Question	Scheme	Marks	AOs
1	Attempts either $\sin 3 \theta \approx 3 \theta$ or $\cos 4 \theta \approx 1-\frac{(4 \theta)^{2}}{2}$ in $\frac{1-\cos 4 \theta}{2 \theta \sin 3 \theta}$	M 1	1.1 b
	Attempts both $\sin 3 \theta \approx 3 \theta$ and $\cos 4 \theta \approx 1-\frac{(4 \theta)^{2}}{2} \rightarrow \frac{1-\left(1-\frac{(4 \theta)^{2}}{2}\right)}{2 \theta \times 3 \theta}$	M1	2.1
	and attempts to simplify	A1	1.1 b

M1: Attempts either $\sin 3 \theta \approx 3 \theta$ or $\cos 4 \theta \approx 1-\frac{(4 \theta)^{2}}{2}$ in the given expression.
See below for description of marking of $\cos 4 \theta$
M1: Attempts to substitute both $\sin 3 \theta \approx 3 \theta$ and $\cos 4 \theta \approx 1-\frac{(4 \theta)^{2}}{2}$

$$
\rightarrow \frac{1-\left(1-\frac{(4 \theta)^{2}}{2}\right)}{2 \theta \times 3 \theta} \text { and attempts to simplify. }
$$

Condone missing bracket on the 4θ so $\cos 4 \theta \approx 1-\frac{4 \theta^{2}}{2}$ would score the method
Expect to see it simplified to a single term which could be in terms of θ
Look for an answer of k but condone $k \theta$ following a slip
A1: Uses both identities and simplifies to $\frac{4}{3}$ or exact equivalent with no incorrect lines BUT allow recovery on missing bracket for $\cos 4 \theta \approx 1-\frac{4 \theta^{2}}{2}$.
Eg. $\frac{1-\left(1-\frac{(4 \theta)^{2}}{2}\right)}{2 \theta \times 3 \theta}=\frac{8 \theta^{2}}{6 \theta}=\frac{4}{3}$ is M1 M1 A0
Condone awrt 1.33.
Alt: $\frac{1-\cos 4 \theta}{2 \theta \sin 3 \theta}=\frac{1-\left(1-2 \sin ^{2} 2 \theta\right)}{2 \theta \sin 3 \theta}=\frac{2 \sin ^{2} 2 \theta}{2 \theta \sin 3 \theta}=\frac{2 \times(2 \theta)^{2}}{2 \theta \times 3 \theta}=\frac{4}{3}$
M1 For an attempt at $\sin 3 \theta \approx 3 \theta$ or the identity $\cos 4 \theta=1-2 \sin ^{2} 2 \theta$ with $\sin 2 \theta \approx 2 \theta$
M1 For both of the above and attempts to simplify to a single term.
A1 $\frac{4}{3}$ oe

