
 
 
 
 
 
 
 

Part 4: Lagrangian Mechanics In Action
 
 
 
 

 
In this part, we'll finally get to what this book is actually about - Lagrangian mechanics. 
We'll be discussing all the basics of Lagrangian mechanics and how to use it, including 
generalized coordinates, generalized momenta and constraints.
 
This part will cover most of the things you need to know about Lagrangian mechanics, 
as well as some examples - lots of examples - to illustrate the points. You'll find more 
applications also in Part 7. In the next part, on the other hand, we'll dive much deeper 
into some of the more theoretical aspects of the Lagrangian formulation.
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1. Review of The Lagrangian Formulation
 
 
I want to first provide a quick reminder of what Lagrangian mechanics is actually all 
about. A more detailed "overview" is found back in Part 2.
 
As we discussed previously, Lagrangian mechanics is all about describing motion and 
finding equations of motion by analyzing the kinetic and potential energies in a system. 
We do this by first and foremost, constructing a Lagrangian for the system.
 
The Lagrangian is a function that encodes all the dynamics of a system locally, at each 
point in time. In classical mechanics, the Lagrangian is given by the difference in kinetic 
and potential energy.
 

The Lagrangian:
 

L = T - V

 

In the above,  is the (total) kinetic energy of the system and  is the (total) T = mv
1

2

2 V

potential energy of the system, typically taken to be a function of position.
 
We then describe the motion (time evolution) of a system by constructing an action out 
of the Lagrangian. The action describes the entire trajectory of a system through time 

and is given by a functional .S = Ldt∫
t2

t1

 
The real, physical trajectory the system takes through time is the one in which the 
action has a stationary value.
 
In the previous part, we discussed how we can find the stationary "points" of 
functionals, which requires the condition that . This is called the principle of δS = 0
stationary action.
 
Then, by applying the tools of variational calculus like we did in the previous part, we 



can arrive at an equation that describes the condition the action and thus, also the 
Lagrangian has to satisfy in order to be stationary. This is the Euler-Lagrange 
equation.
 

The Euler-Lagrange equation:
 

- = 0
d

dt

∂L

∂ ␒qi

∂L

∂qi

 
The Euler-Lagrange equation is what gives us the equations of motion for a system, 
any system in fact. This is the central equation in Lagrangian mechanics that we'll be 
using all throughout the rest of this book.
 
Now, so far, everything has been very theoretical and in my opinion, the best way to 
understanding theoretical concepts is by applying them in practice, as counter-intuitive 
as that may sound.
 
Therefore, we need to look at some examples to see how all of this actually works. 
Before we understand how to use Lagrangian mechanics in practice, we cannot dive 
into any of the more advanced and interesting topics like Noether's theorem.
 
However, there is just one more thing to discuss first and these are called generalized 
coordinates - they are the 's you see above. These are what we use to describe any qi

system and how the system evolves in time.
 
 

2. Generalized Coordinates
 
 

Solving a problem in Lagrangian mechanics always begins by choosing how to 
describe the system of interest. This is done by choosing a set of variables - 
coordinates - to describe the system in.
 
In the Lagrangian formulation, there isn't really any preferred coordinate systems. In 
contrast, we saw previously that working with Newton's laws in any coordinate system 
other than the Cartesian system can often get cumbersome.
 
This is indeed one of the greatest advantages of Lagrangian mechanics - being able to 
choose any variable as a coordinate to describe a system in.
 
We could, for example, pick an angle as our coordinate in a problem involving 



rotational motion or choose our coordinates to be some relative distances between two 
objects. We can even go as far as choosing the electric charge as a "coordinate" to 
describe an electric circuit - the point is that we can pick anything we like as a 
coordinate in the Lagrangian formulation.
 
The beautiful thing about Lagrangian mechanics is that the problem solving methods 
work exactly the same, no matter what coordinates you wish to use. This is because 
the Euler-Lagrange equation has the same form in ALL coordinate system - unlike 
Newton's second law, .F = ma
 
Now, we call the set of coordinates needed to describe a system generalized 
coordinates.
 
Simply put, generalized coordinates are a set of parameters that completely specify the 
configuration of a system at each point in time. Generalized coordinates are used to 
derive the equations of motion for the system, which then determine how the 
coordinates change as functions of time - describing all the dynamics of the system.
 
The “configuration” of a system is just a fancy way of saying the coordinates of each 
object in the system.
 
Generalized coordinates are typically denoted by , where the -index refers to how qi i
many coordinates we have - , ,  and so on. For a dynamic system, these are q1 q2 q3

going to be functions of time.
 
The equations of motion for a system are then obtained from the Euler-Lagrange 
equations, which there are always one of for each generalized coordinate. So, a 
system with two generalized coordinates,  and , has two Euler-Lagrange q1 q2

equations, resulting in two equations of motion that describe the system (one for each 
coordinate):
 

  and  - = 0
d

dt

∂L

∂ ␒q1

∂L

∂q1

- = 0
d

dt

∂L

∂ ␒q2

∂L

∂q2

 
The 's here are the time derivatives of the generalized coordinates, in other words, the ␒q
coordinate velocities (sometimes also called generalized velocities).
 
We then have to solve both of the equations of motion to find how the system as a 
whole evolves in time.
 
Now, the ability to pick generalized coordinates certainly sounds like a convenience in 
favor of the Lagrangian formulation, but is it actually useful in practice? In other words, 



couldn't we just always choose Cartesian  -coordinates to describe any system x, y, z
in and be done with it?
 
Well, the answer is yes, pretty much any system can be described using Cartesian 
coordinates, but it's definitely NOT always going to be the most practical choice. Here 
are just a few reasons why:
 

• Generalized coordinates can be chosen to implicitly encode all information about 
the constraints in a system (for example, by choosing polar coordinates (  and r

) for a pendulum, we could automatically include the fact that the pendulum 𝜃
moves in a circle; using only Cartesian coordinates, you’d have to impose certain 
constraints on the system).
 

• The "correct" choice of generalized coordinates can reduce the number of 
equations needed to solve a specific problem (as an example, choosing only an 
angle  for a pendulum would be enough to find the equations of motion, while in 𝜃

Cartesian coordinates, you’d need both the  and  -coordinates).x y
 

• Choosing the "correct" set of generalized coordinates often allows us to find 
conserved quantities in a given system quite easily.
 

• Generalized coordinates allow different dynamical quantities to be expressed 
easily in a more general form (such as generalized momentum and generalized 
forces).

 
In particular, the first and third points here are what really make the use of generalized 
coordinates stand out compared to standard Newtonian mechanics.
 
When using Newton’s laws, whenever we want to constrain a system to behave in a 
certain way, we have to add in constraint forces that “force” the system to behave in 
exactly the way we want it to.
 
However, when using generalized coordinates, we do not have to add in these 
constraints by hand; we can, in most cases, choose our generalized coordinates in 
such a way that they already include the constraints - we essentially eliminate the need 
for any constraint forces.
 
Also, the other nice thing is that we can tell directly by looking at the Lagrangian which 
generalized coordinates have an associated conserved quantity by finding so-called 
cyclic coordinates (we'll talk about this more in the next part). This simply wouldn't be 
possible in Newtonian mechanics.
 
 



2.1. How To Choose Generalized Coordinates

 
But how do we know which generalized coordinates to choose? Well, the simple 
answer is that it depends on the system at hand.
 
Just to be clear, ANY set of generalized coordinates will work (granted that these 
coordinates are actually sufficient for describing the system), but choosing the "correct" 
ones may be the difference between making a problem extremely complicated or 
making a problem seem almost too easy.
 
This is largely because generalized coordinates are never unique, meaning that there 
are always multiple “correct” choices of coordinates for any given problem.
 
Actually, pretty much any set of coordinates that satisfy the constraints of the problem 
will be valid choices of generalized coordinates. This is the power of Lagrangian 
mechanics.
 
The topic of actually finding suitable generalized coordinates for a given system is a 
little tricky and that’s simply because there isn’t really a general method to do it.
 
In other words, finding generalized coordinates for a system is done on a case-by-case 
basis and it will be different for different problems. Picking the right coordinates from 
the get-go requires intuition that only comes from practice.
 
Now, there are still patterns and certain “rules-of-thumb” that you can use when finding 
generalized coordinates:
 

1. It’s often worthwhile to look at symmetries in a given system as this allows you 
to quickly figure out which generalized coordinates may be suitable:
 

– For spherically symmetric problems in 3D, spherical coordinates (radial 
distance  and two angles,  and ) are often the best choice, such as in r 𝜃 𝜑
the case of a potential that only depends on the radial distance.

– Equivalently, for rotational symmetry in 2D, polar coordinates (  and ) are r 𝜃
often suitable.

– For axisymmetric problems (symmetry about one particular axis), cylindrical 
coordinates will often be the easiest to use.
 

2. For systems with multiple objects, using relative distances between the 
objects as generalized coordinates will often work well. An example of this is the 
two-body problem (which we'll look at in another part).
 

3. Some helpful questions you may want to think about when choosing 



generalized coordinates are:
 

– What variables are actually changing in the system? A generalized 
coordinate needs to be something dynamical, something that is changing 
with time and needs to have a time derivative.

– Are the coordinates consistent with the specific constraints of the 
problem? In other words, do the coordinates already include the 
constraints? If not, use different coordinates or add the constraints in by 
hand (with Lagrange multipliers).

– Are the coordinates you’re choosing enough to determine the 
positions of all objects in the system? You generally need as many 
generalized coordinates as there are degrees of freedom in the system.

 
Often, the best place to begin is simply going to be to figure out how many generalized 
coordinates you’ll need for the given problem in the first place. Luckily, this is quite 
simple.
 
The number of degrees of freedom in any given system (i.e. the minimum number of 
variables needed to describe the system) can be calculated by the formula , DN - c
where  is the number of spacial dimensions (1, 2 or 3),  is the number of objects in D N
the system and  is the number of constraints.c
 
The minimum number of independent generalized coordinates you’ll need is then the 
same as the number of degrees of freedom in the system.
 
For example, in the case of one object in 2D circular motion, we have ,  D = 2 N = 1

and  (there is one constraint, which is that the radius of the circle has to be c = 1

constant), so we would need  generalized coordinates (the natural choice 2 · 1 - 1 = 1
in this case would be an angle due to rotational symmetry).
 
Above, I mentioned independent generalized coordinates. Generalized coordinates do 
not necessarily have to be independent. For example, if certain constraints are 
included in a system, the generalized coordinates can depend on one another.
 
However, the degrees of freedom in a system always corresponds to the minimum 
number of independent generalized coordinates.
 
Now, once you have figured out the generalized coordinates you should use, what do 
you actually do with them in practice?
 
Perhaps the best tip I could give you here that I do pretty much 100% of the time is to 
begin by writing down the Cartesian coordinates of each object in the system in 
terms of these generalized coordinates (I’ll show examples of this later).



 
This is almost always the easiest way to find the Lagrangian, because when you have 
the  -coordinates in terms of the generalized coordinates, all you do is take the x, y, z
time derivatives of these and then construct the total kinetic energy (and likewise for 
the total potential energy) by the formula:
 

T = m + +
1

2
∑

 

N

N ␒x2
N ␒y2

N ␒z2
N

 
This  here denotes the number of objects in the system, so you have to sum over the N
kinetic energies of all the objects.
 
This will automatically give you the correct kinetic energy (and potential energy) in 
terms of your generalized coordinates, instead of trying to find the correct expressions 
for these without first referencing Cartesian coordinates. The rest is then just 
constructing the Lagrangian and applying the Euler-Lagrange equations.
 
Now, since generalized coordinates can be almost anything we wish, what about their 
dimensions or units?
 
In principle, generalized coordinates can have any dimensions. For example, choosing 
the radial distance as a generalized coordinate will have dimensions of length, but an 
angle as a generalized coordinate will be dimensionless.
 
If you simply use the method of first expressing the Cartesian coordinates of everything 
in the system in terms of the generalized coordinates, this will ensure you always get 
the correct units in the Lagrangian.
 
 

3. Simple Example Systems
 
Let's now take a look at various examples to illustrate the process of using Lagrangian 
mechanics! The basic step-by-step framework we'll use for solving a problem in 
Lagrangian mechanics is more or less as follows:
 

1. Find a set of suitable generalized coordinates for the problem. These might 
be the usual Cartesian coordinates ( , , ), but it is also possible to use x y z
coordinate systems such as spherical coordinates ( , , ).r 𝜃 𝜑

 
 
 
 



2. Write down the Lagrangian in terms of the generalized coordinates. The 
Lagrangian will be the difference between the kinetic and potential energies of 
each object in the system:
 

, where  is the number of objects in the system.L = m v - V
1

2
∑

 

N

N
2
N

∑
 

N

N N

 
Note; in most cases, it's easier to first express the Lagrangian in Cartesian 
coordinates and then transform to whatever generalized coordinates you’re 
using!

 
3. Apply the Euler-Lagrange equations to the Lagrangian. You’ll have one Euler-

Lagrange equation for each coordinate you’ve chosen for the system.
 

4. Simplify and solve the equations of motion. At this point, you should have 
one second order differential equation for each coordinate.

 
 

3.1. Projectile Motion
 
Let's begin with something very simple - projectile motion! We already saw how this is 
solved using Newtonian mechanics, but let's now see how it's done in the Lagrangian 
framework.
 
