

Defining and Modifying IdentityIQ
Workflows

This document describes the process for creating and editing workflows in IdentityIQ. It covers the use of the

IdentityIQ UI’s business process designer, editing or creating workflows directly through their XML, and a number

of advanced topics related to workflows (such as custom forms and running workflows from tasks).

Defining and Modifying IdentityIQ Workflows Page 2 of 65

Table of Contents
Introduction ... 5

Workflow Basics ... 6

Terminology ... 6

Important Workflow Objects.. 6

Workflows Operation ... 6

Provisioning Plans in Workflows ... 7

Triggering Workflows ... 7

IdentityIQ’s Default Workflows .. 8

Workflow Types.. 9

Creating Workflows through the IdentityIQ UI .. 10

Process Editor Interface Overview ... 10

Process Details Tab ... 11

Process Variables Tab ... 12

Variable Initialization .. 12

Timing of Variable Definition .. 13

Process Designer Tab ... 13

Process Steps .. 13

Script .. 15

Rule .. 15

Subprocess ... 16

Call .. 16

Step Arguments .. 17

Return Variables ... 18

More on Start and Stop Steps... 18

Step Icons ... 18

Approval Steps ... 19

Approval Details ... 20

Approval Arguments ... 21

Work Item Configuration .. 22

More on Approval Modes... 22

Child Approvals ... 23

Defining and Modifying IdentityIQ Workflows Page 3 of 65

Step Transitions .. 25

Process Metrics tab .. 26

Editing Workflow XML .. 28

Accessing the XML .. 28

Debug Pages ... 28

IIQ Console ... 29

Re-importing the XML .. 30

Dollar-Sign Reference Syntax ... 30

XML Content... 30

Header Elements .. 31

Workflow Element.. 31

Variable Definitions .. 31

Initializer Options ... 32

Workflow Description... 33

Rule Libraries .. 34

Step Elements ... 34

Transition Element ... 35

Step Actions .. 36

Arguments .. 37

Return Elements ... 38

Call .. 39

Wait Attribute .. 40

“Catches” attribute ... 40

Approval Steps ... 40

Nested Approvals ... 44

Workflow Library Methods .. 45

Standard Workflow Handler ... 45

Identity Library ... 47

IdentityRequest Library .. 50

Approval Library ... 51

Policy Violation Library ... 51

Role Library .. 52

Defining and Modifying IdentityIQ Workflows Page 4 of 65

LCM Library .. 52

Monitoring Workflows ... 53

Viewing the Workflow Case XML .. 53

Advanced Workflow Topics .. 56

Loops within Workflows ... 56

Initiating Workflows from a Task or Workflow ... 56

Workflows Run from Custom Tasks .. 56

Workflows Run by Other Workflows .. 58

Custom Forms .. 59

Attributes ... 59

Buttons ... 59

Sections .. 60

Fields .. 60

Example of Custom Form XML ... 62

Defining and Modifying IdentityIQ Workflows Page 5 of 65

Introduction

A workflow is a sequence of operations or steps executed to perform work. The IdentityIQ Workflows – both

the standard “out of the box” workflows and custom workflows written for a specific installation -- are triggered

by system events. The available triggering events include:

 Role creation

 Identity update

 Identity refresh

 Identity correlation

 Deferred role assignment/deassignment

 Deferred role activation/deactivation

 Any Lifecycle Manager event

 Any Lifecycle Event (marked by changes to an Identity’s attributes)

Custom workflows can be defined to do a wide variety of processing and can make use of the product’s

workflow library methods and rules as well as custom java scripts and rules. Workflow customization and

construction usually involve a combination of XML and Java programming. Some customization activities can be

managed through the graphical process editor included in the product, but typically, implementers involved in

customizing or creating new workflows will need to be comfortable writing both XML and Java.

This document is divided into four chapters, each covering key subjects related to Workflows:

1. Workflow Basics

2. Creating Workflows through the UI

3. Editing Workflow XML

4. Advanced Workflow Topics

Defining and Modifying IdentityIQ Workflows Page 6 of 65

Workflow Basics

This section contains some key concepts that are important to understanding the usage and development of

workflows.

Terminology

In IdentityIQ and throughout this document, the terms Business Process and Workflow are used synonymously.

The IdentityIQ user interface refers to these sets of connected actions as Business Processes -- the term most

often used by business managers. Behind the scenes, in the IdentityIQ object model and XML, they are called

Workflows; they control the flow of data through the required processing.

Important Workflow Objects

There are four key objects in the IdentityIQ Object Model that are used in workflows. A basic understanding of

these objects is important to fully comprehending workflows. Of these, the one most critical to writing

workflows is the WorkflowContext, since it tracks the runtime state of the workflow and is passed to the

Workflow Handler and all rules, scripts, and library methods used in workflows; this means data can be

extracted from it as needed within any step of the workflow.

Object Usage

Workflow Defines the workflow structure and steps involved in the workflow processing

WorkflowCase Represents a workflow in flight; contains a Workflow element in which the process is
outlined and current state data is tracked, as well as identifying information about the
workflow’s target object

WorkflowContext Runtime information maintained by Workflower as it advances through a workflow
case; passed into rules and scripts and to the registered WorkflowHandler; contains
all workflow variables, step arguments, current step or approval, workflow definition,
libraries, and workflowCase

Task Result Records the completion status of a task, or in this case, the workflow; contained
within the WorkflowCase

Workflows Operation

Workflows carry out a sequence of defined actions based on a triggering event, and they can be used to

accomplish a wide variety of activities within the system. However, it is important to remember that in its

running state, a workflow is tracked through a workflow case, which manages only one target entity at a time:

one Identity, one Role, etc. If multiple Identities are modified at one time in a way that requires a workflow to

run for all of them, a separate workflow case is created for each to track the processing of the workflow for that

single Identity.

Defining and Modifying IdentityIQ Workflows Page 7 of 65

Provisioning Plans in Workflows

A Provisioning Plan contains a list of requested changes to an individual Identity. Just as a workflow case can

address only one Identity at a time, it can also reference only one provisioning plan at a time. If changes are

requested for more than one Identity at a time, even if the same change is requested for all the Identities, a

separate provisioning plan will be created for each Identity and each of the provisioning plans will be managed

individually by the separate workflow cases created to manage each identity’s workflow.

It is a common mistake for developers of custom workflows to attempt to access more than one provisioning

plan in a single workflow; this will not work because of the design of the underlying workflow engine.

Triggering Workflows

Workflows are triggered by events that occur in other parts of IdentityIQ. Many are invoked by Lifecycle

Manager actions, where changes to an Identity’s roles, entitlements, or accounts are requested. Others are

triggered by Lifecycle Events, when Identities are created, deactivated, moved from one manager to another, or

otherwise modified in a way that is configured to trigger a workflow. Some non-lifecycle events can also

activate workflows.

There are three windows in the IdentityIQ application interface where workflows are associated to system

activities.

1) The workflows invoked by Lifecycle Manager requests are specified in the Lifecycle Manager

Configuration window’s Business Processes tab (accessible through the menu options (System Setup ->

Lifecycle Manager Configuration).

Figure 1: Lifecycle Manager Workflow Configuration

Defining and Modifying IdentityIQ Workflows Page 8 of 65

2) Workflows invoked by Lifecycle Events are specified on the Lifecycle Event definition itself:

Figure 2: Lifecycle Event Workflow Specification

3) Non-LCM-related workflows are linked to triggering events on the Configure IdentityIQ Settings page’s

Business Processes tab (menu option System Setup -> IdentityIQ Configuration):

Figure 3: Non-LCM Workflow Selection

It is also possible to configure an IdentityIQ task to kick off a workflow. This is a slightly more complex

undertaking that is described in the

Defining and Modifying IdentityIQ Workflows Page 9 of 65

Advanced Workflow Topics section at the end of this document.

IdentityIQ’s Default Workflows

Out of the box, IdentityIQ is preconfigured with 25-30 workflows that manage activities such as provisioning of

roles or entitlements, account management, identity creation, and password management. The default

workflows can be configured and customized to address the specific business requirements of each installation.

Additionally, new workflows can be written and applied to any of the actions in IdentityIQ that execute

workflows.

Workflow Types

The default workflows fall into several pre-defined workflow types; the assigned type is used to determine

which workflows to present in the configuration list boxes when workflows are specified for triggering based on

a specific system event. For example, Role create, update, and delete actions can trigger workflows of type

RoleModeler so only workflows of that type are listed in the drop-down list for that configuration option.

Figure 4: Type filters on Workflow selection lists

NOTE: Workflow can be assigned custom Types but will then only be selectable for triggering through the UI on

Lifecycle Events; Lifecycle Events can trigger workflows of any type.

The table below indicates the Workflow Type invoked as a result of each type of action within IdentityIQ.

System Activity Associated Workflow Type

Role create, update, and delete RoleModeler

Identity update IdentityUpdate

Identity refresh IdentityRefresh

Identity correlation IdentityCorrelation

Deferred role assignment
Deferred role de-assignment

DeferredRoleAssignment

Deferred role activation
Deferred role deactivation

DeferredRoleActivation

Request Roles
Request Entitlements
Manage Accounts
Manage Passwords

LCM Provisioning

Edit Identity
Create Identity

IdentityUpdate

Defining and Modifying IdentityIQ Workflows Page 10 of 65

Lifecycle Event Any (Lifecycle Event Business Process selection list does not
filter on type)

Some complex workflows are subdivided into multiple “sub-process” workflows that are invoked by a master

workflow. This simplifies the structure of the master workflow and makes workflows easier to manage. It also

promotes reusability, since more than one master workflow can invoke the same sub-processes. As a standard

practice, these smaller workflows are assigned the type “Subprocesses”. Although this type is not associated

with any system functionality, this type designation allows a reader to identify the workflow as a sub-process of

a larger workflow at a glance.

Creating Workflows through the IdentityIQ UI

IdentityIQ’s user interface provides a graphical tool for defining Workflows, which includes creating the steps

that comprise the required actions and outlining the transitions between those steps. This graphical approach

can be very helpful in quickly setting up the desired structure. It also provides a user-friendly representation of

the process flow that can be useful in creating documentation about the activities included in the workflow.

Figure 5: Graphical Process Designer

Commonly, implementers use the graphical editor to outline the process and then move to the XML

representation to flesh out or adjust the details of each step. Once the process has been saved, its XML

representation can be viewed, edited, and exported from the IdentityIQ Debug pages.

