
JVM Thread

Communication



val someObject = "hello"

someObject.synchronized { 

// code

}

Synchronized
Temporarily lock an object from multi-threaded access

lock this object's monitor

any other thread trying to call synchronized will block

the object's monitor is released

General principles
• make no assumptions about which thread gets the lock first

• keep locking to the minimum necessary
• always maintain thread safety: eliminate race conditions, deadlocks, livelocks



// thread 1
val someObject = "hello"
someObject.synchronized { 

// ... code part 1
someObject.wait()

// ... code part 2
} 

wait() and notify()
Waiting on an object's monitor suspends calling thread indefinitely

lock the object's monitor

release the lock and suspend

when notified by another thread,
re-acquire the lock and continue

// thread 2
someObject.synchronized { 

// ... code
someObject.notify()
// ... more code

} 

lock the object's monitor

signal one waiting thread to continue

the notified thread will continue 
after it acquires the lock

Which thread?
You don't know!

Use notifyAll()
to awaken all waiting threads



Scala rocks