It's easiest to describe the projectile using the ,  -Cartesian coordinate system here. x y
These will also be our generalized coordinates, so we have  and .q = x1 q = y2

 
These are enough to describe the position of the projectile at all times, since we have 

 degrees of freedom (two dimensions with one object and no constraints) 2 · 1 - 0 = 2
and thus, we need two generalized coordinates in total.
 
The projectile is under a constant acceleration, , in the downwards -direction:g y
 



 
We can desribe the projectile's potential energy as  (just the basic formula V = mgh
for gravitational potential energy), where the height of the projectile is the -coordinate, y

.h = y
 
The kinetic energy of the projectile in terms of our generalized coordinates is simply 
going to be:
 

T = mv = m +
1

2

2 1

2
␒x2 ␒y2

 
Here,  and  are the time derivatives of the coordinates, which are simply the ␒x ␒y
components of the projectile's velocity. The Lagrangian for the projectile is then:
 

L = T - V = m + - mgy
1

2
␒x2 ␒y2

 
This is our full Lagrangian describing this problem in terms of the generalized 
coordinates  and .x y
 
Now, we'll have two Euler-Lagrange equations, one for each coordinate here. The first 
one will be for :q = x1

 

- = 0
d

dt

∂L

∂ ␒x

∂L

∂x
 
Plugging the Lagrangian into this and calculating these partial derivatives, we get (note 
that we treat  and  as independent variables here, just like we treated  and  back x ␒x y y'
when doing variational calculus):
 



 

m + - mgy - m + - mgy = 0
d

dt

∂

∂ ␒x

1

2
␒x2 ␒y2 ∂

∂x

1

2
␒x2 ␒y2

⇒   m · 2 - 0 = 0
d

dt

1

2
␒x

⇒   m = 0
d

dt
( ␒x)

⇒   m = 0␒␒x
⇒   = 0␒␒x

 
This is the equation of motion for the -coordinate, telling us that there is no x
acceleration in the -direction as expected. This equation of motion has the solution x

 as we saw back in Part 1.x t = v t + x( ) 0x 0

 
Notice that the Lagrangian did not depend on the -coordinate explicitly, which resulted x
in the -acceleration being zero here - the same as  being constant. This is an x m ␒x
example of a cyclic coordinate, but we'll come back to this later.
 
Now, we also have an Euler-Lagrange equation for the -coordinate and plugging the y
Lagrangian into this, we get:
 

- = 0
d

dt

∂L

∂ ␒y

∂L

∂y

⇒   m + - mgy - m + - mgy = 0
d

dt

∂

∂ ␒y

1

2
␒x2 ␒y2

∂

∂y

1

2
␒x2 ␒y2

⇒   m · 2 - -mg = 0
d

dt

1

2
␒y ( )

⇒   m + mg = 0
d

dt
( ␒y)

⇒   m + mg = 0␒␒y
⇒   = - g␒␒y

 
So, as expected, we get the equation of motion of the -coordinate which tells us that y
the -acceleration is . This equation of motion, of course, has the solution y -g

.y t = y + v t - gt( ) 0 0y
1

2

2

 
 
 



 
Perhaps after this example, you're wondering "how is this any better than Newtonian 
mechanics?". Well, the answer is that it isn't any better. For the simplest possible 
systems like this one, Lagrangian mechanics won't be any better than Newtonian 
mechanics.
 
However, as we will see soon with the pendulum example, the Lagrangian approach 
will turn out much more straightforward than what we had to do with Newtonian 
mechanics.
 
The point is that Lagrangian mechanics only really starts to show its power over the 
Newtonian formulation for more complicated systems and especially for systems that 
are more suitable to describe in coordinates other than the Cartesian coordinate 
system.
 
 

3.2. Simple Pendulum

 
As a quick reminder, the simple pendulum consists of a mass at the end of a rigid rod 
that's swinging back and forth in a plane under the influence of gravity (a constant 
acceleration  pointing downwards). The mass of the "pendulum bob" is  and the g m
length of the rod .l
 
We'll begin by placing the pendulum in an ,  -coordinate system. Now, while you x y
could pick the - and  -coordinates of the bob as your generalized coordinates, this is x y
not going to be the best choice. The reason for this is that there is a constraint (the 
length of the rod, i.e. distance from the origin, is a constant ) and describing this l
constraint in Cartesian coordinates is a bit cumbersome.
 
If we calculate the degrees of freedom in this system, we have two spacial dimensions, 
one object and one constraint, so  degree of freedom. Therefore, we only 2 · 1 - 1 = 1
actually need one generalized coordinate to fully describe this pendulum.
 
Since this is a rotational motion problem, polar coordinates are naturally going to be the 
most convenient choice. Moreover, since the distance to the origin is constant at all 
times, we have  and indeed, the polar angle  (which is a function of time) will be r = l 𝜃
enough to determine the position of the pendulum at all times.
 
We will therefore pick  as our generalized coordinate for this problem:𝜃 t( )
 



 
Now, how do we then get the kinetic and potential energies of the pendulum bob in 
polar coordinates? Well, like I stated earlier, the easiest course of action is most often 
to first express everything in Cartesian coordinates and then transform the expressions 
to be in terms of our generalized coordinate .𝜃
 
The relationship between the Cartesian coordinates of the bob and the polar 
coordinates  and  are given by (see the Appendices for more on this):r 𝜃
 

 
Notice that the -coordinate has a negative value here. Now, since the radial distance y
is a constant, we have  and the coordinates of the bob are given by:r = l
 



x = l 𝜃sin

y = -l 𝜃cos
 
Now, constructing the kinetic and potential energies from these relations is very easy. 
We know that the kinetic energy in Cartesian coordinates is given by:
 

T = m +
1

2
␒x2 ␒y2

 
All we do is take the time derivatives of the expressions above and plug them into here. 
So, let's do that (note that we have to use the chain rule here since  depends on time):𝜃
 

= l 𝜃   ⇒   = l 𝜃␒x
d

dt
( sin ) ␒x ␒𝜃 cos

= -l 𝜃   ⇒   = l 𝜃␒y
d

dt
( cos ) ␒y ␒𝜃 sin

 
These are the coordinate velocities in terms of the generalized coordinate . Plugging 𝜃
these into the kinetic energy formula, we have:
 

T = m +
1

2
␒x2 ␒y2

= m l 𝜃 + l 𝜃
1

2

2 ␒𝜃2 cos2 2 ␒𝜃2 sin2

= ml 𝜃 + 𝜃
1

2

2 ␒𝜃2 cos2 sin2

= ml
1

2

2 ␒𝜃2

 

Here, we've used the fact that . This is the kinetic energy of the 𝜃 + 𝜃 = 1cos2 sin2

pendulum bob, expressed in terms of our generalized coordinate .𝜃
 
Now, the potential energy of the bob is simply the usual gravitational potential energy 

. The height  here is just the -coordinate of the bob, which is given by V = mgh h y
 in terms of the generalized coordinate . So, the potential energy is:y = -l 𝜃cos 𝜃

 
V = -mgl 𝜃cos
 
We then have all the pieces we need to construct the Lagrangian for the pendulum bob:
 



L = T - V = ml + mgl 𝜃
1

2

2 ␒𝜃2 cos

 
This is the Lagrangian for this system in terms of our generalized coordinate . Since 𝜃
we have only one coordinate here, we also have just one Euler-Lagrange equation - an 
equation for the coordinate , of course:𝜃
 

- = 0
d

dt

∂L

∂ ␒𝜃

∂L

∂𝜃
 
Plugging in the Lagrangian, we get:
 

ml + mgl 𝜃 - ml + mgl 𝜃 = 0
d

dt

∂

∂ ␒𝜃

1

2

2 ␒𝜃2 cos
∂

∂𝜃

1

2

2 ␒𝜃2 cos

⇒   ml · 2 - mgl 𝜃 = 0
d

dt

1

2

2 ␒𝜃
∂

∂𝜃
(cos )

⇒   ml - mgl - 𝜃 = 02 d

dt
( ␒𝜃) ( sin )

⇒   ml + mgl 𝜃 = 02 ␒␒𝜃 sin
 
Moving the -term to the right and dividing by , we get the final equation of 𝜃sin ml2

motion:
 

= - 𝜃␒␒𝜃
g

l
sin

 
We already discussed some of the implications of this equation and how to solve it 
using a linear appoximation back in Part 1, so we won't go over it again.
 
The main point here is... look how easy it was to obtain this compared to using 

! We didn't have to deal with any time derivatives of basis vectors or any other F = ma
complicated vector stuff - all we did was construct the Lagrangian in terms of the 
coordinate  and the equation of motion popped out automatically.𝜃
 
Now, you may wonder what happened to the constraint force (tension) we had to 
introduce when using Newton's laws. Well, we didn't need it at all. This is because we 
already chose our coordinates (namely, the -coordinate) such that the constraint - the r
length of the rod remaining a constant  - was satisfied right from the beginning.l
 
This illustrates the power of generalized coordinates - if we choose them right, we can 



implicitly encode any constraints into them and get the equations of motion with very 
little work compared to using Newton's laws and having to include constraint forces.
 
Now, if you wanted to find what the tension force is using Lagrangian mechanics, that's 
also possible (but again, not necessary if we do not care about it) using the Lagrange 
multiplier method. We'll discuss this later.
 
I really hope this example showed you the power of Lagrangian mechanics. However, 
this was only the start - it gets even better for much more complicated systems, such 
as a three-dimensional pendulum. Good luck working that one out using !F = ma
 
 

3.3. Spherical Pendulum
 
Our next example will be quite a bit more complicated. This one will hopefully illustrate 
the power of Lagrangian mechanics even better.
 
Now, this example will be a pendulum (mass  and length  again), but one that is now m l
allowed to swing not just in a plane, but in all three dimensions. We call this a spherical 
pendulum. The motion of the pendulum bob can get very complicated, but also has 
some interesting properties.
 
We'll first derive the equations of motion for the spherical pendulum and after that, we'll 
do some analysis of its motion.
 
To begin with, we can once again, describe the position of the mass  by placing the m
pendulum in a Cartesian coordinate system (this time a 3D coordinate system with the 

-, - and -axes):x y z
 



 
Now, Cartesian coordinates are certainly not the best choice here. Let's think about the 
degrees of freedom we have in this system. We have one object in three dimensions 
with one constraint (the distance to the origin has to be a constant  again), so l

 degrees of freedom. So, we need two generalized coordinates.3 · 1 - 1 = 2
 
The natural choice here will be a spherical coordinate system (with a radial distance  r
and two angles,  and ) due to the rotational nature of the pendulum.𝜃 𝜙
 
We will choose the two angles,  and , as our generalized coordinates (see picture 𝜃 𝜙
below). These are indeed the only necessary coordinates we need to specify the 
pendulum bob's position since its distance from the origin is fixed, so we have .r = l
 

 
The angle  here "rotates" in the x,y-plane and  is the angle between the rod and the 𝜙 𝜃
vertical z-axis (it's essentially the same angle as in the simple pendulm case).
 
Now, let's try to express the  -coordinates of the bob in terms of these two x, y, z
generalized coordinates. We can do this with a little bit of trigonometry.
 
First, let's look at the situation from the "side". In other words, let's look at the triangle 
formed with the -axis, from which we can determine the -coordinate.z z
 



 
So, from this, we get the -coordinate of the bob expressed in terms of our generalized z
coordinates as .z = -l 𝜃cos
 
Now let's look at the situation from above. In other words, let's look at what happens in 
the  -plane to determine the  and  coordinates:x, y x y
 

 
From these relations, we get the - and -coordinates of the bob also in terms of our x y
generalized coordinates. So, we have then have the coordinates of the mass  as:m
 
x = l 𝜃 𝜙sin cos

y = l 𝜃 𝜙sin sin

z = -l 𝜃cos
 
Most of the difficult work has been done already - now all we do is find the velocities 
from these and then the Lagrangian.
 
We can take the time derivatives of these expressions (note that since both  and  𝜃 𝜙



are functions of time, we have to use both the product and chain rules when 
differentiating  and ):x y
 

= l 𝜃 𝜙␒x
d

dt
( sin cos )

= l 𝜙 𝜃 + l 𝜃 𝜙cos
d

dt
sin sin

d

dt
cos

= l 𝜙 𝜃 - l 𝜃 𝜙␒𝜃 cos cos ␒𝜙 sin sin
 

= l 𝜃 𝜙␒y
d

dt
( sin sin )

= l 𝜙 𝜃 + l 𝜃 𝜙sin
d

dt
sin sin

d

dt
sin

= l 𝜙 𝜃 + l 𝜃 𝜙␒𝜃 sin cos ␒𝜙 sin cos
 

= -l 𝜃 = l 𝜃␒z
d

dt
( cos ) ␒𝜃 sin

 
Now, the kinetic energy of the pendulum bob is then the sum of the squares of these 

velocities, . Writing out all these squares is not difficult but T = m + +
1

2
␒x2 ␒y2 ␒z2

would take too much space on this page, so I won't write it out here. You can do this by 
hand as an exercise if you wish.
 