NOTE: Some steps in workflow development may not be possible through the UI. It should be assumed that

most workflows will require direct editing in the XML representation, as well as some amount of Java coding.

Workflow development generally cannot be completed without an understanding of the syntax of both XML and

Java.

Defining and Modifying IdentityIQ Workflows Page 11 of 65

Process Editor Interface Overview

The business process editor user interface makes it easy to create a basic workflow. The interface contains four

tabs: Process Details, Process Variables, Process Designer, and Process Metrics; the functionality of each of

these is listed in the table below.

Interface Tab Purpose

Process Details Specify Name, Type, and Description of the workflow

Process Variables Specify any variables that apply to the workflow; this includes any input variables,
return values, and working variables for use within the process’s steps

Process Designer Graphically represent the process, specify the actions involved in each step, and
provide the evaluation conditions for moving from one step to another (transitions)

Process Metrics Review statistics gathered for the process as it executes.

To access the Business Processes Process Editor, navigate to Define -> Business Processes. Select an existing

workflow from the Edit an Existing Process list to view or modify it, or click New Process to create a new

Workflow.

Figure 6: Edit or Create a Business Process

Navigate through each of the process tabs to view or modify the workflow’s data, as specified in the next

sections.

Process Details Tab

On the Process Details tab, specify the Name, Type, and Description for the workflow.

Defining and Modifying IdentityIQ Workflows Page 12 of 65

Figure 7: Process Details tab

The Name should be a short descriptive name for the workflow, and the Description should provide an overview

of what the workflow does. The Type field should generally be selected from the drop-down list of predefined

workflow types but can be a custom type (subject to the limitations described in Workflow Types in the

Workflow Basics chapter). To enter a custom type, enter the desired type name in the box instead of selecting

one from the list.

Process Variables Tab

The Process Variables tab lists variables available to the workflow. These include input and output variable for

the workflow, as well as any working variable used in the workflow’s processing.

Figure 8: Process Variables tab

Variables can be marked as Input, Required, Editable, and/or Output. Those flags’ impacts on the variables are

described in this table.

Flag Purpose

Input Specifies that the variable is one of the arguments to the workflow, passed in when
it is invoked.

Required Indicates that the variable must contain a value (non-null) when the workflow starts

Defining and Modifying IdentityIQ Workflows Page 13 of 65

Editable Allows the variable to be modified by steps in the workflow

Output Stores the variable in the workflow’s TaskResults Output Variables list; TaskResults
is used for recording the progression status and results of the workflow (viewable
through the Manage -> Tasks -> Task Results window)

NOTE: As variables are created through the UI, new ones are inserted in the list above the existing variables.

When the XML representation of the workflow is generated, the variables are listed in the order they were

created – the opposite of the order they are displayed in the UI. If any variables in the XML reference other

variables in their initializations, the referenced variable must be declared first, so the order of variable

declarations may matter.

Variable Initialization

Variables can be initialized for the workflow by specifying an Initializer for them on this window. The

recommended best practice is to use initializers for the workflow variables, rather than creating multiple process

steps to initialize each variable.

There are five options for how initialization can occur:

Initialization Type Description

String Assigns a literal value to the variable

Script Sets the variable value through a segment of Java beanshell code

Rule Assigns the return value of a workflow Rule (Java beanshell code) to the variable

Call Assigns the return value of a call to a compiled Java method in a workflow library to
the variable

Reference Sets the variable value through a reference to one of the workflow’s other process
variables (sets to same value as referenced variable)

NOTE: Variable values passed into the workflow through workflow arguments supersede variable initializations,

so any value provided in an argument will cause the initializer for that argument variable to be ignored.

Timing of Variable Definition

Some variables will be known at the beginning of workflow development and can be defined even before the

graphical process design occurs. Others may come up throughout the development process. The UI does not

restrict variable usage during development to only those that have been previously defined on the Process

Variables tab, so variable definition can be done before, during, or after the design process.

Process Designer Tab

The bulk of the work in creating a workflow is done on the Process Designer tab. The workflow’s activities are

determined by the Steps and Transitions created for it.

Defining and Modifying IdentityIQ Workflows Page 14 of 65

Figure 9: Process Designer

Process Steps

At its very simplest, a workflow involves a minimum of 3 Steps: a Start step, a processing step, and a Stop step

(also often called “End”). Though IdentityIQ does not require it, the recommended best practice is for all

workflows to contain a Start and Stop step and for these two steps to contain no “action.” Workflows may

contain as many or as few processing steps as are necessary to manage the required actions. Steps are added in

the Process Designer by clicking the desired step type in the Add A Step section of the Process Editor window.

The steps can be dragged around the Process Designer grid to line them up visually according to a logical

progression.

Figure 10: Adding Steps to a Process

The contents of a step can be edited by right-clicking the step and clicking Edit Step.

Figure 11: Edit a Process Step

Defining and Modifying IdentityIQ Workflows Page 15 of 65

This opens the step details window. Here, the Name and Description of the step can be recorded; its Result

Variable (return value), if any, can be named; and its Action can be specified.

Figure 12: Step Details window

Each step can take one of four types of action:

Action Description

Script Execute a segment of Java beanshell code that is included in the step

Rule Execute a workflow Rule – a block of Java beanshell code encapsulated in a reusable rule

Subprocess Invoke another defined workflow, passing control to it until it completes

Call Call a compiled java method in the IdentityIQ workflow library, exposed through the
standard workflow handler

The Enable Monitoring flag on this window turns on metrics tracking for the step. See Process Metrics tab for

more information on process monitoring and metrics.

Script

Scripts are java beanshell code that must be written by the implementer to execute a desired action. They are

written directly in the Source box on the step’s detail window.

Defining and Modifying IdentityIQ Workflows Page 16 of 65

Figure 13: Step containing a Script

NOTE: The script examples in this document all show very short java beanshell code blocks, but there is no set

length for a script; a script block within the XML can be as short or long as necessary to accomplish the required

processing.

Rule

Rules are also blocks of java beanshell code. Code encapsulated in a Rule is available for reuse by other areas of

the application that can invoke a rule of the same type. Rules created through this window are of type

“Workflow” and can be used by any workflow. When Rule is chosen as the Action, an existing workflow rule can

be selected from the list or a new rule can be written in the rule editor (opened by clicking the button).

Figure 14: Step executing a Rule

Subprocess

Subprocesses are other workflows. These are used to subdivide complex processes into smaller segments that

are more easily managed and can be potentially reused by other workflows. Subprocesses are complete

workflows in themselves, so they contain a Start step, a Stop step, and as many processing steps as are needed

to complete their activities.

Defining and Modifying IdentityIQ Workflows Page 17 of 65

Figure 15: Step invoking a Subprocess

Call

The IdentityIQ workflow library contains a set of methods that can be executed from within a workflow; these

are exposed through the standard workflow handler, which is called by the workflow engine every time

something happens in a workflow. Every workflow has access to the methods in the standard workflow handler.

Additional libraries of methods are also available for use in workflows. When no Library list is specified for the

workflow, the default is to include access to the Identity, Role, PolicyViolation, and LCM libraries.

NOTE: Through the XML, other libraries, including custom libraries for an installation, can be specified; the UI

does not offer an option for managing the library list. Specifying a library list overrides the default and requires

that any of the default libraries whose methods are needed by the workflow also be explicitly included in the

library list. See Workflow Element in the XML chapter for more details on specifying a library list.

When Call is selected for the workflow step’s Action, the method name is specified in the Source box. The

methods in these workflow libraries are listed and briefly described in the Workflow Library Methods section of

the Editing Workflow XML chapter.

Figure 16: Step calling a workflow library method

Step Arguments

When arguments need to be passed to the script, rule, subprocess, or library method invoked by a step, they

must be specified on the step’s Arguments tab.

Defining and Modifying IdentityIQ Workflows Page 18 of 65

Figure 17: Step Arguments tab

 Arguments can be specified in any of the following ways:

Type Description

String a literal value (example: explicitly provide the name of an email template to use)

Script a segment of java beanshell code that returns a value

Rule a workflow Rule that returns a value (works like Script except beanshell is contained
within a re-usable rule)

Call a call to a workflow library method that returns a value

Reference a reference to one of the workflow’s process variables

NOTE: Complexity arises when the Script, Rule, or library method used in an Argument requires arguments itself.

Scripts, Rules, and Library methods specified within arguments automatically have access to the workflow

context, which means they can access workflow variables directly, as needed, through the workflow context

“get” methods. However, arguments also automatically get access to the step arguments declared before them

in the step. Since retrieving data from the workflow context can be cumbersome, it is often easier to declare the

variables needed by the script/rule/call as earlier arguments to the step so they are directly accessible to the

later argument’s script, rule, or called method.

For example, when these two step arguments are declared in this order, the method called to populate

Identity_mgr can use the value in Identity_name in its processing if needed:

Argument Name Value Type Value Source

Identity_name Reference IdentityName

Identity_mgr Call getManager

Return Variables

Each step can return only one Result Variable, which can be specified through the UI. Steps in which the Action

invokes a Subprocess can also use “Return” Variables, by which multiple values can be passed back from the

subprocess to the main workflow. These, however, must be specified directly in the XML, as the UI does not

provide a vehicle for declaring Return variables. See Return Elements for more information on declaring these

variables.

Defining and Modifying IdentityIQ Workflows Page 19 of 65

More on Start and Stop Steps

Like other steps, Start and Stop steps can contain Actions that execute scripts, rules, subprocesses, or calls to

workflow library methods. By convention, these steps are included in every workflow but are there only to

designate a clear starting and ending point for the workflow. They are generally left as empty steps (no action),

though occasionally, debugging messages may be printed from them to trace workflow progress during

development.

Step Icons

When steps are first added through the Process Designer, only three icon types are available: Start, Stop, and

Generic Step. To change a step’s icon, right-click the step and click Change Icon. Select the desired icon style

from the pop-up window that appears.

Figure 18: Step Icon Options

Approval Steps

Approval steps are a special case of step in IdentityIQ. Approvals allow data to be gathered from a user through

a work item. In a true approval, the user is asked to review a requested action (e.g. granting a Role to an

Identity) and give their approval for it to be processed.

