
Futures



// thread pool (Scala-specific)
given executionContext: ExecutionContext = ExecutionContext.fromExecutorService(executor)

val aFuture: Future[Int] = Future(calculateMeaningOfLife())

Futures
Computations that will finish at some point with a value

given executionContext passed here

Inspecting the value of a Future at this moment
• may be absent

• may be a failure

Callbacks: onComplete
• need to deal with potential failure

• evaluated on some other thread

aFuture.onComplete {
case Success(value) => ...
case Failure(ex) => ...

}



val action = profileFuture.flatMap { profile =>
SocialNetwork.fetchBestFriend(profile).map { bestFriend =>

profile.sendMessage(bestFriend, message) // unit
}

}

Functional Programming
onComplete is a hassle
• hard to read, understand, debug

• callback hell

Solution: functional programming
• map, flatMap, filter

• for comprehensions

Falling back
• recover, recoverWith

• fallbackto



import scala.concurrent.duration.*

Await.result(transactionStatusFuture, 2.seconds)

Blocking
Block the calling thread until the Future is completed
• returns the value inside

• throws if the Future is failed
• throws if the Future doesn't complete within the specified timeout

Notes
• .seconds is an extension method*

• necessary import for the .seconds extension method

Blocking is not recommended unless you have no other option



Scala rocks


