
Path-Dependent

Types



class Outer {
class Inner

}

val outer = new Outer
val inner = new outer.Inner // outer.Inner is a separate TYPE = path-dependent type

Path-dependent types
Types that only exist while wrapped by other types or instances

Instance-dependent types are all different

val otherInner: outerA.Inner = new outerB.Inner // error: type mismatch

All instance-dependent types are children of a class-dependent type

val bigInner: Outer#Inner = new outerB.Inner // ok

Uses: type-checking/inference in libraries, type-level programming



Scala rocks