What you end up with after A LOT of terms cancelling and applying some trigonometric 

identities a few times (namely,  and the same for ) is the 𝜃 + 𝜃 = 1cos2 sin2 𝜙
following kinetic energy:
 

T = ml + 𝜃
1

2

2 ␒𝜃2 ␒𝜙2 sin2

 
Now, the potential energy is much simpler. It is again just , with the height V = mgh
being the -coordinate ( ):z z = -l 𝜃cos
 
V = mgz = -mgl 𝜃cos
 
We then have our Lagrangian for the spherical pendulum:
 

L = T - V = ml + 𝜃 + mgl 𝜃
1

2

2 ␒𝜃2 ␒𝜙2 sin2 cos

 



In this case, since we have two generalized coordinates, we will also have two 
equations of motion and thus, two Euler-Lagrange equations. The first one is the Euler-
Lagrange equation for the coordinate . From that, we get:𝜃
 

- = 0
d

dt

∂L

∂ ␒𝜃

∂L

∂𝜃

⇒   ml - ml 𝜃 - mgl 𝜃 = 0
d

dt
2 ␒𝜃

1

2

2 ␒𝜙2 ∂

∂𝜃
sin2 ∂

∂𝜃
cos

⇒   ml - ml 𝜃 𝜃 + mgl 𝜃 = 02 ␒␒𝜃 2 ␒𝜙2 sin cos sin

⇒   = - 𝜃 + 𝜃 𝜃␒␒𝜃
g

l
sin ␒𝜙2 sin cos

 
This is the equation of motion for the -coordinate. Notice that the first term on the 𝜃
right-hand side is the same as for the simple pendulum, but the second term comes 
from the fact that the pendulum is also swinging in the -direction (meaning a non-zero 𝜙

).␒𝜙
 
Let's now construct the equation of motion for the -coordinate. Since nothing in the 𝜙

Lagrangian depends explicitly on the -coordinate, we have  and we get:𝜙 ∂L / ∂𝜙 = 0
 

- = 0  ⇒   
d

dt

∂L

∂ ␒𝜙

∂L

∂𝜙
ml 𝜃 = 0

d

dt
2 ␒𝜙 sin2

 
Now, I've purposefully left this equation of motion in this form. We don't actually have to 
calculate this time derivative. We can simply just integrate this on both sides, which 
results in this expression inside the parentheses being a constant (which I'll call ):a
 

ml 𝜃 dt = 0dt∫ d

dt
2 ␒𝜙 sin2 ∫

⇒   ml 𝜃 = a2 ␒𝜙 sin2

 
It turns out that this constant, , is actually a conserved quantity - the generalized a
momentum associated with the -coordinate. For now, however, it's not so important 𝜙
(we'll talk about generalized momenta soon).
 
So, we basically have two equations of motion describing the system right now:
 

= - 𝜃 + 𝜃 𝜃␒␒𝜃
g

l
sin ␒𝜙2 sin cos



ml 𝜃 = a2 ␒𝜙 sin2

 
Both of these have to be satisfied simultaneously for us to find a solution describing the 
spherical pendulum. Therefore, what we can do is combine both of these equations into 
one, which automatically takes care of the fact that they should both be satisfied.
 

We can do this by solving the second equation for , which gives us:␒𝜙
 

ml 𝜃 = a  ⇒   =2 ␒𝜙 sin2 ␒𝜙
a

ml 𝜃2 sin2

 

Then, inserting this expression in the place of  into the -equation, we get:␒𝜙 𝜃
 

= - 𝜃 + 𝜃 𝜃␒␒𝜃
g

l
sin ␒𝜙2 sin cos

⇒   = - 𝜃 + 𝜃 𝜃␒␒𝜃
g

l
sin

a

ml 𝜃2 sin2

2

sin cos

⇒   = - 𝜃 +␒␒𝜃
g

l
sin

a

m l

2

2 4

𝜃

𝜃

cos

sin3

 
We now have an equation of motion completely in terms of the -coordinate that 𝜃
determines the motion of this spherical pendulum! In principle, this could be used to, for 
example, simulate the pendulum's motion using a computer or numerically solve for its 
motion.
 
Also, note that we were still able to obtain such a complicated equation of motion using 
a fairly straightforward approach - all we did was construct the Lagrangian and 
calculate the Euler-Lagrange equations.
 
Doing the same thing with Newtonian mechanics, while it is possible, would be A LOT 
more complicated. You'd have to first transform Newton's second law, a vector 
equation, into spherical coordinates and then proceed from there - it would be a lot of 
work!
 
Now, in general, the above equation of motion is an incredibly difficult differential 
equation to actually solve. However, we can still try to find out what it tells us about the 
behaviour of the spherical pendulum.
 
 
 
 



 
How Does The Spherical Pendulum Behave?

 
 
Let's now look at some aspects related to the motion of the spherical pendulum. In 
particular, we'll construct a so-called effective potential for the spherical pendulum, 
which allows us to look at some interesting details.
 
The way we'll do this is by finding the total energy of the pendulum first. Simply put, 
the total energy (which is conserved) is just the sum of the kinetic and potential 
energy, . Inserting these (which we calculated earlier), the energy is:T + V
 

E = T + V = ml + 𝜃 - mgl 𝜃
1

2

2 ␒𝜃2 ␒𝜙2 sin2 cos

 
We can now use the expression we found from the equations of motion that 

 and insert this:=␒𝜙
a

ml 𝜃2 sin2

 

E = ml + 𝜃 - mgl 𝜃
1

2

2 ␒𝜃2 a

m l 𝜃

2

2 4 sin4
sin2 cos

⇒   E = ml + - mgl 𝜃
1

2

2 ␒𝜃2
a

2ml 𝜃

2

2 sin2
cos

 

Now, here we essentially have a kinetic energy term, , and two terms that 

don't have any velocity-dependence anymore and only depend on the position .

ml
1

2

2 ␒𝜃2

𝜃
 
Generally speaking, potentials are often taken to be position-dependent, so we 
could say that the energy can be expressed as the sum of a kinetic term and an 
"effective" potential that is a function of  only (again, this only makes sense since 

we've eliminated the -dependence and replaced it with something that only 
involves ):

𝜃

␒𝜙
𝜃

 

, where .E = ml + V 𝜃
1

2

2 ␒𝜃2
eff( ) V 𝜃 = - mgl 𝜃eff( )

a

2ml 𝜃

2

2 sin2
cos

 
Now, what's the point of this exactly? Well, the effective potential is an extremely 
useful tool for qualitative analysis of how a given system behaves. For example, by 
plotting the effective potential, we can literally see how a system may behave.



 
The reason we often analyze effective potentials in many problems involving rotation 
in 3D is because the effective potential nicely incorporates both of the "radial" as 
well as the "angular" motion of a system.
 
We may not be able to see it directly here, but the first term in the effective potential 

above, the term involving , describes the rotational part of the potential (and 
therefore the forces involved as well!) and the second term describes the fact that 
there is also a tension force affecting the radial motion of the pendulum.

a2

 
The effective potential then incorporates both of these into one "effective" potential - 
in a sense, it describes the balance between the radial and the angular forces that 
determine the motion of the pendulum.
 
Now, by plotting this effective potential for the spherical pendulum, we can see that 
there is a minimum point on the graph (here I've plotted the values for ):0 ⩽ 𝜃 ⩽ 𝜋

Now, what does the minimum of a graph mean in terms of the function ? 
Well, the derivative  is zero at the minimum and the derivative of a 
potential generally corresponds to a force - an "effective" force in this case.

V 𝜃eff( )

dV / d𝜃eff

 
So, at the minimum of the effective potential, the "effective force" is zero, which 
physically means that the radial and the angular parts of the force are perfectly 
balanced - at this minimum, the pendulum will remain at a constant value of the -
coordinate (which is the  here)!

𝜃

𝜃0

 



 
 
If we have a constant -coordinate, let's see what the coordinate  does in that 

case. Go back to the expression for  and plug in :

𝜃 𝜙

␒𝜙 𝜃 = 𝜃0

 

=␒𝜙
a

ml 𝜃2 sin2
0

 
Everything here is a constant - in other words, the pendulum is swinging with a 

constant angular speed  in the -direction. We can integrate this 

to get :

𝜔 =
a

ml 𝜃2 sin2
0

𝜙

𝜙 t( )
 
𝜙 t = 𝜔t + 𝜙( ) 0

 
We've found a possible solution to the equations of motion of the spherical 
pendulum! In particular, the solution describes both of the angular coordinates of the 
pendulum:
 
𝜙 t = 𝜔t + 𝜙( ) 0

𝜃 t = 𝜃( ) 0

 
This solution describes the pendulum at a constant value of the -coordinate, while 
it swings at a constant angular speed (i.e. in a circle) in the  -plane. Such a 
system actually has its own name and is called a conical pendulum:

𝜃

x, y

 

 
To find the actual value of the -coordinate at which this happens ( ), you need to 
differentiate the effective potential, set it equal to zero and solve for the value of :

𝜃 𝜃0

𝜃



 

= 0
dV

d𝜃

eff

 
Inserting  and differentiating it, we get:Veff

 

- mgl 𝜃 = - + mgl 𝜃
d

d𝜃

a

2ml 𝜃

2

2 sin2
cos

a 𝜃

ml 𝜃

2 cos

2 sin3
sin

 
Setting this equal to zero, so , we get:𝜃 = 𝜃0

 

- + mgl 𝜃 = 0
a 𝜃

ml 𝜃

2 cos 0

2 sin3
0

sin 0

⇒   a 𝜃 = m gl 𝜃2 cos 0
2 3 sin4

0

 
Now, actually solving this for  is incredibly messy and will not give you any kind of 
nice looking or illuminating result. The actual value of  is not so important here, 
but rather what it implies in terms of the properties of the motion.

𝜃0

𝜃0

 
So, we can instead solve for the parameter  here (you'll see why soon):a
 

a = m 𝜃sin2
0

gl

𝜃

3

cos 0

 
Now, since the pendulum bob is moving in circular motion at this particular 
coordinate value , its angular speed  is a constant and for circular motion this 
can be expressed in terms of the period  (time it takes to move once around the 

circle) as .

𝜃0 𝜔

T

𝜔 =
2𝜋

T
 

Earlier, we defined the angular speed as .𝜔 =
a

ml 𝜃2 sin2
0

 
 

If we now plug in what we found the value of  to be, , we 

can express the angular speed only in terms of :

a a = m 𝜃sin2
0

gl

𝜃

3

cos 0

𝜃0

 



 

𝜔 = =

m 𝜃

ml 𝜃

sin2
0

gl

𝜃

3

cos 0

2 sin2
0

g

l 𝜃cos 0

 
Then, by using , we can solve for the circular motion period of the 
pendulum:

𝜔 = 2𝜋 / T

 

𝜔 = =   ⇒   T =  2𝜋
g

l 𝜃cos 0

2𝜋

T

l 𝜃

g

cos 0

 
This is the period of the conical pendulum.

 
 

3.4. Rope Sliding Down a Table

 
This example is quite interesting as it illustrates the fact that we can really choose any 
variables we wish as our generalized coordinates and the Lagrangian framework still 
gives us the equations of motion using exactly the same procedure as with any other 
coordinates.
 
Now, this problem essentially consists of a rope (or chain or whatever) placed on the 
edge of a table, so that its other end is hanging off the table. Since gravity is pulling the 
hanging end of the rope downwards, it will begin to slide down the table and we’ll want 
to find the equations describing how the rope slides.
 
A picture of the situation can be seen down below with all of the information we’ll use. 
Essentially, we’re dividing the rope into two parts; the part hanging off the table and the 
part on top of the table.
 
What makes this interesting is the fact that when the rope slides, the lengths of these 
individual parts will both change with time (although the total length of the rope does 
not!).
 
We’ll call  the total length of the part of the rope that's hanging off the table, which x t( )

will be a function of time, of course. The total mass of the rope is  and the total length m
is .l
 



 
We’re assuming the rope to be at rest to begin with (i.e. it has zero initial velocity) and 
that the table is frictionless (since we haven't looked at how friction works in the 
Lagrangian formulation yet).
 
Now, let's think about our generalized coordinates here. This is technically a two-
dimensional problem since the rope can move either along the table or down vertically. 
The rope as a whole is just one object and we also have a constraint - the total length 
of the rope must be a constant, .l
 
Therefore, we only need  generalized coordinate (since we have two 2 · 1 - 1 = 1
dimensions, one object and one constraint). The natural question now would be "what 
do we actually pick as our generalized coordinate?".
 
Well, let's think about what is actually changing with time in this problem - at least the 
length of the hanging part of the rope, which we called , is changing. Therefore, it x t( )
makes sense to pick this as our generalized coordinate for the problem.
 
With this in mind, let's begin constructing the Lagrangian.
 
First, the kinetic energy - this is pretty simple since the velocity of every part of the rope 
is the same, given by the rate of change of , . This is because the part of the rope x t( ) ␒x
that's on the table is also moving with this same velocity (otherwise the rope would get 
stretched, which we assume does not happen here).
 
The kinetic energy of the rope is therefore just:
 

, where  is the total mass of the rope.T = m
1

2
␒x2 m

 
Now, the potential energy is a bit trickier. First of all, only the part hanging off the table 



has potential energy, the other part of the rope is just sitting on the table and its height 
is not changing due to gravity (we've chosen the potential energy to be zero at the 
table).
 
So, the total potential energy of the rope is just the potential energy of this hanging 
part. Now, how do we find what this potential energy is? Well, we've already done a 
similar thing in the last part with the catenary problem - we divide the rope into small 
parts, each of mass , length  and with potential energy .dm dx dV
 

 
The key is that we're only considering the part of the rope that is hanging off the table, 
which of course, is changing with time.
 