Approvals can also be used more broadly to ask a user to provide other data, such as providing a value for a

missing attribute, like an Identity’s Department name. This second usage of approvals commonly involves the

use of custom forms, which must be done through XML rather than the UI. This is documented more in the

Approval Steps section in the Editing Workflow XML chapter and in the Custom Forms section of the Advanced

Workflow Topics chapter.

To create a basic approval through the user interface, right-click the desired step and click Add Approval.

Defining and Modifying IdentityIQ Workflows Page 20 of 65

Figure 19: Add Approval to a Step

NOTE: A step can either contain an action or an approval but not both. Approval steps are only used for

approval processing, not for performing other actions (scripts, subprocesses, etc.) as well.

Once the approval exists in a step, it can be edited by right-clicking the step and clicking Edit Approval or by

choosing Edit Approval from the Step Details window.

Figure 20: Edit Approval on a Step

The Approval can be constructed in many ways, ranging from a simple one-person approval to a complex

approval process involving multiple people with different approval modes and notification schemes. Approvals

are highly customizable to meet a wide variety of business needs.

Approval Details

Every approval includes the following fields to be completed on the approval’s Details tab:

Field Description

Name User-defined name for the approval

Send Comma-separate list of process variable names to be sent to the approval

Return Comma-separated list of variables names to copy from the completed approval work item
back into the workflow

renderer JSF (Java Server Faces) include to render the work item details

Mode Keyword to specify how approval is processed; Mode can be determined from string,
script, rule, call, or reference (default is string)

Defining and Modifying IdentityIQ Workflows Page 21 of 65

Valid values are:
serial – approvers are specified in order and item is passed to each approver in that order;

if any approver in the chain rejects, item is rejected
serialPoll – approvers are specified in order and item is passed to each approver in that

order; data is collected on approvals and rejections but rejection by one does not
mean rejection of item; action decision is expected to be specified in AfterScript
logic

parallel – item is sent to all named approvers at one time; item is rejected if any approver
rejects it

parallelPoll – item is sent to all named approvers at one time; data is collected on
approvals and rejections but rejection by one does not mean rejection of item;
action decision is expected to be specified in AfterScript logic

any – item is sent to all named approvers at one time; first approver to respond makes
the decision for the group

Owner Approver for the approval; this can be more than one Identity name; it can be specified by
string, script, rule, call, or reference
When more than one owner is specified, Mode determines how and when the item is
submitted to each listed owner (parallel, parallelPoll, and any modes submit the approval
work item to all owners at once; serial and serialPoll modes wait until the first owner has
completed the approval before submitting to the next in the list)

Description Defines work item description (shown as the work item Name in the approver’s Inbox);
set by string, script, rule, call, or reference

Figure 21: Approval Details window

 Approval Arguments

Arguments to the Approval can be set on the Arguments tab. In general, most variables are passed to approval

through “send” list, but any arguments that require transformation (through script/rule/library method) must be

Defining and Modifying IdentityIQ Workflows Page 22 of 65

sent through an Arg element. Additionally, args defined with reserved system names (listed in the XML

chapter’s Approval Steps section) are passed through the Arg element with the reserved name specified.

Figure 22: Argument to Approval (reserved name example)

Work Item Configuration

The Work Item Configuration tab allows the user to specify some details about the work item’s notification and

escalation/reminder policy. The work item is what appears in the “owner’s” IdentityIQ inbox, requiring their

input (i.e. the approval request itself). If no configuration is specified, the default work item configuration is

used. To change the configuration for the work item, first select Override Work Item Configuration.

Figure 23: Work Item Configuration specification

These are the configuration options available on the Work Item Configuration tab:

Option Description

Initial Notification Email Change the notification email template by selecting the desired template from
the list

Open Work Item Select to create a work item for the approval; almost always selected
Only in rare cases where a notification is desired but no work is required would a
work item not be created.

Escalation Choose an escalation policy:
None: no escalation
Send Reminders: allows configuration of reminder options (days before first

Defining and Modifying IdentityIQ Workflows Page 23 of 65

reminder, frequency, email template)
Reminders then Escalation: allows reminder option configuration plus escalation

option configuration (reminders before escalation, escalation owner rule,
escalation email)

Escalation Only: allows configuration of escalation options (days before
expiration, escalation owner rule, escalation email)

Owner Specify the owner of the work item configuration (not currently used in workflow
processing, so can be left blank)

More on Approval Modes

The Mode on an approval is a very powerful tool, especially when more than one owner is involved. Through

this simple variable specified by the designer, the workflow engine is able to create automatically the order and

process in which the item will be reviewed and approved by the specified owner(s).

For example, to have three different Identities review and approve an item, stopping the review process the first

time someone rejects the item, all the workflow designer must do is specify the three identities as the approval

owners and select “Serial” mode. (The identities can be specified with literals but more commonly are identified

programmatically based on their relationship to the approval item – e.g. manager, owner, etc.) Likewise, to get

the input of four different people and make a decision based on a majority rule of their responses, specify the

four identities as the approval owners and select “SerialPoll” or “ParallelPoll” mode to have the system collect

the responses from all the approvers.

NOTE: Since the “Poll” modes are designed to collect responses without making automatic decisions based on

any responder’s rejection of an item, these approvals continue forward until they are intercepted and redirected

programmatically. They expect the “AfterScript” for the approval to collect the responses and direct the

appropriate course of action. The AfterScript cannot be specified through the UI and must be written in XML.

See the XML chapter’s Approval Steps section for more details.

When multi-person approvals are specified as a single approval with multiple owners, the work item

configuration is exactly the same for all owners. To customize the presentation for individual users or to create

more complex structures that use different approval modes for different sets of users, child approvals must be

defined.

Child Approvals

Child Approvals allow the workflow designer to customize approval processing or presentation for the different

sets of Identities involved in the approval process. For example, perhaps a change in a user’s assigned “region”

requires someone in HR to sign off on it and also requires manager approval; the approval of the Identity’s own

manager is required, but it does not matter which HR individual completes the sign-off, as long as one of them

does. This approval can be created through child approvals.

To create a child approval, click Add Child Approval on the parent approval’s Details tab. Then click the child

approval in the Approval Children hierarchy to select it for editing.

Defining and Modifying IdentityIQ Workflows Page 24 of 65

Figure 24: Add a Child Approval

To set up the approval described in the example, create two child approvals: HR Approval and Manager

Approval. HR Approval will be set up as a “Mode: Any” approval so any of the Identities who meet the criteria

can make the decision for the group. Manager Approval will be set up as a Serial approval with the Identity’s

manager specified as the Owner (since only one person is involved, the mode doesn’t actually matter here, but

Serial is the default mode).

Figure 25: Child Approval 1 (HR Approval)

Defining and Modifying IdentityIQ Workflows Page 25 of 65

Figure 26: Child Approval 2 (Manager Approval)

NOTE: The reference variables HRApprovers and identityManager shown above are process variables defined

with initialization scripts that retrieve the appropriate sets of Identities.

If either approval requires a custom work item configuration, it can be specified on that approval’s Work Item

Configuration tab. Work Item Configurations are inherited by child approvals (unless specifically overridden for

the child). Therefore, if a single custom work item configuration is desired for the entire set of approvals, it

should be specified on the parent approval’s Work Item Configuration tab and will be inherited by the child

approvals.

Step Transitions

Steps are connected through “Transitions.” Transitions may simply connect one step to the next in a sequential

fashion or may include evaluation statements that allow for conditional processing (i.e. certain data conditions

can cause the workflow to execute step A vs. step B).

Figure 27: Transitions with and without conditions

Defining and Modifying IdentityIQ Workflows Page 26 of 65

To edit the transition conditions, right-click the transition diamond and click Edit Transitions.

Figure 28: Transition conditions

A transition can have as many conditions to evaluate (and resulting next steps) as desired. Conditions are

evaluated in the order they are listed. The up and down arrows in the transitions dialog box can be used to re-

order the conditions. The final transition option usually specifies no conditions so its path is followed when none

of the other conditions have been met. (This is a recommended best practice.)

Conditions can be expressed as any of the following:

Type Description

String Not used; this is an artifact of the common structure used for variable setting and does
not really apply to conditions; a literal value of “True” or “False” could be specified but
then does not allow any evaluation in the transition – True would always execute the
associated step and False would always bypass it

Script Segment of java code that evaluates process variables

Rule Workflow rule containing reusable segment of java code to evaluate process variables

Call Call to invoke a Java method in the IdentityIQ workflow library, exposed through
standard workflow handler

Reference Evaluation of a defined process variable

Conditions must evaluate to Boolean values (True = execute the step specified; False = evaluate the next

condition in the list). Selecting the Negate option changes the evaluation to its opposite, so if the condition

evaluates to False, the negate option changes it to True and results in transition to the specified step.

NOTE: Good design dictates that all processing options eventually lead to the “Stop” step, so every route should

eventually conclude with a step that transitions to Stop.

Defining and Modifying IdentityIQ Workflows Page 27 of 65

Process Metrics tab

The Process Metrics tab displays statistics about the workflow’s execution. It indicates how often it has run,

how often it has succeeded or failed, the execution duration (average and maximum) and the date it last ran.

This can be useful for troubleshooting workflows by showing at a glance whether the workflow is failing

regularly and whether it is a longer-running process than might be expected.

Additional process metrics, including data tracked at the step level, can be viewed through the Analyze ->

Advanced Analytics -> Process Metrics Search tab.

Metrics tracking can be turned on for individual workflow steps on the step Details window by selecting Enable

Monitoring.

Figure 29: Enable Monitoring Flag

Defining and Modifying IdentityIQ Workflows Page 28 of 65

It can be turned on for all steps in a workflow by clicking Monitor Entire Process at the bottom of the business

process editor window.

Figure 30: Monitor Entire Process option

Defining and Modifying IdentityIQ Workflows Page 29 of 65

Editing Workflow XML

Many implementers choose to do the initial workflow creation through the UI and complete the process by

editing the XML directly. Still others may opt to do all workflow development in XML, bypassing the UI

altogether. They may choose either to write the XML from scratch or to use an existing workflow’s XML as a

template for a new process. All of these approaches are valid and may be used as desired.

Accessing the XML

The XML for existing workflows can be viewed and edited through the IdentityIQ Debug pages or can be

exported through the IdentityIQ Console.

Debug Pages

To view the XML in the Debug pages, navigate to the Debug pages URL: [IdentityIQ access path]/Debug. Select

Workflow from the object list and click List to see a list of all defined Workflows in the system.

