JVM Thread

Communication




Synchronized

Temporarily lock an object from multi-threaded access

val someObject = "hello"

someObject.synchronized { lock this object's monitor

any other thread trying to call synchronized will block

the object's monitor is released

General principles
* make no assumptions about which thread gets the lock first

+ keep locking to the minimum necessary
« always maintain thread safety: eliminate race conditions, deadlocks, livelocks



wait() and notify()

Waiting on an object's monitor suspends calling thread indefinitely

val someObject = "hello"
someObject.synchronized { lock the object's monitor

someObject.wait() release the lock and suspend

when notified by another thread,
re-acquire the lock and continue

Which thread?
You don't know!

someObject.synchronized { lock the object's monitor

someObject.notify() signal one waiting thread to continue Use notifyAll()

the notified thread will continue to awaken all waiting threads

after it acquires the lock




Scala rocks