Now, since we're taking the reference level of the potential energy at the table, the 
height of the hanging part (relative to the table) is given by the function , with a -x t( )
negative sign since it's measured below the reference level. So, each small part of the 
chain has a potential energy:
 
dV = -gxdm
 
If we assume a uniform rope, its mass density is the same at all points and is just given 
by the total mass of the rope divided by the total length, .𝜌 = m / l
 
However, we can also express the mass density  of any given "small piece" of the 𝜌

rope as the mass of that small piece, , divided by the length of that piece, , which dm dx
gives us:
 

𝜌 =   ⇒   dm = dx
dm

dx

m

l
 
So, the potential energy  now becomes:dV
 



dV = -gxdm = - xdx
mg

l
 
To find the total potential energy of the piece that's hanging off the table, we simply 
integrate this from  to  (since the length of the hanging piece is given by ):0 x x t( )
 

V = dV = - xdx = - x = - x
x

0
∫ mg

l

x

0
∫ mg

l

x

0

1

2

2 mg

2l
2

 
We now have both the kinetic energy and the potential energy for the rope, from which 
we can construct the Lagrangian:
 

L = T - V = m + x
1

2
␒x2

mg

2l
2

 
To get the equation of motion, we plug this Lagrangian into the Euler-Lagrange 
equation for our generalized coordinate :x
 

- = 0
d

dt

∂L

∂ ␒x

∂L

∂x

⇒   m + x - m + x = 0
d

dt

∂

∂ ␒x

1

2
␒x2

mg

2l
2

∂

∂x

1

2
␒x2

mg

2l
2

⇒   m · 2 - · 2x = 0
d

dt

1

2
␒x

mg

2l

⇒   m - x = 0␒␒x
mg

l

⇒   = x␒␒x
g

l
 
This is the equation of motion governing the sliding of the rope. Now, this looks quite 
similar to the simple harmonic motion differential equation (of the form ), but = - kx␒␒x
not quite - it's missing a minus sign.
 
This minus sign is actually quite crucial and because we have a plus sign here, the 
solution is not a sine function, but actually a hyperbolic cosine function (the full solution 
can be found in the "Longer Calculations" -section):
 

, where  is the initial length of the rope that is hanging off x t = x t( ) 0 cosh
g

l
x0

the table.



 
From this, we could for example, find the time  it takes for the rope to completely fall ts
off the table by plugging in  (at that point, the whole length  of the rope is x t = l( s) l
hanging off the table, i.e. it has fallen off) and then solve for the sliding time :ts
 

x t = x t = l  ⇒   t =( s) 0 cosh
g

l
s s

l

g
arccosh

l

x0

 
Hopefully these examples illustrate the general process of using the Lagrangian 
formulation. Next, let's dive deeper into various aspects of Lagrangian mechanics!
 
 

4. Generalized Momentum
 

As you start using Lagrangian mechanics and the Euler-Lagrange equation more, there 
are certain things that are very useful to know - the most notable one probably being 
the concept of generalized momentum.
 
When you go through calculations in Lagrangian mechanics, there always seems to be 
a clear pattern - in particular, when taking derivatives of the Lagrangian with respect to 
the generalized velocities, , a "momentum-like thing" shows up in the Euler-Lagrange ␒qi

equation.
 
For example, take a particle moving in the -direction under some potential . From x V x( )

its Lagrangian, , we would get:L = m - V x
1

2
␒x2 ( )

 

- = 0  ⇒   m + = 0
d

dt

∂L

∂ ␒x

∂L

∂x

d

dt
( ␒x)

∂V

∂x
 
Notice the quantity inside the parentheses - it has exactly the form of a linear 
momentum, .p = mv
 
In fact, this term in the Euler-Lagrange equation - the derivative of the Lagrangian with 
respect to  - is how we define momentum in Lagrangian mechanics. This term is the ␒qi

definition of a quantity called generalized momentum, which we label as :pi

 



 
The index  here refers to which generalized coordinate the momentum is associated i
with. For example, if we have generalized coordinates  and  in the Lagrangian, we x y
would also have generalized momenta associated with both of these coordinates, 
defined as:
 

p =x
∂L

∂ ␒x

p =y
∂L

∂ ␒y
 

For every generalized coordinate  that the Lagrangian has a time derivative of, 
there exists a generalized momentum  associated with that particular coordinate.

qi

pi

 
Now, what's the point of defining such a quantity? Well, first of all, it gives us a much 
more general definition of what momentum is, instead of .p = mv
 
In Lagrangian mechanics, momentum is a measure of how much the Lagrangian of a 
system changes for a small change in the velocity in some direction. This is what the 
derivative tells us.
 
A nice way to state this can be found in the book No-Nonsense Classical Mechanics by 
Jakob Schwichtenberg - generalized momentum is a "measure of how responsive a 
Lagrangian is to changes in velocity".
 
In many cases, the generalized momenta in a system will indeed be the same as in 
Newtonian mechanics. However, not always.
 
When you get into more advanced mechanics, the usual naive form of momentum, 

, is not going to be enough anymore in certain cases. We'll look at examples of p = mv
this soon.
 
The most useful thing about the concept of generalized momentum is that it allows us 



to define the notion of momentum in more complicated situations where the usual 
 simply does not work anymore.p = mv

 

Moreover, generalized momentum - the quantity  - encodes all forms of p =i
∂L

∂ ␒qi

momentum in the same expression; linear momentum, angular momentum and even 
the momentum of an electromagnetic field.
 
In particular, when the generalized coordinate  we're looking at happens to be an qi

angle, then the generalized momentum associated with this coordinate will be a 
component of angular momentum.
 
Now, another useful thing is that defining generalized momentum in the way we did 
also allows us to generalize the notion of momentum conservation. We'll look at this 
in the part on symmetries and conservation laws.
 
 

4.1. Examples of Generalized Momenta
 
Below I’ve included some examples of what these generalized momenta may look like 
in different cases and how they are obtained from the Lagrangian.
 
Note that the definition of generalized momentum,  is valid outside of p = ∂L / ∂i ␒qi

standard mechanical systems too and some of the examples show that.
 
 

4.1.1. Generalized Momentum In Curvilinear Coordinates

 
In Lagrangian mechanics, we will be using curvilinear coordinates - coordinate 
systems in which the basis vectors are not constant - very often. Polar coordinates and 
spherical coordinates are both examples of curvilinear coordinates.
 
Now, the question is how the generalized momenta look like and behave in these 
curvilinear coordinates.
 
To understand this, let's take a look at polar coordinates. In polar coordinates, since we 
have two coordinates, we will also have two generalized momenta. It turns out that one 
of these is the standard linear momentum, of the form , and the other is a p = mv

component of angular momentum, .= ×L r p
 



In polar coordinates,  and , the Lagrangian for a free particle has the following form r 𝜃
(note that we're not including the potential energy here since it's generally a function of 
position and so it doesn't play any role in the generalized momenta anyway):
 

L = m + r
1

2
␒r2 2 ␒𝜃2

 
You'll find the full derivation of where this Lagrangian comes from in the "Longer 
Calculations" -section.
 
Now, let's consider the generalized momenta. First, the momentum associated with the 
-coordinate:r

 

p = = m · 2 = mr
∂L

∂ ␒r

1

2
␒r ␒r

 
This is simply the linear momentum, , in the radial direction - nothing too p = mv
surprising about that! Now, let's consider the momentum associated with the angular 
coordinate, : 𝜃
 

p = = mr · 2 = mr𝜃
∂L

∂ ␒𝜃

1

2

2 ␒𝜃 2 ␒𝜃

 
First of all, you might notice that this has the units of mass times distance times velocity 
or in other words, the units of distance times (linear) momentum - exactly the same 
units as angular momentum.
 

Indeed, this quantity, , is the angular momentum or one of the components of mr2 ␒𝜃
angular momentum (relative to the point ) - it depends on both the radial distance r = 0
and the angular speed, just like angular momentum would. But in which direction is this 
angular momentum component in?
 
Perhaps not surprisingly, it's the -component of the angular momentum vector, z

. Now, polar coordinates are technically only defined on a plane, so this = ×L r p
component of angular momentum would point "outside of your screen". Moreover, the -z
component is the only component of angular momentum in this case.
 
An intuitive way to understand this is that the plane of rotation is the  -plane when x, y
using polar coordinates and the angular momentum always points perpendicular to the 
plane of rotation - therefore, it must point in the -direction.z
 



 

We can also understand this mathematically by converting this quantity, , p = mr𝜃
2 ␒𝜃

to Cartesian coordinates. We already know that  when expressed in r = x + y2 2 2

terms of Cartesian coordinates, but what would  be in terms of  and ?␒𝜃 x y
 
Well, let's use the relations between Cartesian and polar coordinates:
 
x = r 𝜃cos

y = r 𝜃sin
 
In particular, let's divide  by  to get:y x
 

= = 𝜃  ⇒   𝜃 =
y

x

r 𝜃

r 𝜃

sin

cos
tan arctan

y

x
 

We can take the time derivative of this by using the fact that  x =
d

dx
arctan

1

1 + x2

as well as the chain and product rules:
 

=␒𝜃
1

1 +
y

x

2

d

dt

y

x

⇒   =  y + y␒𝜃
1

1 +
y

x

2

2

1

x

d

dt

d

dt

1

x



⇒   = - y␒𝜃
1

1 +
y

x

2

2

x

␒y

x

␒x
2

 

Let's now factor out a -from the denominator:1 / x2

 

= -␒𝜃
x

x + y

2

2 2 x

␒y y

x

␒x
2

⇒   = x - y␒𝜃
1

x + y2 2
( ␒y ␒x)

 

The angular momentum  will then be:p = mr𝜃
2 ␒𝜃

 

p = m x + y x - y = m x - y𝜃
2 2

1

x + y2 2
( ␒y ␒x) ( ␒y ␒x)

 
Do you recognize what this represents? It's the -component of the cross product z

between the (Cartesian) position and velocity vectors,  and , = x, y, zr ( ) = , ,v ( ␒x ␒y ␒z)

which gives us the -component of the angular momentum vector in the end:z
 

p = m × = × m = × = L𝜃 (r v)z (r v)z (r p)z z

 
Therefore,  is the generalized momentum associated with the -coordinate and p𝜃 𝜃

physically, it represents the -component of the angular momentum. It also turns out z
that this quantity is conserved, so:
 

= 0
dp

dt

𝜃

 
We'll come back to where this comes from when discussing cyclic coordinates.
 
So, in polar coordinates, the generalized momenta describe both a linear momentum (

) as well as an angular momentum ( ).pr p𝜃
 
The larger point is that the same applies to other curvilinear coordinates as well - any 
time we have a coordinate that describes a "distance" of some sorts, the generalized 
momentum associated with this coordinate will be a linear momentum, while the 
generalized momenta associated with angular coordinates will be components of 
angular momentum.
 



Just to really hammer the point home, let's take a quick look at how the same kind of 
thing appears when working with spherical coordinates ( , , ). The Lagrangian for a r 𝜃 𝜑
free particle (no potential energy) is given by:
 

L = m + r + r 𝜑
1

2
␒r2 2 ␒𝜑2 2 ␒𝜃2 sin2

 
Since we have three coordinates, we will have three generalized momenta. These are 
given by:
 

p = = mr
∂L

∂ ␒r
␒r

p = = mr 𝜑𝜃
∂L

∂ ␒𝜃

2 ␒𝜃 sin2

p = = mr𝜑
∂L

∂ ␒𝜑
2 ␒𝜑

 
The first two of these represent the same things as in polar coordinates, the linear 
momentum in the -direction as well as the -component of the angular momentum. r z
Note, however, that -component of angular momentum, , has an extra factor of z p𝜃

.𝜑sin2

 
Moreover, the angular momentum  is also conserved in this case (again, we'll be p𝜃
able to understand why that is in a later part).
 
What is new here is the generalized momentum associated with the -coordinate, . 𝜑 p𝜑
This looks like it has the same form as the -component of angular momentum we saw z
in the polar coordinate case, but it depends on the angular speed  instead.␒𝜑
 
The quantity  is NOT the -component of angular momentum (  is, like explained p𝜑 z p𝜃
above), it actually turns out to be a combination of the - and -components of angular x y

momentum. You can prove this if you wish by converting the expression  p = mr𝜑
2 ␒𝜑

to Cartesian coordinates.
 
So, in spherical coordinates, the generalized momenta are the linear momentum in the 
-direction ( ), the -component of angular momentum ( ) as well as a combination r pr z p𝜃

of the - and -components of angular momentum ( ). Only one of these, the -x y p𝜑 z
component of angular momentum, , is conserved.p𝜃
 
 



4.1.2. Relativistic Momentum

 
Our next example is going to be perhaps simpler to understand than angular 
momentum, but it requires some concepts from special relativity.
 
In special relativity, the Lagrangian for a free particle (of mass ) has a slightly m
different form than the one in classical mechanics, namely:
 

, where  is the speed of light.L = -mc2 1 - + +
1

c2
␒x2 ␒y2 ␒z2 c

 
Here, I've written the Lagrangian in Cartesian coordinates. It's possible to prove that 

this Lagrangian actually reduces to the classical free Lagrangian  m + +
1

2
␒x2 ␒y2 ␒z2

in the limit that the velocity components are small compared to . We won't, however, c
do this here. If you want to know more about where this Lagrangian comes from, you 
can check out this article: https://profoundphysics.com/special-relativity-for-dummies-
an-intuitive-introduction/.
 
