracebacks or set breakpoints. (Nei-
ther of these operations is relevant when running the debugger on /proc/kcore,
but they can useful when working with kgdb, described below).

.bss

.data
These two sections hold the module’s variables. Any variable that is not initial-
ized at compile time ends up in .bss, while those that are initialized go into
.data.

Making gdb work with loadable modules requires informing the debugger about
where a given module’s sections have been loaded. That information is available in
sysfs, under /sys/module. For example, after loading the scull module, the directory
/sys/module/scull/sections contains files with names such as .text; the content of each
file is the base address for that section.

We are now in a position to issue a gdb command telling it about our module. The
command we need is add-symbol-file; this command takes as parameters the name
of the module object file, the .text base address, and a series of optional parameters
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describing where any other sections of interest have been put. After digging through
the module section data in sysfs, we can construct a command such as:

(gdb) add-symbol-file .../scull.ko 0xd0832000 \
-s .bss 0xd0837100 \

        -s .data 0xd0836be0

We have included a small script in the sample source (gdbline) that can create this
command for a given module.

We can now use gdb to examine variables in our loadable module. Here is a quick
example taken from a scull debugging session:

(gdb) add-symbol-file scull.ko 0xd0832000 \
-s .bss 0xd0837100 \

      -s .data 0xd0836be0
add symbol table from file "scull.ko" at
        .text_addr = 0xd0832000
        .bss_addr = 0xd0837100
        .data_addr = 0xd0836be0
(y or n) y
Reading symbols from scull.ko...done.
(gdb) p scull_devices[0]
$1 = {data = 0xcfd66c50,
      quantum = 4000,
      qset = 1000,
      size = 20881,
      access_key = 0,
      ...}

Here we see that the first scull device currently holds 20,881 bytes. If we wanted, we
could follow the data chain, or look at anything else of interest in the module.

One other useful trick worth knowing about is this:

(gdb) print *(address)

Here, fill in a hex address for address; the output is a file and line number for the
code corresponding to that address. This technique may be useful, for example, to
find out where a function pointer really points.

We still cannot perform typical debugging tasks like setting breakpoints or modify-
ing data; to perform those operations, we need to use a tool like kdb (described next)
or kgdb (which we get to shortly).

The kdb Kernel Debugger
Many readers may be wondering why the kernel does not have any more advanced
debugging features built into it. The answer, quite simply, is that Linus does not
believe in interactive debuggers. He fears that they lead to poor fixes, those which
patch up symptoms rather than addressing the real cause of problems. Thus, no
built-in debuggers.
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Other kernel developers, however, see an occasional use for interactive debugging
tools. One such tool is the kdb built-in kernel debugger, available as a nonofficial
patch from oss.sgi.com. To use kdb, you must obtain the patch (be sure to get a ver-
sion that matches your kernel version), apply it, and rebuild and reinstall the kernel.
Note that, as of this writing, kdb works only on IA-32 (x86) systems (though a ver-
sion for the IA-64 existed for a while in the mainline kernel source before being
removed).

Once you are running a kdb-enabled kernel, there are a couple of ways to enter the
debugger. Pressing the Pause (or Break) key on the console starts up the debugger.
kdb also starts up when a kernel oops happens or when a breakpoint is hit. In any
case, you see a message that looks something like this:

Entering kdb (0xc0347b80) on processor 0 due to Keyboard Entry
[0]kdb>

Note that just about everything the kernel does stops when kdb is running. Nothing
else should be running on a system where you invoke kdb; in particular, you should
not have networking turned on—unless, of course, you are debugging a network
driver. It is generally a good idea to boot the system in single-user mode if you will be
using kdb.

As an example, consider a quick scull debugging session. Assuming that the driver is
already loaded, we can tell kdb to set a breakpoint in scull_read as follows:

[0]kdb> bp scull_read
Instruction(i) BP #0 at 0xcd087c5dc (scull_read)
    is enabled globally adjust 1
[0]kdb> go

The bp command tells kdb to stop the next time the kernel enters scull_read. You
then type go to continue execution. After putting something into one of the scull
devices, we can attempt to read it by running cat under a shell on another terminal,
yielding the following:

Instruction(i) breakpoint #0 at 0xd087c5dc (adjusted)
0xd087c5dc scull_read:          int3

Entering kdb (current=0xcf09f890, pid 1575) on processor 0 due to
Breakpoint @ 0xd087c5dc
[0]kdb>

We are now positioned at the beginning of scull_read. To see how we got there, we
can get a stack trace:

[0]kdb> bt
    ESP    EIP        Function (args)
0xcdbddf74 0xd087c5dc [scull]scull_read
0xcdbddf78 0xc0150718 vfs_read+0xb8
0xcdbddfa4 0xc01509c2 sys_read+0x42
0xcdbddfc4 0xc0103fcf syscall_call+0x7
[0]kdb>
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kdb attempts to print out the arguments to every function in the call trace. It gets
confused, however, by optimization tricks used by the compiler. Therefore, it fails to
print the arguments to scull_read.

Time to look at some data. The mds command manipulates data; we can query the
value of the scull_devices pointer with a command such as:

[0]kdb> mds scull_devices 1
0xd0880de8 cf36ac00    ....

