
Java Generics
Parametric Polymorphism

CASE STUDY: GENERIC MATRIX

DR. ERIC CHOU IEEE SENIOR MEMBER

Case Study: Generic Matrix Class I
This lecture presents a case study on designing classes for matrix
operations using generic types.

• The addition and multiplication operations for all matrices are similar
except that their element types differ. Therefore, you can design a
superclass that describes the common operations shared by
matrices of all types regardless of their element types, and you can
define subclasses tailored to specific types of matrices.

• This case study gives implementations for two types: int and
Rational. For the int type, the wrapper class Integer should be used
to wrap an int value into an object, so that the object is passed in
the methods for operations.

Case Study: Generic Matrix Class II
This lecture presents a case study on designing classes for matrix
operations using generic types.

• The class diagram is shown in Figure E. The methods addMatrix
and multiplyMatrix add and multiply two matrices of a generic
type E[][]. The static method printResult displays the matrices,
the operator, and their result. The methods add, multiply, and
zero are abstract, because their implementations depend on the
specific type of the array elements. For example, the zero()
method returns 0 for the Integer type and 0/1 for the Rational
type. These methods will be implemented in the subclasses in
which the matrix element type is specified.

UML GenericMatrix class
The GenericMatrix class is an abstract superclass for IntegerMatrix and
RationalMatrix

Figure E.

Case Study: Generic Matrix Class I
• IntegerMatrix and RationalMatrix are concrete subclasses of

GenericMatrix. These two classes implement the add, multiply, and zero
methods defined in the GenericMatrix class.

• GenericMatrix.java implements the GenericMatrix class. <E extends
Number> in line 1 specifies that the generic type is a subtype of Number.
Three abstract methods—add, multiply, and zero—are defined in lines 3, 6,
and 9. These methods are abstract because we cannot implement them
without knowing the exact type of the elements. The addMaxtrix (lines 12–
30) and multiplyMatrix (lines 33–57) methods implement the methods for
adding and multiplying two matrices. All these methods must be nonstatic,
because they use generic type E for the class. The printResult method (lines
60–84) is static because it is not tied to specific instances.

Case Study: Generic Matrix Class II
• The matrix element type is a generic subtype of Number. This

enables you to use an object of any subclass of Number as long as
you can implement the abstract add, multiply, and zero methods in
subclasses.

• The addMatrix and multiplyMatrix methods (lines 12–57) are
concrete methods. They are ready to use as long as the add,
multiply, and zero methods are implemented in the subclasses.

• The addMatrix and multiplyMatrix methods check the bounds of the
matrices before performing operations. If the two matrices have
incompatible bounds, the program throws an exception (lines 16, 36).

Case Study: Generic Matrix Class III
• IntegerMatrix.java implements the IntegerMatrix class. The class

extends GenericMatrix<Integer> in line 1. After the generic
instantiation, the add method in GenericMatrix<Integer> is now
Integer add(Integer o1, Integer o2). The add, multiply, and zero
methods are implemented for Integer objects. These methods are
still protected, because they are invoked only by the addMatrix
and multiplyMatrix methods.

Case Study: Generic Matrix Class IV
• RationalMatrix.java implements the RationalMatrix class. The

Rational class was introduced in Rational.java. Rational is a subtype
of Number. The RationalMatrix class extends
GenericMatrix<Rational> in line 1. After the generic instantiation,
the add method in GenericMatrix<Rational> is now Rational
add(Rational r1, Rational r2). The add, multiply, and zero methods
are implemented for Rational objects. These methods are still
protected, because they are invoked only by the addMatrix and
multiplyMatrix methods.

Case Study: Generic Matrix Class V

TestRationalMatrix gives a program that creates two Rational matrices (lines
4–10) and a RationalMatrix object (line 13) and adds and multiplies two
matrices in lines 17 and 19.

TestIntegerMatrix.java gives a program that creates two Integer matrices (lines
4–5) and an IntegerMatrix object (line 8), and adds and multiplies two matrices
in lines 12 and 16.

Case Study: GenericMatrix.java

Go BlueJ!