Now, what we're interested in here are the generalized momenta. The generalized 
momentum associated with the -coordinate would be:x
 

p =x
∂L

∂ ␒x

= -mc · 1 - + +2 1

2 1 - + +
1

c2
␒x2 ␒y2 ␒z2

∂

∂ ␒x

1

c2
␒x2 ␒y2 ␒z2

= -mc · -2 1

2 1 - + +
1

c2
␒x2 ␒y2 ␒z2

2

c

␒x
2

=
m ␒x

1 - + +
1

c2
␒x2 ␒y2 ␒z2

 
In special relativity, we often call this square root factor by a special name - the Lorentz 
factor, which is defined as:
 

https://profoundphysics.com/special-relativity-for-dummies-an-intuitive-introduction/
https://profoundphysics.com/special-relativity-for-dummies-an-intuitive-introduction/


γ = =
1

1 - + +
1

c2
␒x2 ␒y2 ␒z2

1

1 -
v

c

2

2

 
Using this, the -momentum would be:x
 
p = γmx ␒x
 
Similarly, we can find the - and -components of momentum to be:y z
 
p = γmy ␒y
p = γmz ␒z
 
We could indeed represent these as a single vector:
 

, where  is the usual velocity vector  in Cartesian coordinates.= γmp v v = , ,v ( ␒x ␒y ␒z)
 
Now, what does this result tell us? Well, it tells us that in special relativity (i.e. for 
objects with velocities close to the speed of light), the momentum of an object is not 

, but contains a "correction factor" , which crucially also increases as a = mp v γ
function of the object's velocity.
 
So, in special relativity, the momentum and velocity of an object do NOT have a simple 
linear relation , but rather a more complicated non-linear relation of the form p = mv

.p = mv / 1 - v / c2 2

 
In fact, the relativistic momentum begins to increase much more rapidly than the 
classical momentum as the velocity of an object gets large. You can see a graph of this 
below:
 



 
The velocity above which the relativistic momentum starts to increase more rapidly than 
the classical momentum is around 10 % of the speed of light, as shown in the graph.
 
Moreover, the relativistic momentum blows up to infinity as the velocity of an object 
approaches the speed of light  - highlighting the fact that no massive object can ever c
reach the speed of light as this would require an infinite amount of momentum (which, 
of course, is unphysical).
 
For our purposes, the point here is that we were able to derive the relativistic 
momentum formula from the definition of generalized momentum.
 
This highlights an even more general point - in more advanced areas of physics, the 
definition of generalized momentum  is the fundamental definition of p = ∂L / ∂i ␒qi

momentum (although in quantum mechanics and field theories this works slightly 
differently).
 
 

4.1.3. Generalized Momentum In an Electromagnetic Field

 
Our last example of generalized momenta will highlight the fact that generalized 
momentum is NOT always the same as the linear momentum we see in Newtonian 
mechanics.
 
In particular, if we have a charged particle (with mass  and electric charge ) in an m q
electromagnetic field, its interaction with the electromagnetic field will be described by 
the following Lagrangian:
 

L = mv - q𝜙 + q ·
1

2

2 v A



 

Here,  and  are the electric scalar potential and the magnetic vector potential - 𝜙 A
these encode how the particle interacts with the electric and magnetic fields. We'll take 
a much deeper look at where this Lagrangian comes from in Part 7.
 
In this Lagrangian, we basically see a kinetic energy term and two peculiar, velocity-
dependent potential terms (we'll learn how to deal with velocity-dependent potentials in 
more detail in the next part).
 
The interesting feature for us here is indeed the fact that the potential is velocity-
dependent. In particular, the magnetic vector potential seems to "couple" to the 
particle's velocity - highlighting the fact that magnetic fields only affect moving charged 
particles.
 
However, this also leads to interesting consequences for the generalized momenta in 
such a system. The components of generalized momenta ( ,  and ) in this case px py pz

would be:
 

p = = m + qAx
∂L

∂ ␒x
␒x x

p = = m + qAy
∂L

∂ ␒y
␒y y

p = = m + qAz
∂L

∂ ␒z
␒z z

 
We could write these as a vector:
 

= m + qp v A
 
Now, because the magnetic vector potential term in the Lagrangian couples to the 
particle's velocity, this leads to the fact that the generalized momenta will contain terms 
that involve the magnetic vector potential.
 
Perhaps this isn't entirely surprising - remember, it was stated earlier that generalized 
momentum is basically a quantity that encodes the "sensitivity of the Lagrangian to 
changes in velocity".
 
Well, since the effect of a magnetic field on a charged particle is stronger the faster the 
particle is moving - this is how magnetic forces generally work - then we would also 
expect these effects to somehow show up when calculating the "sensitivity of the 
Lagrangian to changes in velocity" (generalized momenta). This is indeed what 
happens.



 

Interestingly, the extra vector potential term in the generalized momentum, , actually qA
describes the momentum of the electromagnetic field itself (yes, an electromagnetic 
field also carries momentum!).
 
The key point here was to show you that generalized momenta and ordinary momenta 
are not always the same. The concept of generalized momentum is, well, a more 
general definition that describes the components of ALL the momenta in a system, not 
just a particle's linear momentum components.
 
We can clearly see this from the example shown here, since the components of 
generalized momenta contained both the momentum of the particle itself, but also the 
momentum of the electromagnetic field itself - describing components of the total 
momentum in the system.
 

 

5. Constrained Dynamics
 

In Part 3, we explored constrained optimization and the Lagrange multiplier method 
in the context of variational calculus. Since most of Lagrangian mechanics is based on 
variational calculus, it's natural to ask what role constraints and Lagrange multipliers 
play specifically in Lagrangian mechanics. This is what we'll explore next.
 
 

5.1. Constraints In The Lagrangian Formulation
 
In variational calculus, we used constraints to find the extrema of a functional under 
some particular constraint. In Lagrangian mechanics, solutions to the equations of 
motion of a system are the extrema of the action functional.
 
Therefore, constraints are used in the Lagrangian formulation to constrain the solutions 
to an equation of motion - to restrict the dynamics of a physical system in some way.
 
Now, in Newtonian mechanics, we have to introduce constraint forces to constrain the 
description of a system - to make sure that our mathematical models of a given 
physical system behave in exactly the way they should (such as an object not falling 
through the ground even though gravity is pulling it that way).
 
The key thing to realize is that in Lagrangian mechanics, we do not need constraint 
forces to constrain systems - by a clever choice of generalized coordinates, we can 
implicitly encode any constraints into the coordinates themselves and thus, not 



need to manually introduce constraint forces.
 
We already discussed generalized coordinates earlier, but we didn't really get into how 
we can choose them such that they are consistent with the constraints in a particular 
system.
 
We do this by constructing a constraint function involving our generalized coordinates 
of the form , similar to what we did in variational calculus. g q , q , q ,..., q , t = 0( 1 2 3 i )
We'll talk more about this soon.
 
We can then either use this relation to solve for one of the coordinates in terms of the 
others and plug that straight into the Lagrangian (thus, implicitly encoding the 
constraint into the Lagrangian) or we can use the constraint function when applying the 
Lagrange multiplier method. In the end, both will give us the same, constrained 
equations of motion.
 
Now, in variational calculus, the Euler-Lagrange equation with constraints had the form 

, where  was a parameter called a Lagrange - = λ -
d

dx

∂f

∂y'

∂f

∂y

∂g

∂y

d

dx

∂g

∂y'
λ

multiplier.
 
In Lagrangian mechanics, we've replaced the  with the Lagrangian  and 's with f L y x( )

the coordinates . Note, however, that we will only consider constraints here that do q ti( )

not depend on velocity (these are called holonomic), so . Thus, the Euler-∂g / ∂ = 0␒qi

Lagrange equation with constraints that we'll be using in Lagrangian mechanics is:
 

- = λ
d

dt

∂L

∂ ␒qi

∂L

∂qi

∂g

∂qi

 
With multiple constraints, we simply sum over all the constraint equations and 

Lagrange multipliers on the right-hand side, i.e. .λ∑
 

j

j

∂g

∂q

j

i

 
Before we look at constrained dynamics in more detail, I want to really highlight the big 
picture here. In Lagrangian mechanics, there are generally two ways to constrain a 
system:
 

1. Pick the generalized coordinates for a system in such a way that they 
implicitly encode the constraints by using the constraint equation. This way 
you end up with a constrained Lagrangian that you can then use to find the 



equations of motion without needing to add any constraint forces.
 

2. Derive the equations of motion for the system using an unconstrained 
Lagrangian but by adding additional Lagrange multiplier terms to the Euler-
Lagrange equation. This will give you the equations of motion as well as 
expressions for the necessary constraint forces.

 
Most often, the first way is going to be easiest if we only find the equations of motion 
(which are consistent with our constraints, of course), but do not care about the 
constraint forces themselves. If this is the case, you don't need any Lagrange 
multipliers or anything additional - just follow the procedure we've used previously.
 
However, there are situations where finding explicit expressions for the constraint 
forces themselves will be useful (we'll see some examples of this later), for example, if 
we wish to know when a constraint in a system breaks down. For this, you have to use 
the Lagrange multiplier method.
 
 

5.2. Constraint Equations & Types of Constraints
 
In Lagrangian mechanics, whenever we want to constrain a system in some way, we 
will generally begin by writing down a constraint equation. We need a constraint 
equation both in order to choose generalized coordinates that are consistent with the 
constraints, but also for the Lagrange multiplier method to work.
 
Constraint equations are simply equations that relate the coordinates describing a 
given system to the constraints that the system must obey. Constraint equations can be 
used to find relations between coordinates and simplify the choice of generalized 
coordinates.
 
We usually want to encode the constraint into a function of the generalized coordinates 

, and possibly time, and this is called a constraint function  (more precisely, this qi g
would be called a holonomic constraint; I’ll explain what this means later).
 
The constraint itself is then given by setting this function equal to zero, which gives us 
an equation - called a constraint equation - that relates the coordinates together in 
some way:
 
g q , q , q ,..., q , t = 0( 1 2 3 i )
 
This can always be done for any equation by just moving every term to one side. We’ll 
see why this is useful a bit later.
 



 
 
An example of a constraint equation might be a particle constrained to move on the 
surface of a sphere, in which case the coordinates ( ) of the particle must satisfy x, y, z
the relation (  is the radius of the sphere):R
 

 
If we chose our generalized coordinates as spherical coordinates ( ) instead of r, 𝜃, 𝜑

Cartesian, the constraint function would be as simple as  and the g r, 𝜃, 𝜑 = r - R( )

constraint equation simply , in other words, .g r, 𝜃, 𝜑 = 0( ) r = R
 
Now, what do you actually do with these constraint equations?
 
Well, simply put, these are equations you can use to simplify your choice of generalized 
coordinates for the system. If you use the constraint equations cleverly, you may be 
able to choose your generalized coordinates in such a way that they implicitly contain 
all the constraints.
 
You could then use these cleverly chosen generalized coordinates to find the equations 
of motion for the system, which will automatically obey the constraints.
 
The way to do this is quite straightforward; if you have a constraint equation that relates 
the coordinates in some way, you can use that equation to express one of the 
coordinates in terms of the others. In other words, if we have constraints in a system, 
not all generalized coordinates will be independent of one another.
 
You can then eliminate one of the coordinates using the constraint equation, which will 
make sure that the constraint is then implicitly encoded into your description of the 
system - then, the Lagrangian you write down using these coordinates you've chosen 
will automatically be consistent with the constraints and so will the equations of motion.
 
 
 
 
 
 
 
 



 

 
Example: Constraint Equation For The Simple Pendulum

 
 
You might have noticed that we already used the notion of a constraint equation in 
our examples earlier. In fact, we used constraint equations in both the simple 
pendulum example as well as the spherical pendulum example.
 
We indeed found the equations of motion that were consistent with the constraints 
of the pendulum motion, without needing any constraint forces. Let's quickly revisit 
how we did this to illustrate the point.
 
Let's again place the pendulum in an -coordinate system and express the 
coordinates of the bob using polar coordinates (  and ):

x, y
r 𝜃

 

 
Now, we have a constraint in this example - the distance of the pendulum bob to 
the origin (in other words, the coordinate ) has to be a constant . Therefore, we 
have a constraint equation:

r l

 
r = l
 
This can be expressed using a constraint function as .g r, 𝜃 = r - l = 0( )
 
If we were to just write down the coordinates of the pendulum bob without taking 
into account this constraint, we'd have:



 
x = r 𝜃sin

y = -r 𝜃cos
 
However, we now have a constraint equation we can use to eliminate one of our 
coordinates, namely the -coordinate. Using this constraint ( ), the coordinates 
of the pendulum bob now become:

r r = l

 
x = r 𝜃  ⇒   x = l 𝜃sin sin

y = -r 𝜃  ⇒   y = -l 𝜃cos cos
 
The nice thing is that we’ve now eliminated the -coordinate completely and we 
have the coordinates of the pendulum expressed in terms of only one generalized 
coordinate, .

r

𝜃
 
But even better, this choice of generalized coordinates is now also consistent with 
the constraint (the length of the rod must be ), because the distance from the 
center for all values of  is:

l
𝜃

 

= = = lx + y2 2 l 𝜃 + l 𝜃2 sin2 2 cos2 l 𝜃 + 𝜃2 sin2 cos2

 
Thus, the equations of motion we get by using these coordinates will also obey the 
constraint.
 