Figure 31: List Workflows from Debug Pages

Figure 32: List of Workflow Objects

Defining and Modifying IdentityIQ Workflows Page 30 of 65

Click the desired Workflow’s name to view its XML representation. The XML can be edited, and changes saved,

through this window. It can also be copied from here and pasted into an external editor of choice – perhaps one

that offers syntax highlighting.

Figure 33: Edit Workflow in Debug Pages

IIQ Console

Alternatively, one or more workflows can be exported from IdentityIQ through the console. The console export

is the most efficient way to get the XML for all workflows extracted from the system at once. The iiq console

export command can extract all the Workflow XMLs into a single file at once. Many developers then opt to

parse the XML into a separate file for each workflow and save the files in the installation’s source code control

system for later use in system environment migrations or in product upgrade processes.

Figure 34: iiq console export command

Defining and Modifying IdentityIQ Workflows Page 31 of 65

Re-importing the XML

Only Workflow XML saved within IdentityIQ will be executed by the system, so externally edited XML documents

must be reimported for the changes made to them to take effect.

This can be done using the console’s import command or through the user interface’s System Setup -> Import

from File option.

Figure 35: Console Import command

Figure 36: Import from File window

Dollar-Sign Reference Syntax

Workflow variables can be referenced inside XML tags (as well as in user interface fields) through $() notation

and will be resolved into their variable values. For example, if a variable identityName is defined and contains

the full name of an Identity (e.g. “John Smith”), an Arg specified as:

<Arg name=”FullIdentityName” value=”$(identityName)”>

passes “John Smith” as the value for the variable FullIdentityName.

When the variable is used alone like this, it functions the same as specifying value=“ref:identityName”, but the

more common usage of this is to include the variable in a longer string such as:

<Arg name=”Title” value=”Role Update for $(identityName)”>

which passes “Role Update for John Smith” as the value for the variable Title.

XML Content

This section describes the elements present in the workflow XML and explains their usage.

Defining and Modifying IdentityIQ Workflows Page 32 of 65

Header Elements

The following three lines must be included as shown in any workflow document. The <sailpoint> tag must, of

course, be matched with a </sailpoint> tag at the end of the workflow document.

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE sailpoint PUBLIC “sailpoint.dtd” “sailpoint.dtd”>

<sailpoint>

Workflow Element

The Workflow tag identifies the name and type of the workflow.

<Workflow explicitTransitions=”true” name=”WF-Training Hello World Workflow”

type=”IdentityUpdate”>

The Workflow element’s attributes are as follows:

Workflow Attribute Purpose

name Short descriptive name for the workflow (displayed in UI selection list-boxes and list
of existing business processes on the Process Editor window)

type Workflow type; used to filter workflow selection lists in configuration windows
(where the user can select which workflow to invoke based on certain system
activities)

explicitTransitions Boolean value indicating that transitions between steps are explicitly specified and
workflow should not resort to implicit (fall-through) transitions when no transition
conditions evaluate to true; default is “false”, so omitting this argument means that
if transition conditions specified all evaluate to false, the workflow will use implicit
transitions and execute the next sequential step in the XML;
not an issue if developer follows the best practice of making last transition in any set
unconditional

libraries Lists workflow libraries needed by the workflow; when not specified, workflows
automatically have access to Identity, Role, PolicyViolation, and LCM libraries (see
Workflow Library Methods for library content details)

handler The default workflow handler is “sailpoint.api.StandardWorkflowHandler” – does not
need to be specified when this is used (best practice is to omit in this case); when a
custom workflow handler is used, it must EXTEND the default handler (not just
replace) and must be specified in the workflow’s Handler argument

Variable Definitions

SailPoint’s recommended best practice is to identify all variables for the workflow at the top of the XML

document (though this is really only for readability). Therefore, the variable definitions come next in the XML.

Minimally, variable elements require a name. Other attributes can indicate the variable’s type and usage (input,

required, editable, return). A description can, and generally should, be specified for each variable. When

needed, an initialization value can also be provided. It is strongly recommended that the initialization option be

used rather than creating separate steps to initialize each variable; using initialization values is more efficient

Defining and Modifying IdentityIQ Workflows Page 33 of 65

(from a development standpoint), easier to read, and easier to debug (since Trace reports initializations as they

occur). For more on variable initialization, see Initializer Options below.

<Variable input=”true” name=”project” output=”true” required=”true”>

 <Description>

 Project that has account requests in the QUEUED state.

 </Description>

 </Variable>

<Variable editable=”true” initializer=”true” name=”doProvisioning”>

 <Description>Set to true to cause immediate provisioning after the

assignment</Description>

 </Variable>

Some parts of the variable definition are expressed within attributes on the Variables element; other parts are

expressed through nested elements of their own.

Variable Attribute Purpose

name Variable name

type Variable type (often omitted; type declaration is not enforced by the application and
generally used primarily for documentation)

initializer Initialization value for the field; (see below for more details)

input Flag indicating that the variable is an argument to the workflow (omitted if not true)

output Flag indicating that the variable is a return value for the workflow (omitted if not true)

required Flag indicating that the variable is a required field for the workflow (omitted if not
true)

editable Flag indicating that the variable can be edited by the workflow (omitted if not true)

Nested Tag within
Variable Element

Purpose

Description Provide a description of the variable’s usage/purpose

Script Alternative to script in initializer attribute value; should be used for initializer scripts
of any length or complexity

Source Nested within the Script tag; contains the java beanshell source for the action to be
executed

Initializer Options

The Initializer attribute requires additional attention. When set through the user interface, options include

specifying it as a string, script, rule, call, or reference. The same options are available directly through the XML.

NOTE: The initializer for a variable is only used when a value for the variable is not passed in to the workflow.

Initializer Type Description and Examples

string Assign a literal value to the variable
NOTE: String is default initializer option so the “string:” prefix can be included or omitted.

Examples:

<Variable initializer=”string:true” name=”trace”/>

<Variable initializer=”spadmin” input=”true” name=”fallbackApprover”>

Defining and Modifying IdentityIQ Workflows Page 34 of 65

script Assign a value based on the results of a Java beanshell script

Examples:

(1) Inline Script (use only for very short, simple scripts)

<Variable initializer=”script:(identityDisplayName != void) ?

identityDisplayName : resolveDisplayName(identityName)” input=”true”

name=”identityDisplayName”>

(2) Script within nested <script> element (use for most script initializers – scripts of any
complexity or length)

<Variable initializer=”script:resolveDisplayName(launcher)”

input=”true” name=”launcherDisplayName”>

 <Description>

 The displayName of the identity being who started this workflow.

 Query for this using a projection query and fall back to the

name.

 </Description>

 <Script>

 <Source>

 // Lookup the launcher’s display name for use in email

 templates.

 String returnString = launcher;

 Identity launcherId = context.getObject(Identity.class,

 launcher);

 if (null != launcherId) {

 returnString = launcherId.getDisplayName(); // First+Last

 }

 return returnString;

 </Source>

 </Script>

</Variable>

rule Assign a value based on the return value of a workflow Rule

Examples:

<Variable initializer=”rule:wfrule_GetIdentityName”

name=”IdentityName”>

call Assign a value based on the return value of a call to a workflow library method

Example:

<Variable initializer=”call:getObjectName” name=”roleName”>

ref Assign a value based on a reference to another workflow variable (rarely used)

Example:

<Variable initializer=”ref:otherVar” name=”myVar”/>

Workflow Description

A Description element should be included to describe the purpose of the workflow; this is strictly for a human

reader and is not used in the workflow processing but is still strongly recommended. In the UI, the contents of

this element are displayed on the Process Details tab of the Business Process definition. For readability, this

element should be included near the top of the workflow, either before or after the variable definition section.

Defining and Modifying IdentityIQ Workflows Page 35 of 65

<Description>

 Workflow called when a role is ready to be enabled.

</Description>

Rule Libraries

Some methods used by workflows have been grouped together into Rule Libraries. These are defined as Rules in

IdentityIQ but they contain sets of related but unconnected methods that can be invoked directly by workflow

steps (within a “script” action). These are in Rules, rather than in the compiled Java classes, so that their

functionality can be easily modified to suit the needs of each installation. To make the methods within one of

these rules available to steps within the workflow, the RuleLibraries element must be declared as shown here.

(Each Reference element applies to one library, and only the libraries containing the required methods should

be included in the RuleLibraries declaration for the workflow.)

<RuleLibraries>

 <Reference class=”sailpoint.object.Rule” name=”Workflow Library”/>

 <Reference class=”sailpoint.object.Rule” name=”Approval Library”/>

 <Reference class=”sailpoint.object.Rule” name=”LCM Workflow Library”/>

</RuleLibraries>

Step Elements

The core of the workflow is contained within the Step elements. At its most basic, a step should contain an icon,

name, posX and posY attribute. The action attribute determines what processing the step does. Steps usually

contain one or more nested <Transition> elements and ideally also contain a nested <Description> element that

tells the reader what the step is intended to do.

 <Step icon=”Start” name=”Start” posX=”250” posY=”126”>

 <Description>

 The workflow’s processing starts with this step.

 </Description>

 <Transition to=”Initialize”/>

 </Step>

Like Variables, some parts of a Step definition are included as attributes of the step while others are expressed

as nested elements within the step.

Step Attribute Purpose

name Short but descriptive name for step; displayed in UI graphical display below the step icon

icon Icon to display for step in UI graphical Process Designer;
Valid icon values are: “Start”, “Stop”, “Default” (Generic Step), “Analysis” (Launch Impact
Analysis), “Approval”, “Audit”, “Catches”, “Email”, “Message” (Add Message),
“Provision”, “Task” (Launch Task), “Undo”

posX, posY X and Y positions for where the step icon should be displayed on the UI’s graphical
Process Designer grid. Omitting the posX and posY values causes the icon to be displayed
at the top right of the grid, from which it can still be dragged around to create the
desired layout at a later time.

action The processing action to take for the step (a script, rule, subprocess, or call, as described
in Most parts of a transition are included as attributes of the transition, but some scripts

Defining and Modifying IdentityIQ Workflows Page 36 of 65

are expressed as nested elements within the transition.

