

Complex Numbers

- ► from Maths HL formula booklet complex numbers ◀
- complex numbers $z = a + ib = r(\cos\theta + i\sin\theta) = re^{i\theta} = r\operatorname{cis}\theta$
- De Moivre's theorem $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta) = r^n e^{in\theta} = r^n \text{cis}n\theta$

* answers included

Exercises

- **1.** Find the cube roots of *i* in the form a+bi, where $a, b \in \mathbb{R}$.
- 2. (a) Find x and y such that (x+3i)(x+iy)=1-i
 - (b) Find a and b such that $a+bi = \sqrt{5+12i}$
- 3. Find all solutions to the equation $z^5 32 = 0$. Express the solutions exactly.
- **4.** Given that $z_1 = 3 + 2i$ and $z_2 = 4 3i$
 - (a) Find $z_1 z_2$ and $\frac{z_1}{z_2}$, and express each in the form a + bi (Cartesian form).
 - (b) Verify that $|z_1 z_2| = |z_1| |z_2|$.
- 5. The complex number z satisfies the equation $\frac{z}{z+2} = 2-i$.
 - (a) Find z and express it in the form a+bi, where $a, b \in \mathbb{R}$.
 - (b) Find |z| and arg(z).
- **6.** (a) Find all solutions to the equation $z^4 + 4 = 0$.
 - (b) Hence, or otherwise, express $z^4 + 4$ as the product of two quadratic polynomials in z with real coefficients.

Complex Numbers

Answers

1.
$$z_1 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$
, $z_2 = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$, $z_3 = -i$

2. (a)
$$x = \frac{1}{25}$$
, $y = -\frac{7}{25}$ (b) $a = 3, b = 2$ or $a = -3, b = -2$

3. five solutions:
$$z = 2$$
, $z = 2\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)$, $z = 2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$, $z = 2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ and $z = 2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right)$

4. (a)
$$z_1 z_2 = 18 - i$$
, $\frac{z_1}{z_2} = \frac{6}{25} + \frac{17}{25}i$

5. (a)
$$z = -3 - i$$
 (b) $|z| = \sqrt{10}$, $\arg(z) \approx -2.82$ radians

6. (a)
$$z=1+i$$
, $1-i$, $-1+i$, $-1-i$ (b) $z^4+4=(z^2+2z+2)(z^2-2z+2)$