Now, this is of course, what we did previously already. However, this simple 
example just illustrates a more general point - we can use constraint equations to 
eliminate coordinates and encode the constraints themselves into our choice of 
generalized coordinates.
 
The beautiful thing about this is that we are then able to obtain the correct 
equations of motion for the system (that automatically obey the constraints) simply 
by choosing our generalized coordinates such that they implicitly contain the 
constraints.
 
This then allows us to find the equations of motion without ever needing to 
introduce any constraint forces (such as the tension in the pendulum example).

 
 
Now, this method of using the constraint equations when choosing the generalized 
coordinates for a system is one way to include constraints in Lagrangian mechanics.
 
As mentioned earlier, this method works great if you only care about finding the correct 



equations of motion, but not necessarily if we wanted to know something about the 
constraint forces themselves. This method will completely eliminate the need for any 
constraint forces, so you won’t be able to get information about those this way.
 
You’ll simply get the correct equations of motion WITHOUT needing to introduce any 
constraint forces, which is often what we want in order to describe the system.
 
However, we can also find constraint forces using the Lagrangian formulation if we 
want to. This is explained later, but first we need to discuss the different types of 
constraints that are possible.
 
 

5.2.1. Holonomic vs Non-Holonomic Constraints

 
Generaly, there are two types of constraints we'll have in Lagrangian mechanics: 
holonomic constraints and non-holonomic constraints.
 
Holonomic constraints are constraints that can be written as an equality between 
coordinates and time, in other words, as a constraint equation of the form:
 
g q , q , q ,..., q , t = 0( 1 2 3 i )
 
An example of a holonomic constraint would be a particle moving in a circle, in which 
case its coordinates would be constrained by . This is the type of x + y = R2 2 2

constraint we saw previously with the pendulum as well.
 
Any constraint that cannot be expressed as an equality between the coordinates (and 
possibly time) is a non-holonomic constraint.
 
Now, holonomic constraints are always expressed as equalities involving the 
coordinates and possibly time, however, NOT the velocities.
 
Moreover, holonomic constraints are sometimes categorized into two “sub-types”:
 

• Scleronomic constraint - the constraint equation does not explicitly depend on 
time, so it has the form .g q , q , q ,..., q = 0( 1 2 3 i)
 

• Rheonomic constraint - the constraint equation does explicitly depend on time, 
so it has the form .g q , q , q ,..., q , t = 0( 1 2 3 i )

 
Now, this is just terminology you should be aware of in case you ever encounter it, but 
there really isn't much difference between these two types of holonomic constraints in 



practice - the most important thing is that they are both holonomic.
 
An example of a non-holonomic constraint, on the other hand, would be a particle 
allowed to move anywhere inside a circle, in which case its coordinates would be 

constrained by .x + y ≤ R2 2 2

 
So, non-holonomic constraints can be inequalities.
 
Also, any constraint that involves the velocities or differentials of the coordinates (but 
cannot be integrated to obtain the “full constraint equation” that involves the 
coordinates themselves) is a non-holonomic constraint.
 
You’ll find an example of where such a constraint comes up in the case of describing 
the physics of a unicycle.
 

 
Non-Holonomic Constraint Example: Motion of a Unicycle

 
 
The motion of a unicycle is a classic example of where non-holonomic constraints 
show up in the form of constraints for the velocities, but not for the coordinates 
themselves.
 
Let’s place the unicycle in an  -coordinate system, so that as it moves, its 
position is going to be described by some coordinates ( ).

x, y, z
x, y, z

 
Now, the special thing about a unicycle is that it can also have an “orientation”, 
meaning that at any point, the unicycle can be pointed in a different direction.
 
We’ll label this orientation by an angle . This is an extra degree of freedom in the 
motion of the unicycle, so at this point, we actually need four degrees of freedom 
(however, we can reduce this by using some constraints).

𝜃



 

The vector  here describes the velocity of the unicycle.v
 
If the unicycle is not allowed to “jump” up and down, we have  at all times 
(this is a constraint), which reduces the degrees of freedom to just three - the 
position coordinates  and  as well as the orientation . These will be our 
generalized coordinates, which are all functions of time.

z = 0

x y 𝜃

 
However, while the angle  can point in any direction at different points (meaning 
that there is no straightforward relation or constraint between ,  and ), the 
components of the velocity cannot just be anything.

𝜃

𝜃 x y

 

This is because the direction of the velocity  is determined by the orientation of the 
unicycle, in other words, by the angle .

v
𝜃

 
Thus, the components of the velocity,  and , are given by:␒x ␒y
 

 , where  is the magnitude of .
= v 𝜃␒x cos

= v 𝜃␒y sin
v v

 
If we divide the second equation by the first, we get:
 

=   ⇒   = 𝜃
␒y

␒x

v 𝜃

v 𝜃

sin

cos
␒y ␒x tan

 
Here we basically have a constraint for the velocities. This is an example of a non-
holonomic constraint, since it can be expressed in the form of a function of 
velocities (and coordinates):
 

, with g 𝜃, , = 0( ␒x ␒y) g 𝜃, , = - 𝜃( ␒x ␒y) ␒y ␒x tan
 
Now, the thing about such a constraint is that in general, it cannot be used to 
reduce the degrees of freedom in the system (i.e. solve for one of the coordinates 
in terms of the others), since we cannot write this in the form of a function of the 
coordinates only.
 
You can certainly try to express the above non-holonomic constraint in terms of the 
coordinates only by integrating both sides with respect to time:
 

= 𝜃  ⇒   y = 𝜃dt␒y ␒x tan ∫ ␒x tan

 



 
The problem here is that both  and  are independent functions of time. We 
therefore cannot do the integral on the right-hand side without knowing  and 

 beforehand and thus, we cannot get a relation between the coordinates from 
this.

␒x 𝜃

x t( )

𝜃 t( )

 
This is one of the key points about non-holonomic constraints; they do not allow us 
to reduce the degrees of freedom even though they technically do constrain the 
system in some way.
 
Now, the situation would change if the angle  is assumed to NOT depend on time. 
In other words, the angle  just has some constant value  at all times (physically, 
this means that the unicycle cannot turn its direction).

𝜃

𝜃 𝜃0

 
In this case, we could integrate the constraint to get:
 

y = 𝜃 dt = 𝜃 dt = 𝜃 dx = x 𝜃∫ ␒x tan 0 tan 0∫dx

dt
tan 0∫ tan 0

 
I’ve set the integration constant to zero here.
 
So, we do get a relation between the only coordinates in this case, so actually, our 
non-holonomic constraint turns into a holonomic constraint for this special case:
 

, with g x, y = 0( ) g x, y = y - x 𝜃( ) tan 0

 
Note that in this case,  at all times means that  is not a coordinate 
anymore as it cannot depend on time.

𝜃 = 𝜃0 𝜃

 
In this special case, we would only need one generalized coordinate to describe the 
system, the coordinate , since we can express  in terms of  using the constraint 
equation.

x y x

 
 
 
For the rest of this part, we’ll only be discussing holonomic constraints as these are the 
most common types of constraints and also the most useful ones, generally speaking.
 
 
 
 
 
 



5.3. How To Find Constraint Forces

 
So far, we’ve only discussed how to implicitly encode constraints into the generalized 
coordinates describing a system and how doing this leads to the correct equations of 
motion that obey the constraints.
 
However, doing it this way does not actually give you the constraint forces 
themselves. So, if we wanted to find the actual constraint forces, what would we do in 
that case?
 
Well, we do this by using the Lagrange multiplier method we discussed already in Part 
3. When using this method, we have to use the modified Euler-Lagrange equations 
with additional Lagrange multiplier terms on the right-hand side:
 

 
Intuitively, the right-hand side here represents the constraint forces, so these Lagrange 
multipliers will give you information about how the constraint forces behave. We'll 
understand this better in the next part when we discuss generalized forces in detail.
 
Before we discuss Lagrange multipliers in more detail, the rough step-by-step process 
of how constraint forces can be found in Lagrangian mechanics goes as follows:
 

1. Define the constraints by writing down a constraint equation for each constraint.
 

2. Define a set of generalized coordinates without applying the constraints yet.
 

3. Write down the Lagrangian (again, with no constraints applied).
 

4. Apply the modified Euler-Lagrange equations involving Lagrange multipliers.
 



5. You should now have the unconstrained equations of motion for each coordinate 
with the equations involving the Lagrange multipliers.
 

6. At this point, apply your constraint equations to the equations of motion and 
solve for the Lagrange multipliers, which will give you the constraint forces.
 

Essentially, the most important part in this process is step #2 and the fact that we do 
NOT use the constraints yet when first defining our generalized coordinates. 
Essentially, we leave our generalized coordinates unconstrained for a little bit.
 
This kind of a “trick” allows us to find the unconstrained equations of motion with 
Lagrange multipliers, to which we will then apply the constraints later on. Doing it this 
way allows us to actually find the constraint forces (this will become clear later when we 
look at various examples).
 
In practice, when we write down the unconstrained Lagrangian in step #3, we will 
essentially get “additional” equations of motion (which would not be there if we chose 
our generalized coordinates to implicitly contain the constraints).
 
We can then use these “additional” equations of motion to solve for the Lagrange 
multipliers and find the constraint forces that way.
 
So, we’re basically adding in extra degrees of freedom by introducing these Lagrange 
multipliers, but since we get these “additional” unconstrained equations of motion, we 
also have more equations. However, we will still have as many equations as degrees of 
freedom, so the problem is still well-defined.
 
Now, the constraints themselves are defined by the constraint equations, which we 
discussed before.
 
These are again equations that set relationships between the coordinates and we write 
these equations, generally, in the form .g q , q , q ,..., q , t = 0( 1 2 3 i )
 
It’s important to write the equation in this form (which you can always do by simply 
moving everything to one side), because this gives you the correct constraint function, 

.g
 
 
 
 
 
 
 
 



 

 
Example: Finding The Tension In a Pendulum

 
 
Let’s consider the pendulum example again (if the pendulum system is getting a 
little old at this point, don't worry - we'll see different examples soon).
 
Earlier, we found the following relations between the polar coordinates ( ) and 
the Cartesian coordinates ( ) of the pendulum bob:

r, 𝜃
x, y

 
x = r 𝜃sin

y = -r 𝜃cos
 
We then used our constraint equation ( ) to essentially eliminate the -
coordinate completely and describe the pendulum with only the -coordinate, 
which did lead us to the correct equations of motion.

r = l r
𝜃

 
We won’t do that now. Instead, we’ll construct the “unconstrained” Lagrangian for 
this system (meaning that the radial distance, the -coordinate is allowed to vary, 
for now). We’ll then use our constraints later, but in this process, we'll be able to 
find the tension force as well.

r

 
If we take the time derivatives of these “unconstrained” - and -coordinates, we 
get (note that  is now also a function of time, so we have to use the product rule):

x y
r

 

= 𝜃 + r 𝜃␒x ␒r sin ␒𝜃 cos

= - 𝜃 + r 𝜃␒y ␒r cos ␒𝜃 sin
 
We can then get the kinetic energy by squaring these. Doing this, you'll end up with 
the Lagrangian in polar coordinates (see the "Longer Calculations" for this):
 

T = m + r
1

2
␒r2 2 ␒𝜃2

 
The potential energy is going to be , which in terms of our generalized 
coordinates is . Our “unconstrained” Lagrangian is then:

V = mgy
V = -mgr 𝜃cos

 

L = m + r + mgr 𝜃
1

2
␒r2 2 ␒𝜃2 cos

 



Notice that we have two coordinates here,  and , so we’ll get an Euler-Lagrange 
equation for each of them. We have to use the modified Euler-Lagrange equations 
here with the added stuff on the right-hand side:

r 𝜃

 

- = λ
d

dt

∂L

∂ ␒qi

∂L

∂qi

∑
 

j

j

∂g

∂q

j

i

 
In our case, we only have one constraint, so this sum over  has just one term:j
 

- = λ
d

dt

∂L

∂ ␒qi

∂L

∂qi

∂g

∂qi

 
For the -coordinate, we have the Euler-Lagrange equation as:r
 

- = λ
d

dt

∂L

∂ ␒r

∂L

∂r

∂g

∂r
 
Let’s now recall what our constraint equation was for the pendulum: . 
Therefore, we can write this constraint in terms of the constraint function as:

r = l

 
, where g r = 0( ) g r = r - l( )

 
The partial derivative of this is then just . So, the Euler-Lagrange 
equation for  becomes:

∂g / ∂r = 1

r
 

- = λ
d

dt

∂L

∂ ␒r

∂L

∂r
 
By inserting the Lagrangian, we get the equation of motion for the r-coordinate:
 

m - m + r + mgr 𝜃 = λ
d

dt
( ␒r)

∂

∂r

1

2
␒r2 2 ␒𝜃2 cos

⇒   m - mr - mg 𝜃 = λ␒␒r ␒𝜃2 cos

⇒   = + r + g 𝜃␒␒r
λ

m
␒𝜃2 cos

 
Let’s then look at the Euler-Lagrange equation for :𝜃
 
 
d ∂L ∂L ∂g



- = λ
d

dt

∂L

∂ ␒𝜃

∂L

∂𝜃

∂g

∂𝜃
 
The right-hand side here goes to zero, since our constraint function  does not 
depend on . We then have:

g
𝜃

 