Transition
Attribute

Purpose

to Name of next step

when Condition for progressing to the specified next step

Nested Tag within
Transition
Element

Purpose

Script Alternative to script in transition’s when attribute; should be
used for scripts of any length or complexity

Source Nested within the Script tag; contains the java beanshell source
for the condition evaluation

Step Actions below)

wait Pauses action for a specified duration (see Wait Attribute for details)

catches Causes step to be run when “Complete” status is caught, rather than through a transition
from another step (see “Catches” attribute for details)

resultVariable Variable name containing return value from the step

Nested Tag within
Step Element

Purpose

Description Provide a description of the step’s purpose

Transition Identifies the next step the process will move to when the current step is complete (see
Transition Element below)

Arg Passes variables to the step; used for steps that require data to be passed in to them

Return Receives return values from subprocess steps (see Return Elements below)

Script Alternative to script in step’s Action attribute; should be used for action scripts of any
length or complexity

Source Nested within the Script tag; contains the java beanshell source for the action to be
executed

Transition Element

The Transition element, always nested within a step, indicates the name of the next step the process will

execute following completion of the current step. Transitions can contain conditions based on a string, script,

rule, call, or reference (similar to a variable initialization); the (return) value for conditions must be a Boolean

(True/False). When multiple transitions are stipulated, they are evaluated in the order they are listed, and the

transition for the first condition met is followed. The last transition in the list should, as a best practice, not

contain any conditions so it can be used as the default action.

Condition Type Description and Examples

string Not used; this is an artifact of the common structure used for variable setting and does not
really apply to conditions; a literal value of “True” or “False” could be specified but then does
not allow any evaluation in the transition – True would always execute the associated step
and False would always bypass it

script Evaluate script result value to determine step transition; very short scripts are specified inline

Defining and Modifying IdentityIQ Workflows Page 37 of 65

on the Transition element, within the “when” attribute. Longer ones are expressed within
nested <script> and <source> elements, as shown below.

NOTE: Script is the default transition “when” option so the “script:” prefix can be included or
omitted.

Examples:

(1) Inline Script (use only for very short, simple scripts)
<Transition to=”Exit On Policy Violation”

 when=”script:((size(policyViolations)> 0)

 && (policyScheme.equals("fail")))”/>

(2) Longer script within nested <script> tag (use for transition scripts of any complexity
or length)

<Transition to=”end”>

 <Script>

 <Source>

 (“cancel”.equals(violationReviewDecision) ||

((size(policyViolations)

 > 0) && (policyScheme.equals(“fail”))))

 </Source>

 </Script>

</Transition>

rule Evaluate the return value of a workflow Rule to determine step transition

Examples:

<Transition to=”Process Approval” when=”rule:RequireApprovalRule”>

call Evaluate return value of a call to a workflow library method to determine step transition

Example:

<Transition to:”Check Status” when=”call:requiresStatusCheck” />

ref Evaluate a defined (Boolean) workflow variable to determine step transition

Example:

<Transition to=”Refresh Identity” when=”ref:doRefresh”/>

Unconditional Specified as last transition option to give a default path for the transition
Example:

<Transition to=”Approve”/>

Most parts of a transition are included as attributes of the transition, but some scripts are expressed as nested

elements within the transition.

Transition Attribute Purpose

to Name of next step

when Condition for progressing to the specified next step

Defining and Modifying IdentityIQ Workflows Page 38 of 65

Nested Tag within
Transition Element

Purpose

Script Alternative to script in transition’s when attribute; should be used for scripts of any
length or complexity

Source Nested within the Script tag; contains the java beanshell source for the condition
evaluation

Step Actions

Of course, most steps involve far more than just a name and a transition; they include an “action” attribute that

execute the workflow processing. The action of a step may be a script or may invoke a rule, subprocess, or a call

to a workflow library method.

Action Type Description

Script As with scripts in other parts of the workflow XML, the script itself may be contained within
the action attribute or may be nested within the Step in a <Script> block.

Examples:

(1) Inline Script (use only for very short, simple scripts)

<Step action=”script:approvalSet.setAllProvisioned();” icon=”Task”

name=”Post Provision”>

 <Transition to=”Stop”/>

</Step>

(3) Longer script within nested <script> tag (use for action scripts of any complexity or
length)

<Step name=”Start” icon=”Start” posX=”20” posY=”20”>

 <Script>

 <Source>

 String wfName = wfcontext.getWorkflow().getName();

 System.out.println(“Starting workflow: [“ + wfName + “]”);

 </Source>

 </Script>

 <Transition to=”Compile Provisioning Project”/>

</Step>

Rule A step can execute a block of Java beanshell code encapsulated in a reusable workflow Rule.

Example:

<Step action=”rule:WFRule_verifyIdentity” icon=”Task” name=”Verify

Identity” posX=”600” posY=”202”>

Subprocess A subprocess is invoked through the inclusion of a <WorkflowRef> element within the step,
referencing the sailpoint.object.Workflow class and the specific workflow by name.

Example:

<Step icon=”Task” name=”Initialize” posX=”320” posY=”126”>

 …

 <WorkflowRef>

 <Reference class=”sailpoint.object.Workflow” name=”Identity

 Request Initialize”/>

 </WorkflowRef>

 <Transition to=”end”>

</Step>

Defining and Modifying IdentityIQ Workflows Page 39 of 65

Call Calls to workflow library methods can be used to do step processing.
NOTE: Call is the default action option so the “call:” prefix can be included or omitted.

Example:

<Step action=”call:refreshIdentity” icon=”Task” name=”Refresh Identity”

posX=”618” posY=”242”>

Arguments

Any variables to be passed to a script, rule, subprocess, or library method must be declared as step arguments

through <Arg> elements. As with other variables, the values for arguments can be specified by string, script,

rule, call, or reference. The default specification type is string (so the “string:” qualifier can optionally be

omitted), although arguments are also commonly passed by referencing workflow variables.

<Step icon=”Task” name=”Initialize” posX=”320” posY=”126”>

 <Arg name=”flow” value=”ref:flow”/>

 <Arg name=”formTemplate” value=”string:Identity Update”/>

 <Arg name=”identityName” value=”ref:identityName”/>

 …

 <Description>Call the standard subprocess to initialize the request,

 this includes auditing, building the approvalset, compiling the plan into

 project and checking policy violations.</Description>

 …

 <WorkflowRef>

 <Reference class=”sailpoint.object.Workflow” name=”Identity Request

 Initialize”/>

 </WorkflowRef>

 <Transition to=”end”>

</Step>

When an argument is specified as a script, rule, or call (e.g. <Arg name=”myVar” value=”rule:myWFRule”/>), any

needed arguments to the script, rule, or library method cannot be explicitly specified. However, these scripts,

rules, and library methods automatically have access to the workflow context object, which means they can

access workflow variables directly through the workflow context’s “get” methods. These scripts/rules/methods

can also access any step arguments that were defined before them in the step declaration. So, for example,

with the step declaration shown below, the method that identifies the value for the Manager argument can use

the value in the identityName argument in its processing, if needed.

<Step icon=”Task” name=”Processing Step” posX=”320” posY=”126”>

 <Arg name=”identityName” value=”ref:identityName”/>

 <Arg name=”Manager” value=”call:getManager”/>

 …

</Step>

Available Arg attributes are shown in this table:

Arg Attribute Purpose

name Variable name in process to which the data is being passed

value Value to pass into the variable (string, script, rule, call, reference)

Return Elements

More than one value can be returned from a subprocess by declaring <Return> elements for the step. At a

minimum, a Return element contains a “name” attribute and a “to” attribute. The “name” attribute is the name

Defining and Modifying IdentityIQ Workflows Page 40 of 65

of the variable in the subprocess workflow and the “to” attribute is the variable name in the calling (current)

workflow. (If these names are the same in both workflows, a “to” attribute is not actually required, though it is

a best practice to specify it anyway for clarity.) The “merge” attribute is used when the variable is a List and the

returned values should be appended to the current workflow’s list instead of replacing it. As with Args, Return

Elements’ “value” attribute can be specified as a string, script, rule, call, or reference, with string being the

default. If the “value” argument is omitted, the value of the “name” variable copied as-is into the “to” variable,

but a script/rule/method could be used to transform or modify the value as it is passed.

<Step icon=”Task” name=”Initialize” posX=”320” posY=”126”>

 <Arg name=”flow” value=”ref:flow”/>

 <Arg name=”formTemplate” value=”string:Identity Update”/>

 <Arg name=”identityName” value=”ref:identityName”/>

 …

 <Return name=”project” to=”project”/>

 <Return merge=”true” name=”workItemComments” to=”workItemComments”/>

 <WorkflowRef>

 <Reference class=”sailpoint.object.Workflow” name=”Identity Request

 Initialize”/>

 </WorkflowRef>

 <Transition to=”end”>

</Step>

Available Return attributes are shown in this table:

Return Attribute Purpose

name Variable name in process from which the data is being returned

to Variable name in the workflow step to which the data is being passed

value Value to pass into the variable (string, script, rule, call, reference)

merge Flag indicating whether the value should be merged into the target variable instead of
replacing it (relevant for list variables)

local Only applies to returns on Approvals (see Approval Steps below); flag indicating that
value is being passed to local storage within the parent approval instead of to a
workflow case variable; used for complex approvals where a work item state is saved
for later analysis in a script

Call

Calls to workflow library methods can be used to do step processing. Like subprocesses, they may require

arguments to be passed to them. Declaration of the arguments are done the same way as with subprocesses.

They are invoked with a “call” action, as shown below:

<Step action=”call:refreshIdentity” icon=”Task” name=”Refresh Identity” posX=”618”

posY=”242”>

 <Arg name=”identityName” value=”ref:identityName”/>

 <Arg name=”correlateEntitlements” value=”string:true”/>

 <Description>Add arguments as necessary to enable refresh features. Typically you

 only want this to correlate roles. Don’t ask for 40rovisioning since that

 can result in provisoiing policies that need to be presented and it’s

 too late for that. This is only to get role detection and exception

 entitlements in the cube.</Description>

 <Transition to=”Notify”/>

 </Step>

The methods available for the call action are those included in the workflow element’s “libraries” attribute, if

specified. If no libraries attribute is specified, the workflow automatically has access to the methods in the

Defining and Modifying IdentityIQ Workflows Page 41 of 65

Identity, Role, PolicyViolation, and LCM libraries. If other libraries, including custom libraries, are explicitly listed

in the libraries attribute, any of the default libraries whose methods are needed by the workflow must also be

explicitly included in the list to be available. See Workflow Library Methods for details about the methods

available in each library.

NOTE: Installations may create custom libraries for commonly used methods required for their business.