Here we asked for one (4-byte) word of data starting at the location of scull_devices;
the answer tells us that our device array is at the address 0xd0880de8; the first device
structure itself is at 0xcf36ac00. To look at that device structure, we need to use that
address:

[0]kdb> mds cf36ac00
0xcf36ac00 ce137dbc ....
0xcf36ac04 00000fa0 ....
0xcf36ac08 000003e8 ....
0xcf36ac0c 0000009b ....
0xcf36ac10 00000000 ....
0xcf36ac14 00000001 ....
0xcf36ac18 00000000 ....
0xcf36ac1c 00000001 ....

The eight lines here correspond to the beginning part of the scull_dev structure.
Therefore, we see that the memory for the first device is allocated at 0xce137dbc, the
quantum is 4000 (hex fa0), the quantum set size is 1000 (hex 3e8), and there are cur-
rently 155 (hex 9b) bytes stored in the device.

kdb can change data as well. Suppose we wanted to trim some of the data from the
device:

[0]kdb> mm cf26ac0c 0x50
0xcf26ac0c = 0x50

A subsequent cat on the device will now return less data than before.

kdb has a number of other capabilities, including single-stepping (by instructions, not
lines of C source code), setting breakpoints on data access, disassembling code, step-
ping through linked lists, accessing register data, and more. After you have applied the
kdb patch, a full set of manual pages can be found in the Documentation/kdb direc-
tory in your kernel source tree.

The kgdb Patches
The two interactive debugging approaches we have looked at so far (using gdb on
/proc/kcore and kdb) both fall short of the sort of environment that user-space appli-
cation developers have become used to. Wouldn’t it be nice if there were a true
debugger for the kernel that supported features like changing variables, breakpoints,
etc.?
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As it turns out, such a solution does exist. There are, as of this writing, two separate
patches in circulation that allow gdb, with full capabilities, to be run against the ker-
nel. Confusingly, both of these patches are called kgdb. They work by separating the
system running the test kernel from the system running the debugger; the two are
typically connected via a serial cable. Therefore, the developer can run gdb on his or
her stable desktop system, while operating on a kernel running on a sacrificial test
box. Setting up gdb in this mode takes a little time at the outset, but that investment
can pay off quickly when a difficult bug shows up.

These patches are in a strong state of flux, and may even be merged at some point, so
we avoid saying much about them beyond where they are and their basic features.
Interested readers are encouraged to look and see the current state of affairs.

The first kgdb patch is currently found in the -mm kernel tree—the staging area for
patches on their way into the 2.6 mainline. This version of the patch supports the
x86, SuperH, ia64, x86_64, SPARC, and 32-bit PPC architectures. In addition to the
usual mode of operation over a serial port, this version of kgdb can also communi-
cate over a local-area network. It is simply a matter of enabling the Ethernet mode
and booting with the kgdboe parameter set to indicate the IP address from which
debugging commands can originate. The documentation under Documentation/i386/
kgdb describes how to set things up.*

As an alternative, you can use the kgdb patch found on http://kgdb.sf.net/. This ver-
sion of the debugger does not support the network communication mode (though
that is said to be under development), but it does have some built-in support for
working with loadable modules. It supports the x86, x86_64, PowerPC, and S/390
architectures.

The User-Mode Linux Port
User-Mode Linux (UML) is an interesting concept. It is structured as a separate port
of the Linux kernel with its own arch/um subdirectory. It does not run on a new type
of hardware, however; instead, it runs on a virtual machine implemented on the
Linux system call interface. Thus, UML allows the Linux kernel to run as a separate,
user-mode process on a Linux system.

Having a copy of the kernel running as a user-mode process brings a number of
advantages. Because it is running on a constrained, virtual processor, a buggy kernel
cannot damage the “real” system. Different hardware and software configurations can
be tried easily on the same box. And, perhaps most significantly for kernel develop-
ers, the user-mode kernel can be easily manipulated with gdb or another debugger.

* It does neglect to point out that you should have your network adapter driver built into the kernel, however,
or the debugger fails to find it at boot time and will shut itself down.
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After all, it is just another process. UML clearly has the potential to accelerate kernel
development.

However, UML has a big shortcoming from the point of view of driver writers: the
user-mode kernel has no access to the host system’s hardware. Thus, while it can be
useful for debugging most of the sample drivers in this book, UML is not yet useful
for debugging drivers that have to deal with real hardware.

See http://user-mode-linux.sf.net/ for more information on UML.

The Linux Trace Toolkit
The Linux Trace Toolkit (LTT) is a kernel patch and a set of related utilities that
allow the tracing of events in the kernel. The trace includes timing information and
can create a reasonably complete picture of what happened over a given period of
time. Thus, it can be used not only for debugging but also for tracking down perfor-
mance problems.

LTT, along with extensive documentation, can be found at http://www.opersys.com/LTT.

Dynamic Probes
Dynamic Probes (or DProbes) is a debugging tool released (under the GPL) by IBM
for Linux on the IA-32 architecture. It allows the placement of a “probe” at almost
any place in the system, in both user and kernel space. The probe consists of some
code (written in a specialized, stack-oriented language) that is executed when con-
trol hits the given point. This code can report information back to user space, change
registers, or do a number of other things. The useful feature of DProbes is that once
the capability has been built into the kernel, probes can be inserted anywhere within
a running system without kernel builds or reboots. DProbes can also work with the
LTT to insert new tracing events at arbitrary locations.

The DProbes tool can be downloaded from IBM’s open source site: http://oss.soft-
ware.ibm.com.
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