- = 0
d

dt

∂L

∂ ␒𝜃

∂L

∂𝜃

⇒   mr - m + r + mgr 𝜃 = 0
d

dt
2 ␒𝜃

∂

∂𝜃

1

2
␒r2 2 ␒𝜃2 cos

 
Note that we have to use the product rule on the first term here when taking the 

time derivative. Also, when taking the time derivative of , we have to use the 

chain rule (so, ):

r2

dr / dt = 2r2 ␒r
 

2mr + mr + mgr 𝜃 = 0␒r ␒𝜃 2 ␒␒𝜃 sin

⇒   = - 𝜃 -␒␒𝜃
g

r
sin

2

r
␒r ␒𝜃

Notice what we have now - two unconstrained equations of motion:
 

= + r + g 𝜃␒␒r
λ

m
␒𝜃2 cos

= - 𝜃 -␒␒𝜃
g

r
sin

2

r
␒r ␒𝜃

 
We’ve essentially obtained the unconstrained equations of motion in order to get 
this additional equation for the Lagrange multiplier . We can NOW apply our 
constraint ( ), which means that . Our equations of motion will then 
become:

λ

r = l = = 0␒r ␒␒r

 

0 = + l + g 𝜃
λ

m
␒𝜃2 cos

= - 𝜃␒␒𝜃
g

l
sin

 
Do you see what just happened? We first obtained the unconstrained equations of 
motion and after that, we applied our constraint. This results in the right equation of 
motion (the one for ) we've already seen multiple times previously, but we also got 
an additional equation that we can now solve for :

𝜃

λ
 

λ
␒ 2 ␒ 2



0 = + l + g 𝜃  ⇒   λ = -ml - mg 𝜃
λ

m
𝜃2 cos 𝜃2 cos

 
If you now look at the expression we found for the tension force using Newton’s 
laws in Part 1, it is exactly this (apart from a minus sign, which we get here because 
the tension is “opposing” the radial direction), so:
 

T = -λ = ml + mg 𝜃␒𝜃2 cos
 
This hopefully illustrates the process of finding constraint forces in Lagrangian 
mechanics as well as how the Lagrange multipliers describe these constraint forces.
 
Again, I want to stress that this method only works because we first find the 
unconstrained equations of motion. Only by doing this will we get enough equations 
to solve for the constraint forces (Lagrange multipliers).
 
On the other hand, if you apply the constraints before finding the equations of 
motion, you’ll only obtain the equations of motion themselves (which are perfectly 
correct if these are the only thing you wish to find), but not expressions for the 
actual constraint forces.

 
The example above might give you an idea of how Lagrange multipliers describe the 
constraint forces, but let’s discuss this in more general terms next.
 
 

5.4. Physical Meaning of The Lagrange Multipliers
 
Lagrange multipliers, as we saw earlier, are these coefficients we add to the Euler-
Lagrange equations generally when dealing with constrained optimization problems. 
Physically, it seems that Lagrange multipliers are somehow connected to the constraint 
forces in a system.
 
The way to intuitively understand this is to once again, connect everything back to what 
we learned in the part on variational calculus - we learned that Lagrange multipliers 
essentially tell us how much the extremal values of a given functional (in other words, 
solutions to the Euler-Lagrange equations) change as the constraint is changed by a 
small amount.
 
Now, making this analogy between variational calculus and Lagrangian mechanics, we 
also gain a very nice physical interpretation of the Lagrange multipliers.
 
Namely, the Lagrange multipliers physically tell us how much the extremal values of the 
action functional changes with respect to a small change in the constraint.



 
Since the extremal values of the action are the solutions to the equations of motion for 
a system, the Lagrange multipliers then essentially describe how much the solutions to 
the equations of motion, the coordinates , change when changing the constraint by q ti( )
a small amount.
 
But how exactly does this relate to constraint forces? Well, since the constraint function 
is only a function of position and not velocity (assuming holonomic constraints), 
changing it would only result in the Lagrangian changing through the potential energy 
term, but not the kinetic energy term.
 
So, if the constraint changes and as a result, the potential energy changes, then there 
must be a force that would change the system’s potential energy (since a force can be 
expressed as derivatives of potential energy) - this is exactly the constraint force.
 
This is what gives the interpretation of the Lagrange multipliers as being closely related 
to the constraint forces in a system. Of course, this isn't a very rigorous way of coming 
to this conclusion but it might give some useful intuition - take what you will of this 
argument, however, in the next part we'll be able to understand this more precisely.
 
Now, while Lagrange multipliers indeed contain information about the constraint forces 
in a given system, an extremely important point to note is that the Lagrange multipliers 
themselves are NOT the actual, physical constraint forces.
 
Yes, they do contain information about the constraint forces but by themselves, they 
are not the constraint forces. In fact, by themselves, the Lagrange multipliers are just 
some parameters that may or may not have any physical meaning.
 
The actual constraint forces are given by generalized constraint forces, which is the 
term appearing on the right-hand side of the Euler-Lagrange equations. We'll take a 
deeper look at this in the next part when discussing generalized forces.
 

Generalized constraint forces:
 

Q = λc
i

∑
 

j

j

∂g

∂q

j

i

 
In other words, to find constraint forces, we first have to find the Lagrange multipliers 
and then “combine” them with this partial derivative of the constraint function -term and 
this is what gives us the actual constraint forces.
 

For each generalized coordinate , this  will give you the component of the total qi Qc
i



constraint force in the direction of the coordinate , which may or may not be zero.qi

 
As an example (which you’ll find more of later), consider the Lagrange multiplier we 
found for the simple pendulum system:
 

λ = -ml - mg 𝜃␒𝜃2 cos
 
The constraint force components for the pendulum in both the - and -directions r 𝜃

would then be (as a reminder, the constraint function here is ):g = r - l
 

Q = λ = λ = - ml - mg 𝜃c
r

∂g

∂r
␒𝜃2 cos

Q = λ = 0
c
𝜃

∂g

∂𝜃
 
These tell us that there is no constraint force component in the -direction, which is to 𝜃
be expected since the motion of the pendulum is not constrained in this direction in any 
way - the constraint force (tension, in this case) only acts in the radial direction.
 
 

5.5. Examples of Constraints

 
We've discussed a lot of theoretical aspects of constrained dynamics so far. It's now 
time to look at some more examples of constraints and finding constraint forces in 
practice using the Lagrangian formulation.
 
 

5.5.1. Particle Moving on a Spiral

 
This example essentially consists of finding the equations of motion and the necessary 
constraint forces for a particle moving along a spiral trajectory.
 
Mathematically, we can describe a spiral in polar coordinates by saying that the radial 
coordinate increases linearly with the angle (this is called an Archimedean spiral). So, 
in polar coordinates, the spiral is described by the following curve:
 
r 𝜃 = a𝜃( )
 
This  here is some proportionality constant with units of length. The trajectory of the a
particle then looks more or less as follows:
 



 
Let's begin by finding the unconstrained Lagrangian of the particle. Since there is no 
external potential in this case, the Lagrangian just consists of the kinetic energy, which 
we can write using the standard form of a free Lagrangian in polar coordinates:
 

L = m + r
1

2
␒r2 2 ␒𝜃2

 
Note that we haven’t used the constraint at all yet, so this would be the Lagrangian for 
a freely moving particle in polar coordinates (not related to any spiral motion). Our 
constraint function and constraint equation, in this case, can be obtained from the 
relation :r = a𝜃
 
g r, 𝜃 = r - a𝜃 = 0( )
 
If you wanted to only find the equations of motion, you could simply plug  into r = a𝜃
the Lagrangian and find the equations of motion for the -coordinate. However, we 𝜃
want to also find the constraint forces in this case.
 
So, we’ll have then two equations of motion, one for the -coordinate and one for . r 𝜃
Later on, when we apply our constraint, we can reduce these to just an equation of 
motion for  as well as an expression for the constraint force.𝜃
 
Now, the equation of motion for  will be (note that we have only one constraint):r
 

- = λ
d

dt

∂L

∂ ␒r

∂L

∂r

∂g

∂r



⇒   m - mr = λ
d

dt
( ␒r) ␒𝜃2

⇒   = + r␒␒r
λ

m
␒𝜃2

 
On the other hand, the equation of motion for  will be:𝜃
 

- = λ
d

dt

∂L

∂ ␒𝜃

∂L

∂𝜃

∂g

∂𝜃

⇒   mr = λ -a
d

dt
2 ␒𝜃 ( )

⇒   2mr + mr = - aλ␒r ␒𝜃 2 ␒␒𝜃

⇒   = - -␒␒𝜃
aλ

mr2

2

r
␒r ␒𝜃

 
So, we have the following two unconstrained equations of motion:
 

= + r␒␒r
λ

m
␒𝜃2

= - -␒␒𝜃
aλ

mr2

2

r
␒r ␒𝜃

 

We will now apply the constraint , which means that  and . Using r = a𝜃 = a␒r ␒𝜃 = a␒␒r ␒␒𝜃
these, our two equations become:
 

a = + a𝜃   ⇒   = + 𝜃␒␒𝜃
λ

m
␒𝜃2 ␒␒𝜃

λ

ma
␒𝜃2

= - - a   ⇒   = - -␒␒𝜃
aλ

ma 𝜃2 2

2

a𝜃
␒𝜃 ␒𝜃 ␒␒𝜃

λ

ma𝜃2

2

𝜃
␒𝜃2

 

Now, since both of these are equations for , they must be equal and thus, we have:␒␒𝜃
 

+ 𝜃 = - -
λ

ma
␒𝜃2

λ

ma𝜃2

2

𝜃
␒𝜃2

 
We can now solve this for the Lagrange multiplier :λ
 

λ = - ma
2𝜃 + 𝜃

1 + 𝜃

3

2
␒𝜃2



 

Then, we can insert this into either of the equations of motion for  to obtain:␒␒𝜃
 

= + 𝜃␒␒𝜃
λ

ma
␒𝜃2

⇒   = - ma + 𝜃␒␒𝜃
1

ma

2𝜃 + 𝜃

1 + 𝜃

3

2
␒𝜃2 ␒𝜃2

⇒   = - + 𝜃␒␒𝜃
2𝜃 + 𝜃

1 + 𝜃

3

2
␒𝜃2

⇒   = -␒␒𝜃
𝜃

1 + 𝜃2
␒𝜃2

 
We then have the equation of motion for the particle as well as an expression for the 
Lagrange multiplier:
 

= -␒␒𝜃
𝜃

1 + 𝜃2
␒𝜃2

λ = - ma
2𝜃 + 𝜃

1 + 𝜃

3

2
␒𝜃2

 
The components of the constraint forces in both the - and -directions are then:r 𝜃
 

Q = λ = - mac
r

∂g

∂r

2𝜃 + 𝜃

1 + 𝜃

3

2
␒𝜃2

Q = λ = mac
𝜃

∂g

∂𝜃

2𝜃 + 𝜃

1 + 𝜃

3

2

2 ␒𝜃2

 
This basically solves the problem - we have the equations of motion as well as an 
expression for what the constraint force has to be in order for the particle to stay on the 
spiral. This wasn't too complicated using Lagrangian mechanics, but good luck doing 
the same with Newton's laws!
 
The unfortunate thing is that the equation of motion for this system does not have a 
useful closed-form solution. In fact, we can manipulate and integrate the equation of 
motion for  to get the following expression:𝜃
 

𝜃 + 𝜃 = At + B1 + 𝜃2 arcsinh
 



However, this cannot be solved to find . The more important thing in Lagrangian 𝜃 t( )
mechanics (and all of classical mechanics, more generally) usually is to just find the 
equations of motion, not necessarily solve them.
 
Solving an equation of motion analytically, even if that would be nice, is not really that 
important since we can solve any differential equation numerically or construct a 
simulation of the system with a computer anyway.
 
 

5.5.2. The Atwood Machine

 
The Atwood machine is a classic example of using Newton's laws and in fact, it's pretty 
easy to solve using Newton's laws. Keeping with the theme of the book, we're going to 
solve the Atwood machine using Lagrangian mechanics and the method of Lagrange 
multipliers just to illustrate the point that both of the formulations do give us the same 
results in the end.
 
First, however, let's take a look at how the Atwood machine would be solved using 
Newton's laws. This allows us to then verify later on that the results we get from 
Lagrangian mechanics is correct.
 
Essentially, the Atwood machine consists of two masses (  and ) connected by a m1 m2

cable on a pulley. We then want to find out how these masses behave when gravity 
pulls both of them downwards.
 
The forces in question (assuming no friction) will be the force of gravity, given by , mg
as well as the tension in the cable. The key here is that the tension acting on both of 
the masses as well as the acceleration of both masses will be the same since they are 
connected by the same cable (this is a constraint on the system, in some sense, and 
we'll formulate it into one when we get to solving this problem with Lagrangians):
 



 
As a sidenote, don't ask why these masses hanging on the pulley are fruits here.
 