However, custom library methods must be named with unique names that do not conflict with standard library

method names. Conflicts will resolve as a reference to the standard library method. It is possible to extend a

standard library and overload its method names, but this is not consider a best practice; it is strongly

recommended that new names be created for nonstandard methods so it is clear at first glance that the method

used is not a standard one.

Wait Attribute

The step wait attribute causes the workflow to pause in its execution for the duration specified. The wait value

can be specified as a string, script, rule, call or reference (default is string).

<Step name="Wait for next check" wait="ref:provisioningCheckStatusInterval">

 <Description>

 Pause and wait for things to happen on the PE side.

 Use the configurable interval to determine how long

 we wait in between checks.

 </Description>

 <Transition to="CheckStatus"/>

 </Step>

This attribute actually creates a special kind of step whose whole purpose is to create a pause in the action.

Wait steps are commonly used in re-try logic to allow behind-the-scenes processing to occur before the

workflow attempt to repeat an action.

“Catches” attribute

New in version 5.5 of IdentityIQ is the concept of “Catch” steps. These steps are not invoked through a

transition from a previous step but are invoked by a “thrown” message that is intercepted (or caught) by the

step. At present, only a “complete” message is thrown and can be caught. This occurs when the workflow is

otherwise finished – when all sequential steps have been executed to completion or a failure condition has

resulted in termination of the workflow.

<Step catches=”complete” icon=”Task” name=”Finalize”>

 <Arg name=”project” value=”ref:project”/>

 <Arg name=”approvalSet” value=”ref:approvalSet”/>

 <Arg name=”trace” value=”ref:trace”/>

 <Description>

 Call the standard subprocess that can audit/finalize the request.

 </Description>

 <WorkflowRef>

 <Reference class=”sailpoint.object.Workflow” name=”Identity Request Finalize”/>

 </WorkflowRef>

 <Transition to=”end”/>

Defining and Modifying IdentityIQ Workflows Page 42 of 65

The primary purpose of these steps as currently implemented is to update the IdentityRequest object, which

tracks and reports the status of a LifecycleManager request, making the history of LCM request processing

available even after the TaskResult for the workflow has been purged.

Each installation may drive custom logic based on catching this “complete” message as desired. Later releases

may add a catchable “error” message as well.

Approval Steps

Approval is one of the most common actions performed by a workflow process. The IdentityIQ Approval model

is constructed to simplify the process of defining an approval structure. Approvals are a special type of step that

contain an <Approval> element, specifying how the approval work item is presented to the approver(s).

Some Approval steps are designed to get a user’s approval on a requested change, as is implied by the name

“approval”. However, the Approval element can be used any time data needs to be gathered from a user.

Typically, when approval steps are used to gather non-approval data, a custom form is used to present the work

item to and request the needed information from the user. See NOTE: This is distinct from running a workflow

as a subprocess. If a workflow is invoked as a subprocess, the calling workflow will wait until the subprocess has

finished (and returned control to the caller) before it continues with its processing. This “call” causes a

completely separate workflow to begin running, and as soon as the new workflow has been kicked off, the

calling workflow will move on to its next step.

Custom Forms in the Advanced Workflow Topics section of this document for more details on usage of custom

forms.

As with other Workflow elements, some modifiers are specified as attributes on the Approval element itself

while others are specified through nested elements within the Approval.

Approval Attribute Purpose

mode Specifies how approval is processed; Mode can be determined from string, script,
rule, call, or reference (default = string)
Valid values are:
serial – approvers are specified in order and item is passed to each approver in that

order; if any approver in the chain rejects, item is rejected
serialPoll – approvers are specified in order and item is passed to each approver in

that order; data is collected on approvals and rejections but rejection by one
does not mean rejection of item; action decision is expected to be specified in
AfterScript logic

parallel – item is sent to all named approvers at one time; item is rejected if any
approver rejects it

parallelPoll – item is sent to all named approvers at one time; data is collected on
approvals and rejections but rejection by one does not mean rejection of item;
action decision is expected to be specified in AfterScript logic

any – item is sent to all named approvers at one time; first approver to respond
makes the decision for the group

owner Approver (can be one or more); can be specified by string, script, rule, call, or

Defining and Modifying IdentityIQ Workflows Page 43 of 65

reference (default is string)
Mode determines how and when the item is submitted to each listed owner when
more than one is specified

renderer JSF include to render the work item details

return Comma-separated values (CSV) list of variable names to copy from completed work
items back into workflow

send CSV list of variable names to include in the work items

description Defines work item description; for nested approvals, child approvals use the work
item defined by the parent approval unless the child approval defines its own work
item; Description can be set by string, script, rule, call, or reference (default=string)

validator used to validate any information entered by the user during the approval; can be
specified as string, script, rule, call, or reference (default=script); usually a nested
ValidatorScript element is used instead of a validator argument

Nested Tag within
Approval Element

Purpose

AfterScript Provides instructions for additional processing to be done on the item after the
approval is complete (and only if approved). Often uses methods in the Approval Rule
Library and LCM Workflow Rule Library; if those methods are to be used, the rule
libraries must be explicitly included in the workflow using the <RuleLibraries> element
(as described in Rule Libraries)

NOTE: ParallelPoll and serialPoll items always execute this script after all responses
have been collected. With either of these modes, the logic in this script should
aggregate the results and determine whether the item should be approved or
rejected. The criteria for approval or rejection (e.g. majority rule, any
approval=approval, etc.) is up to the business.

In either “poll” mode, the after script is inherited by child approvals if they do not
specify one of their own. In other modes, the after script is not inherited by child
approvals.

InterceptorScript This script is more complex than the AfterScript and is much less frequently used. It is
called in several places in the approval processing: at the approval start, pre-
Assimilation, post-Assimilation, when the work item is archived, and at the end of the
approval. The stage in the processing is passed to the script as an argument called
“method” that can be used to determine what the script should do at that time. The
workflow context’s args are also passed to the script (as with any other script).

Method values (for conditional analysis within InterceptorScript logic):

 startApproval

 preAssimilation

 postAssimilation

 archive

 endApproval

NOTE: If an InterceptorScript and AfterScript both exist, the InterceptorScript’s
“postAssimilation” logic runs before the AfterScript.

ValidatorScript Script to perform validation on the work item (e.g. any data entered by the user on

Defining and Modifying IdentityIQ Workflows Page 44 of 65

the approval) before it is assimilated; inherited by any child approvals

Source Nested within the AfterScript, InterceptorScript, and ValidatorScript tags; contains the
java beanshell source for the script

Arg Arguments available to the approval action; specified by string, script, rule, call, or
reference; most variables are passed to approval through “send” list, but args that
require any transformation (through script/rule/library method) must be sent through
an Arg element.
Additionally, args defined with reserved system names (listed below) are passed
through the Arg element with that name specified:

 workItemRequester

 workItemDescription

 workItemType

 workItemTargetId

 workItemTargetName

 workItemTargetClass

 workItemDisableNotification

 workItemNotificationTemplate

 workItemEscalationTemplate

 workItemReminderTemplate

 workItemEscalationRule

 workItemEscalationStyle

 workItemHoursTillEscalation

 workItemHoursBetweenReminder

 workItemMaxReminders

 workItemPriority

 workItemIdentityRequestId

 workItemArchive

Return Return value defining how things should be assimilated from work item back into the
workflow case (alternative to the “return” attribute’s CSV of variables; more complex
but more powerful as well);
This is rarely used in approvals, but is most often used when returning an approval
work item variable to a workflow variable of a different name or when need to
transform work item variable’s contents with a script. The usage of Return elements
here follows same rules as step returns from steps that invoke subprocesses, with
addition of “local” attribute option (see Return Elements above)

This is an example of a basic Approval step. It presents an account change to the Identity’s manager for

approval. The AfterScript records the approval decision and creates an audit record.

<RuleLibraries>

 <Reference class=”sailpoint.object.Rule” name=”Approval Library”/>

 <Reference class=”sailpoint.object.Rule” name=”LCM Workflow Library”/>

</RuleLibraries>

<Step icon=”Approval” name=”Manager Approval”>

<Approval mode=”serial” owner=”script:getManagerName(identityName, launcher,

fallbackApprover);” renderer=”lcmWorkItemRenderer.xhtml”

send=”approvalSet,identityDisplayName,identityName,policyViolations”>

Defining and Modifying IdentityIQ Workflows Page 45 of 65

<Arg name=”workItemDescription” value=”Manager Approval – Account Changes for

User: $(identityDisplayName)”/>

<Arg name=”workItemNotificationTemplate” value=”ref:managerEmailTemplate”/>

<Arg name=”workItemRequester” value=”$(launcher)”/>

<AfterScript>

 <Source>

 import sailpoint.workflow.IdentityRequestLibrary;

 assimilateWorkItemApprovalSet(wfcontext, item, approvalSet);

IdentityRequestLibrary.assimilateWorkItemApprovalSetToIdentityRequest(wfcont

ext, approvalSet);

auditDecisions(item);

</Source>

 </AfterScript>

</Approval>

 <Description>

 If approvalScheme contains manager, send an approval for all

 requested items in the request. This approval will get the entire

 approvalSet as part of the workitem.

 </Description>

<Transition to=”Build Owner ApprovalSet”

 when=”script:isApprovalEnabled(approvalScheme, "owner")”/>

<Transition to=”Build Security Officer ApprovalSet”

 when=”script:isApprovalEnabled(approvalScheme, "securityOfficer")”/>

<Transition to=”end”/>

 </Step>

NOTE: In the AfterScript in this example, the methods not qualified by the library name are found in the LCM

Workflow Rule Library (made available to the workflow through the <RuleLibraries> declaration). The

assimilateWorkItemApprovalSetToIdentityRequest method is part of the IdentityRequestLibrary, made available

to the script through the import of that library in the script. Library methods called through step “action”

attributes are available through the Workflow’s “libraries” attribute list, but when they are executed from within

scripts, the library must be specifically imported for the script itself.

Nested Approvals

Child Approvals created through the UI are expressed as Nested approval elements in the XML representation.

When nested approvals exist, the “parent” ceases to be an approval of its own and is there only to organize and

contain the child approvals. The Mode on the parent determines how the set of peer Child approvals are

processed.