Anyway, if we write down Newton's laws in the vertical direction for both the masses, 
choosing upwards as the positive direction, we get two equations (notice that the 
accelerations will have different signs):
 
T - m g = - m a1 1

T - m g = m a2 2

 
Let's take the first equation, subtract the second equation from it and then solve for :a
 
T - m g - T - m g = - m a - m a1 ( 2 ) 1 2

⇒   -m g + m g = - m a - m a1 2 1 2

⇒   a = g
m - m

m + m

1 2

1 2

 
This is the acceleration of both masses (it's a constant), which we could integrate twice 
to get the positions of the masses. Now, if we substitute this into one of our Newton's 
force equations, we can solve for the tension as well:
 
T - m g = m a2 2

⇒   T - m g = m g2 2

m - m

m + m

1 2

1 2



⇒   T = m g + m g2

m - m

m + m

1 2

1 2
2

⇒   T = g
2m m

m + m

1 2

1 2

 
So, we've obtained the acceleration and tension using Newton's laws, which pretty 
much tell us anything we want about the system. Now, let's see how we would solve 
the problem using Lagrangian mechanics.
 
In fact, this turns out to be a constraint problem when we use Lagrangian mechanics. 
Can you see what the constraint here would be? Well, it's the fact that the total length 
of the cable must be a constant at all times - we're assuming that the cable doesn't get 
stretched when the masses move up or down.
 
But first, let's choose some generalized coordinates to describe the system with. We 
can place the Atwood machine in an -coordinate system and describe the vertical x, y
coordinates of the masses as  and , which are both functions of time, of course:y1 y2

 

 
We're also calling the radius of the pulley thing as some constant . The value of this R
constant is not really important, but we need it to describe the length of this part of the 
cable that is wrapped around the pulley (which is just the circumference of a half-circle, 

).𝜋R
 
So, we have our two generalized coordinates,  and . But we also have a y t1( ) y t2( )



constraint - the total length of the whole cable must be constant, which we'll call .l
 
This  is going to be the sum of both of the hanging parts of the cable (given by  and l y1

) as well as the length of the part that's wrapped around the pulley, :y2 𝜋R
 
l = y + y + 𝜋R1 2

 
This is our constraint equation, which relates the two coordinates  and . Our y1 y2

constraint function (which is defined by ) is therefore:g y , y = 0( 1 2)
 
g y , y = y + y + 𝜋R - l( 1 2) 1 2

 
Let's now find the unconstrained Lagrangian for this system. The total kinetic energy is 
simply the sum of the kinetic energies of both the masses:
 

T = m + m
1

2
1 ␒y2

1

1

2
2 ␒y2

2

 
The total potential energy will be given by the sum of the gravitational potential 
energies of both masses (note the minus signs since we've chosen the coordinates  y1

and  to be measured below the  level):y2 y = 0
 
V = -m gy - m gy1 1 2 2

 
The Lagrangian is therefore:
 

L = T - V = m + m + m gy + m gy
1

2
1 ␒y2

1

1

2
2 ␒y2

2 1 1 2 2

 
We will have two equations of motion from the Euler-Lagrange equations (with 
constraints involving a Lagrange multiplier , which is the same for both equations) - λ

one for  and one for . These are given by:y1 y2

 

- = λ
d

dt

∂L

∂ ␒y1

∂L

∂y1

∂g

∂y1

⇒   m - m g = λ1␒␒y1 1

⇒   = + g␒␒y1

λ

m1

 



- = λ
d

dt

∂L

∂ ␒y2

∂L

∂y2

∂g

∂y2

⇒   m - m g = λ2␒␒y2 2

⇒   = + g␒␒y2

λ

m2

 
These are the two unconstrained equations of motion. We will now use our constraint 
equation to express the -coordinate in terms of :y2 y1

 
l = y + y + 𝜋R  ⇒   y = l - y - 𝜋R1 2 2 1

 
From this, we can see that  simply by differentiating the constraint equation = -␒␒y2 ␒␒y1

twice on both sides. Inserting this into the second equation of motion, we get:
 

= + g  ⇒   - = + g␒␒y2

λ

m2

␒␒y1

λ

m2

 
We can then insert the equation  into this and solve for := λ / m + g␒␒y1 1 λ

 

- + g = + g
λ

m1

λ

m2

⇒   λ = -
2g

+
1

m1

1

m2

⇒   λ = -
2m m g

m + m

1 2

1 2

 
We can now insert this into the equation of motion for :y1

 

= + g␒␒y1

λ

m1

⇒   = - + g␒␒y1

1

m1

2m m g

m + m

1 2

1 2

⇒   = 1 - g␒␒y1

2m

m + m

2

1 2

⇒   = g␒␒y1

m - m

m + m

1 2

1 2



 
Notice that this is the same expression we got for the acceleration when using 
Newton's laws. The whole thing on the right-hand side is just a constant, so we can 
simply integrate this twice to get (note; we're assuming both of the masses to be at rest 
initially):
 

y t = gt + y1( )
1

2

m - m

m + m

1 2

1 2

2
0

 
Here  is the initial position of mass . If we plug this into our constraint equation y0 m1

, we can solve for  as well:l = y + y + 𝜋R1 2 y t2( )
 
l = y + y + 𝜋R1 2

⇒   l = gt + y + y + 𝜋R
1

2

m - m

m + m

1 2

1 2

2
0 2

⇒   y t = gt + l - y - 𝜋R2( )
1

2

m - m

m + m

2 1

1 2

2
0

 
So, the final solutions for the coordinates as functions of time as well as the Lagrange 
multiplier are:
 

y t = gt + y1( )
1

2

m - m

m + m

1 2

1 2

2
0

y t = gt + l - y - 𝜋R2( )
1

2

m - m

m + m

2 1

1 2

2
0

λ = -
2m m g

m + m

1 2

1 2

 
The constraint force, i.e. the tension  (which is the same for both of the masses) is T
given by:
 

T = Q = λ = -c
y1

∂g

∂y1

2m m g

m + m

1 2

1 2

 
This is the same result we obtained from Newton's laws but with a negative sign 
instead. This simply comes from the discrepancy between how we chose the direction 
of acceleration in the Newtonian mechanics case and how we chose our generalized 
coordinates here. The tension has the same magnitude regardless, which is the 
important part here.



 
 

5.5.3. Particle Sliding off a Sphere

 
The following example is a particle that begins sliding (initially from rest) down a half-
sphere or a dome of some sort. At some point, it will fall off the surface of the sphere 
and we want to know exactly when the particle leaves the sphere.
 
In particular, we can describe the particle’s position by an angle  (relative to the 𝜃

vertical) as a generalized coordinate. We therefore want to find the specific angle  at 𝜃0

which the particle falls off the sphere:
 

 
This problem can, in fact, be done using Newtonian mechanics as well and the way to 
do this is to find the normal force of the surface and then look at when that normal force 
goes to zero, which will give you the angle at which the particle loses contact with the 
sphere.
 
However, using Lagrangian mechanics, we have to find the Lagrange multiplier, which 
turns out to describe the normal force. So, the basic idea to solve this problem is to find 
an expression for the constraint force (normal force of the surface), we just do it with 
different methods in the Lagrangian formulation compared to using Newton's laws.
 
This example also highlights an important application of the Lagrange multiplier method 
- to be able to not just find the constraint forces, but also analyze when these constraint 
forces may break down and not apply anymore.
 
This is because of the fact that in many systems (like our example here), the 
constraints will only apply up to a certain point, after which they may no longer describe 
the dynamics of the system accurately and it’s often important to know when this 
happens.

 
Now, let's begin by finding the Lagrangian for the particle. The Lagrangian turns out to 
be exactly the same as the Lagrangian for the (unconstrained) simple pendulum, but 



with the gravitational potential energy having a different sign:
 

L = m + r - mgr 𝜃
1

2
␒r2 2 ␒𝜃 cos

 
This just comes from the fact that the height in  is now the -coordinate, V = mgh +y
instead of  like we had with the pendulum earlier. In fact, this whole problem is very -y
similar to an inverted simple pendulum.
 
Now, above we have the “unconstrained” Lagrangian, so we haven’t used any 
constraints yet.
 
Our constraint for this system is that in the portion of the motion we care about, which 
is the part where the particle is ON the sphere still, the particle’s distance from the 
origin ( ) is just the radius of the sphere ( ), a constant. We can use this to get our r R
constraint function and constraint equation:
 
r = R  ⇒   g r = r - R = 0( )
 
Let’s now look at the equations of motion, which we have two of. First, the equation of 
motion for the -coordinate gives us:r
 

- = λ
d

dt

∂L

∂ ␒r

∂L

∂r

∂g

∂r

⇒   m - mr - mg 𝜃 = λ
d

dt
( ␒r) ␒𝜃2 cos

⇒   = + r - g 𝜃␒␒r
λ

m
␒𝜃2 cos

 
For the -coordinate, we have:𝜃
 

- = λ
d

dt

∂L

∂ ␒𝜃

∂L

∂𝜃

∂g

∂𝜃

⇒   mr - mgr 𝜃 = 0
d

dt
2 ␒𝜃 sin

⇒   r = gr 𝜃
d

dt
2 ␒𝜃 sin

 
It’s useful for us to leave the time derivative in this form, as we’ll see soon. Now, these 
are the two unconstrained equations of motion.
 



 
 
If we now use our constraint, , we have  and our equations of motion r = R = = 0␒r ␒␒r
become:
 

0 = + R - g 𝜃  ⇒   = 𝜃 -
λ

m
␒𝜃2 cos ␒𝜃2

g

R
cos

λ

mR

R = gR 𝜃  ⇒   = 𝜃
d

dt
2 ␒𝜃 sin ␒␒𝜃

g

R
sin

 
Now, there is actually a clever trick we can take advantage of here and that is to think 
of the Lagrange multiplier  as a function of time.λ
 
In fact, it is a function of time in this problem, because when the particle slides off the 
sphere, the Lagrange multiplier representing the constraint force will go to zero as the 
particle is not in contact with the sphere's surface anymore (and  represents the λ
normal force of the surface).
 
We can see this from the constraint force components, which are given by:
 

Q = λ = λc
r

∂g

∂r

Q = λ = 0c
𝜃

∂g

∂𝜃
 
In other words, the Lagrange multiplier is precisely the total constraint force in this case 
and it must be a normal force, since that's the only constraint force we could possibly 
have in this problem.
 
Therefore, in a sense, we can think of the Lagrange multiplier as a function of time (we 
could in fact, represent it as a piecewise function of time, but it's not necessary here).
 
If we think of the Lagrange multiplier as a function of time, we can then take the time 
derivative of the first equation (note that we have to use the chain rule on the left-hand 
side):
 

= 𝜃 -
d

dt
␒𝜃2

d

dt

g

R
cos

λ

mR

⇒   2 = - 𝜃 -␒𝜃␒␒𝜃
g

R
␒𝜃 sin

mR

␒λ



⇒   2 + 𝜃 = -␒␒𝜃
g

R
sin ␒𝜃

mR

␒λ

 

We now use our second equation ( ) and insert it into this one to get:= 𝜃␒␒𝜃
g

R
sin

 

2 𝜃 + 𝜃 = -
g

R
sin

g

R
sin ␒𝜃

mR

␒λ

⇒   𝜃 = -
3g

R
sin ␒𝜃

mR

␒λ

⇒   𝜃d𝜃 = - dλ
3g

R
sin

1

mR
 
Here, I've basically "cancelled" the 's from the time derivatives on both sides. This is dt
now in a nice form to be integrated on both sides.
 
We'll choose our integration limits for  to go from  to the angle at which the particle 𝜃 0

comes off the sphere, . For the right-hand side, the integration limits for  will be 𝜃0 λ

from some initial  to , since the Lagrange multiplier (constraint force) should go to λ0 0

zero when .𝜃 = 𝜃0

 
With these integration limits, we then get:
 

𝜃d𝜃 = - dλ
3g

R 0
∫

𝜃0

sin
1

mR

0

∫
λ0

⇒   - 𝜃 = - λ
3g

R

𝜃

0

0

( cos )
1

mR

0

λ0

⇒   1 - 𝜃 =
3g

R
( cos 0)

λ

mR

0

⇒   𝜃 = 3mg - λcos 0

1

3mg
( 0)

 
This equation defines the angle , at which the particle will slide off the sphere. Now 𝜃0

we just have to figure out what the value  of the Lagrange multiplier is initially. To do λ0

this, let's go back to the equation for  from earlier:␒𝜃2

 

= 𝜃 -␒𝜃2
g

R
cos

λ

mR



 
Let's look at what happens to this equation at . At , the Lagrange multiplier t = 0 t = 0

will have the value , which is what we want to figure out. The -coordinate will λ = λ0 𝜃

simply be  initially.𝜃 = 0
 
Now, we said earlier that the particle begins to slide down the sphere from rest initially. 

Therefore, at , we have . With all of these, we can find  from the above t = 0 = 0␒𝜃 λ0

equation:
 

0 = 0 -   ⇒   λ = mg
g

R
cos( )

λ

mR

0

0

 
This may not be a surprising result - in fact, since  corresponds to the normal force of λ
the sphere's surface, then initially when the particle is at the top of the sphere, the force 
of gravity  will be exactly equal to the normal force.mg( )
 
In any case, let's now plug this into our equation for  to get:𝜃0

 

𝜃 = 3mg - λcos 0

1

3mg
( 0)

⇒   𝜃 = 3mg - mgcos 0

1

3mg
( )

⇒   𝜃 =0 arccos
2

3
 
So, the particle falls off the surface of the sphere at approximately the angle . 𝜃 ≈ 48°0

Notice that this result does not depend on any of the properties of the sphere nor of the 
particle itself - any particle would fall off an arbitrarily big sphere at exactly the same 
angle of 48 . The only thing that would affect the value of this angle would be if the °
particle had some initial velocity and was not at rest initially.