 <Approval mode="string:parallel" name="Approve Region" owner="ref:regionApprover"

 send="identityName,region">

 <Arg name="workItemDescription" value="string:Approve Region for $(identityName)"/>

 <Approval name="childApproval1" owner="string:Walter.Henderson"

 send="identityName,region"/>

 <Approval name="childApproval2" owner="string:Alan.Bradley"

 send="identityName,region"/>

 </Approval>

Defining and Modifying IdentityIQ Workflows Page 46 of 65

In the example above, childApproval1 and childApproval2 will be processed in parallel. Since both of these child

approvals are identical (no custom work item config and no children of their own), the same objective could be

accomplished with a single approval with multiple owners:

 <Approval mode="string:parallel" name="Approve Region"

 owner="string:Walter.Henderson,Alan.Bradley" send="identityName,region">

 <Arg name="workItemDescription" value="string:Approve Region for $(identityName)"/>

 </Approval>

The real value in the nested approvals comes when different approval levels are implemented with custom

configurations and specifications. For example, the workItemConfig for each of the child approvals can be

different, resulting in a notification scheme, escalation policy, etc. for the different approvers. Additionally,

nested approvals may be governed by a different approval mode from the one used on the master set and/or

may contain their own child approval levels. One child approval might be conducted as an “any” approval

(accepting the ruling of the first responder of several listed approvers) while the highest approval level is

managed serially. Another child approval may implement custom workItemConfigs for its own child approvals.

The example below illustrates all of these concepts.

 <!-- Approval submitted to HR and to supervisor and manager in serial manner -->

 <Approval mode="string:serial" name="Approve Region" owner="spadmin"

 send="identityName,region">

 <Arg name="workItemDescription" value="string:Approve Region for $(identityName)"/>

 <!-- HR Personnel approve region (whoever responds first makes decision) -->

 <Approval name="HRApproval" mode=”string:any”

 owner="ref:HRApprovers" send="identityName,region"/>

 <!-- Supervisor and Manager approve region serially after HR approves -->

 <!-- Each has a different email template (work item config) for notification -->

 <Approval mode=”string:serial” name="SupMgrApproval" send="identityName,region">

 <Approval name="Supervisor" send="identityName,region" owner=”Tom.Jones”>

 <WorkItemConfig escalationStyle="none">

 <NotificationEmailTemplateRef>

 <Reference class="sailpoint.object.EmailTemplate"

 name="SupervisorApprovalEmail"/>

 </NotificationEmailTemplateRef>

 </WorkItemConfig>

 </Approval>

 <Approval name="Manager" send="identityName,region" owner=”Mary.Peterson”>

 <WorkItemConfig escalationStyle="none">

 <NotificationEmailTemplateRef>

 <Reference class="sailpoint.object.EmailTemplate"

name="ManagerApprovalEmail"/>

 </NotificationEmailTemplateRef>

 </WorkItemConfig>

 </Approval>

 </Approval>

 </Approval>

This ability to nest approvals, with options to assign different approval modes and work item configurations to

each, allows implementers to create highly customized approval structures to meet the needs of the installation.

Defining and Modifying IdentityIQ Workflows Page 47 of 65

Workflow Library Methods

Workflow Libraries are sets of compiled java methods accessible to workflows, if specified as a comma

separated list in the libraries attribute of the Workflow element. The classes for libraries are named as follows:

sailpoint.workflow.[library]Library.class. Only the [library] portion is specified in the libraries attribute.

Example:
<Workflow libraries=”Identity” explicitTransitions=”true” name=”Hello World Workflow”

type=”IdentityUpdate”>

This example makes methods from the sailpoint.workflow.IdentityLibrary.class accessible to the workflow.

NOTE: If no Libraries attribute is specified on the Workflow element, the workflow can access the Identity, Role,

PolicyViolation, and LCM libraries by default.

The tables below show the workflow libraries and the methods available through them. The methods in the

Standard Workflow Handler (while it is not technically a library) are accessible to every workflow and are called

through the same syntax as library methods.

Standard Workflow Handler

Method / Usage Expected Args (*=required)

Object getProperty(WorkflowContext wfc)
Returns value of the named system property

name*

public Object isProperty(WorkflowContext wfc)
Returns true if the named system property has a value

name*

public Object getMessage(WorkflowContext wfc)
Returns localized message for use in task results

message*
type (severity)
arg1-arg4 (up to 4 parameters for the

message)

public Object addMessage(WorkflowContext wfc)
Adds message to the workflow case

message*
type (optional severity)
arg1-arg4 (up to 4 parameters for the

message)

public Object addLaunchMessage(WorkflowContext wfc)
Adds message to workflow case that is displayed in UI but
not kept in task result (e.g. “Request has been submitted”)

message*
type (optional severity)
arg1-arg4 (up to 4 parameters for the

message)

public Object setLaunchMessage(WorkflowContext wfc)
Replaces previously added launch message with new
message based on new state

message*
type (optional severity)
arg1-arg4 (up to 4 parameters for the

message)

public Object log(WorkflowContext wfc)
Send something to log4j

message*
level*

public Object print(WorkflowContext wfc)
Print something to the console

message*

public Object audit(WorkflowContext wfc)
Creates an audit event (allows workflows to put custom

source*
action*

Defining and Modifying IdentityIQ Workflows Page 48 of 65

entries in audit log (shown in UI)) target
string1 – string4

public Object sendEmail(WorkflowContext wfc)
Send an email message

to*
cc
bcc
from
subject
body
template*
templateVariables
sendImmediate
exceptionOnFailure

public Object launchTask(WorkflowContext wfc)
Launch a defined task

taskDefinition*
taskResult
sync (true=synchronous execution)

public Object scheduleRequest(WorkflowContext wfc)
Launch a generic event request

requestDefinition*
requestName (name to assign to

request)
scheduleDate
scheduleDelaySeconds
owner

public Object scheduleWorkflowEvent(WorkflowContext wfc)
Launch a workflow event request

requestDefinition*
requestName (name to assign to

request)
scheduleDate
scheduleDelaySeconds
owner
workflow* (name of workflow to

launch)
caseName (optional case name to

override default)
requestDefinition (not specified – set

to standard definition for
workflow requests)

public Object commit(WorkflowContext wfc)
Commit transaction (not commonly needed in workflows:
most commonly used for role approvals)

creator
archive

public Object rollback(WorkflowContext wfc)
Roll back transaction (not commonly needed in workflows:
most commonly used for role approvals)

none

Identity Library

Method / Usage Expected Args (*=required)

public String getManager(WorkflowContext wfc)
Return the name of the manager for the specified identity

identityName

public Object calculateIdentityDifference(WorkflowContext wfc) oldRoles

Defining and Modifying IdentityIQ Workflows Page 49 of 65

Derive a simplified representation of the changes being
made to an identity for an approval work item

newRoles
plan
approvalSet

private void addLinksInformation(WorkflowContext wfc)
Modify workflow context’s lists of Links (accounts) to be
added, moved, or removed for the identity as a result of
the provisioning plan

linksToAdd
linksToMove
linksToRemove
plan

public List<Map<String,Object>>
checkPolicyViolations(WorkflowContext wfc)

Evaluate policy violations that may be incurred by the
provisioning plan/project’s actions

policies
identityName*
project
plan (either plan or project is

required)

public void activateRoleAssignment(WorkflowContext wfc)
Assign role(s) to the identity

identity* (ID)
role* (ID)
detected (Boolean indicating if role

was detected vs. assigned)

public void deactivateRoleAssignment(WorkflowContext wfc)
Remove role assignments from the identity

identity* (ID)
role* (ID)
detected (Boolean indicating if role

was detected vs. assigned)

public void refreshIdentity(WorkflowContext wfc)
Perform an identity refresh on one identity

identity (ID)
identityName (either identity or

identityName is required)

public void refreshIdentities(WorkflowContext wfc)
Perform an identity refresh on a set of identities (can
specify one or more identityNames or can specify a
filterString or can specify a list of roles – processes the first
of those options that is non-null)

identityName
identityNames (CSV)
filterString
identitiesWithRoles (CSV)
(any one of these 4 is required)

public Object compileProvisioningProject(WorkflowContext wfc)
Compile provisioning plan into provisioning project

plan
identityName

public Object buildProvisioningForm(WorkflowContext wfc)
Create a form containing provisioning questions (if owner
specified, only returns form if there is a form for that
owner; if preferredOwner is specified, return that owner’s
form if exists or any other forms for the identity if none
exist for that owner)

project*
template (name of form to serve as

page template)
owner
preferredOwner (owner or

preferredOwner required but
mutually exclusive)

public Object assimilateProvisioningForm(WorkflowContext wfc)
Collect data from completed provisioning form and store
answers with questions on provisioningProject

project*
form*

public Object assimilateAccountIdChanges(WorkflowContext wfc)
Update ApprovalSet with any changes to accountIDs

project*
approvalSet

public Object buildPlanApprovalForm(WorkflowContext wfc)
Build form representing all attributes in a provisioningPlan
for approval before provisioning occurs

plan*
template

public Object assimilatePlanApprovalForm(WorkflowContext wfc) form

Defining and Modifying IdentityIQ Workflows Page 50 of 65

Collect data from form (assumed to have been created by
buildPlanApprovalForm) and put back into the
provisioningPlan

plan*

public Object provisionProject(WorkflowContext wfc)
Called (by Identity Update and LCM Workflows) after
provisioning forms have been completed to provision what
remains in the project

project*
noTriggers (Boolean)

public Object finishRefresh(WorkflowContext wfc)
Called by Identity Refresh workflow, after approvals are
done and account completion attributes gathered, to
provision what can and complete the refresh process

identitizer
refreshOptions (map of args for

creating new Identitizer if
needed)

previousVersion
project

public Object buildApprovalSet(WorkflowContext wfc)
Called by the LCM workflows to build a simplified
ApprovalSet representation of the things in the provisioning
plan.

plan*

public Object processApprovalDecisions(WorkflowContext wfc)
Process decisions made during approval process audit and
react (modifies project’s masterPlan and recompiles project
if recompile argument is true)

project*
dontUpdatePlan
disableAudit
approvalSet*
recompile

public Object processPlanApprovalDecisions(WorkflowContext wfc)
Process decisions made during approval process audit and
modify the plan (used before plan is compiled into a
provisioningProject)

plan*
dontUpdatePlan
disableAudit
approvalSet*

public Object auditLCMStart(WorkflowContext wfc)
Create an audit event to mark the start of an LCM flow

approvalSet*
flow (name of applicable UI flow)

public Object auditLCMCompletion(WorkflowContext wfc)
Create an audit event to mark the completion of an LCM
flow

approvalSet*
flow

public void disableAllAccounts(WorkflowContext wfc)
Used by lifecycle events to disable managed accounts for
the identity specified in the workflow

None

public void enableAllAccounts(WorkflowContext wfc)
Used by lifecycle events to enable all accounts on the
identity specified in the workflow

None

public void deleteAllAccounts(WorkflowContext wfc)
Used by lifecycle events to enable all accounts on the
identity specified in the workflow

None

public ProvisioningPlan buildEventPlan(WorkflowContext wfc)
Go through all links held by the workflow’s specified
Identity and creates a plan to enable or disable (specified
by “op”) all of the Identity’s accounts

op* (operation)

public void updatePasswordHistory(WorkflowContext wfc)
Add a password to the link password history

plan*

public ProvisioningProject assembleRetryProject(WorkflowContext project

Defining and Modifying IdentityIQ Workflows Page 51 of 65

wfc)
Add any account request for an original provisioning project
that are retryable, adding them to a new provisioning
project
Not likely to be used in custom workflow

public Object retryProvisionProject(WorkflowContext wfc)
Execute the retry provisioning project (created in
assembleRetryProject)
Not likely to be used in custom workflow

project

public Object mergeRetryProjectResults(WorkflowContext wfc)
Merge results from retry project onto the main project
(called between retries)
Not likely to be used in custom workflow

project*
retryProject*

public Boolean requiresStatusCheck(WorkflowContext wfc)
Identifies whether the project contains any Results that are
queued with a requestID stored on the result

project

public Object checkProvisioningStatus(WorkflowContext wfc)
Call down to the connector for each Result in the plan that
is marked queued with a requestID specified

project

public Integer
getProvisioningStatusCheckInterval(WorkflowContext wfc)

Compute intervals between status checks for a request
(default is 60 minutes)

none

public Integer getProvisioningMaxStatusChecks(WorkflowContext
wfc)

Compute max number of status checks allowed during a
request (default is infinite)

none

public Integer getProvisioningMaxRetries(WorkflowContext wfc)
Compute max retries allowed during a request (default is
infinite)

none

public Integer getProvisioningRetryThreshold(WorkflowContext wfc
)

Compute retry threshold (interval between retries) to use
for a request (default is 60 minutes)

none

The methods in the libraries below are available for use but will not likely be used in a custom workflow. It is

recommended, especially in Release 5.5+ where LCM workflows are subdivided into subprocesses to maximize

reusability, that the workflow subprocesses be called by custom workflows instead of the library methods

themselves. This information is included here mostly for reference – to document what these methods do and

what is passed to them. They are also here to ensure that customization efforts do not remove calls to

important methods but instead only add other functionality around these method calls.

IdentityRequest Library

Method / Usage Expected Args (*=required)

public Object createIdentityRequest(WorkflowContext wfc)
Create an IdentityRequest object from current workflow

project*
flow

Defining and Modifying IdentityIQ Workflows Page 52 of 65

context information (tracks status and history of request
processing)

source
policyViolations

public Object updateIdentityRequestState(WorkflowContext wfc)
Modify the IdentityRequest’s state

identityRequestId

public Object refreshIdentityRequestAfterApproval
(WorkflowContext wfc)

Refresh the IdentityRequest to include the
provisioningEngine that will handle the item, update the
state, and add any expanded attributes that will be
provisioned

project

public Object refreshIdentityRequestAfterProvisioning
(WorkflowContext wfc)

After provisioning, copy interesting task result information
back to the IdentityRequest

project

public Object refreshIdentityRequestAfterRetry (WorkflowContext
wfc)

Go through retry project and update the
IdentityRequestItem retry count

project

public Object completeIdentityRequest (WorkflowContext wfc)
Mark IdentityRequest status complete, put final plan in
request, and refresh the request based on the final project

project
policyViolations
autoVerify (Boolean)

Approval Library

Method / Usage Expected Args (*=required)

public SailPointObject getObject(WorkflowContext wfc)
Return the object being approved

none

public String getObjectClass(WorkflowContext wfc)
Return the simple class name of the object being approved

none

public String getObjectName(WorkflowContext wfc)
Return the name of the object being approved

none

public SailPointObject getCurrentObject(WorkflowContext wfc)
Return the current persistent version of the object held in
the workflowCase (approvalObject)

none

public Identity getObjectOwner(WorkflowContext wfc)
Return the current owner of the object being approved
(from database lookup)

none

public Identity getNewObjectOwner(WorkflowContext wfc)
Return the object owner (in the workflow context – may be
different from database-recorded owner)

none

public String getObjectOwnerName(WorkflowContext wfc)
Return name of ObjectOwner (from getObjectOwner)

none

public String getNewObjectOwnerName(WorkflowContext wfc)
Return name of NewObjectOwner (from
getNewObjectOwner)

none

public boolean isOwnerChange(WorkflowContext wfc)
Return true if object being approved has had an owner

none

Defining and Modifying IdentityIQ Workflows Page 53 of 65

change

public boolean isSelfApproval(WorkflowContext wfc)
Return true if user launching workflow is the same as the
owner of the object being approved (used to bypass owner
approval – assume will approve if initiating the request
themselves)

none

Policy Violation Library

Method / Usage Expected Args (*=required)

public Object delete(WorkflowContext wfc)
Delete current approval object associated with this
workflow

none

public Object ignore(WorkflowContext wfc)
End the workflow associated with the current approval
object without actually doing anything

none

public Object mitigateViolation(WorkflowContext wfc)
Mitigate (temporarily allow) a policy violation

expiration*
comments

public Object getRemediatables(WorkflowContext wfc) none

public Object remediateViolation(WorkflowContext wfc)
Remediate SOD violations by removing roles named in
remediations argument

remediator
actor (only used if remediator

argument not specified and actor
is; use remediator in new method
calls)

comments
remediations*

Role Library

Method / Usage Expected Args (*=required)

public Object launchImpactAnalysis(WorkflowContext wfc)
Start impact analysis task for role in workflow

none

public Object getRoleDifferences(WorkflowContext wfc)
Calculate different between role held in workflow and
database version of role

none

public Object auditRoleDifferences(WorkflowContext wfc)
Create audit events – one for each attribute difference
between role states (workflow vs database)

source
action
target
string1

public Approval buildOwnerApproval(WorkflowContext wfc)
Set up an approval for the owner of an object (currently
used only for Roles)

none

public List<Approval> buildApplicationApprovals(WorkflowContext
wfc)

For role approval only; build an approval structure for the
owners of each application referenced in the role profiles
(normally processed as parallelPoll to let application
owners submit comments or modify the role but not

Defining and Modifying IdentityIQ Workflows Page 54 of 65

terminate the approval process

public void enableRole(WorkflowContext wfc)
Mark role as enabled

role (name)

public void disableRole(WorkflowContext wfc)
Mark role as disabled

role (name)

public void setRoleDisabledStatus(WorkflowContext wfc)
Mark role with disabled status indicated in disabled arg
(true = disabled, false = enabled)

role (name)
disable (Boolean)

public void removeOrphanedRoleRequests(WorkflowContext wfc)
Remove incomplete requests to activate/deactivate roles
that no longer exist

none

public String getApprovalAuditAction(WorkflowContext wfc)
Called by post-approval Audit steps (Audit Failure and Audit
Success) of Role Modeler – Owner Approval workflow to
determine what type of action should be recorded in audit
log; returns “disableRole” if the role is marked as disabled
and “updateRole” if it is not

none

LCM Library

At present, the LCM Library contains no public methods. All of its methods have been moved to the Standard

Workflow Handler.

Monitoring Workflows

Once a workflow has been initiated, it may run to completion quickly or may take time to complete its specified

actions. Approval steps often create a delay in the processing while the workflow waits for the approver to

review the work item and make a decision on it.

To observe a workflow “in flight” and understand how much of the process is complete and what actions are still

pending, examine the Task Result for the workflow on the Monitor -> Tasks -> Task Results page. The

TaskResult for a workflow will exist for a period of time following the successful completion of the workflow, but

depending on the retention period set, it may be purged soon after the process has run to completion. While

the workflow is still in progress, however, the TaskResult will continue to exist and can be examined for current

step and status information.

Defining and Modifying IdentityIQ Workflows Page 55 of 65

Figure 37: Task Results list

Figure 38: Task Result Details (shows status, current step, warning messages, user interactions)

Viewing the Workflow Case XML

The workflow case can also be examined in XML format from the IdentityIQ console or from the debug pages.

The status of each step can be determined from the data recorded in the workflow case.

 To get the workflowcase XML from the console, launch the console, list the workflow cases, and get the

specific workflow case in question by name (as shown below).

iiq console

> List workflowcase

[system will list all in-flight workflowcases by ID and name]

> get workflowcase “[workflowcase name]”

[system will display the XML for the workflow case]

 To see the workflowcase XML from the IdentityIQ Debug pages, select WorkflowCase from the object

list and click List. Then click the specific workflow case from the list to display its XML.

Defining and Modifying IdentityIQ Workflows Page 56 of 65

Figure 39: List WorkflowCases

Figure 40: Select desired WorkflowCase

Figure 41: View WorkflowCase XML

Defining and Modifying IdentityIQ Workflows Page 57 of 65

Advanced Workflow Topics

Loops within Workflows

Creating a loop within an IdentityIQ workflow is actually fairly simple to accomplish. A transition can be specified

from a step back to itself, with the “when” clause on that transition option specifying the looping condition. If

the loop needs to encompass a series of steps instead of just one, the transition from the final step must return

the workflow to the first step in the set (instead of to itself) when the looping condition is met.

It is also possible to define a subprocess that contains the series of steps that are within the loop. In the main

process, the loop is created through a step transition from the step that invokes the subprocess back to itself. In

the UI, it will appear as shown above; the step details within the step would specify a “subprocess” action that

invokes the loop subprocess.

Initiating Workflows from a Task or Workflow

This section describes how workflows can be run without needing a triggering system event to initiate it.

Workflows Run from Custom Tasks

Workflows can be initiated by a custom Task in IdentityIQ. Tasks are compiled java classes, so the custom task

must be written as a java method. Within that method, a workflowLaunch object should be created and

populated with the data required by the workflow. A Workflower object must be created, passing in a sailpoint

context object, and then the workflower’s launch method is called, passing in the populated workflowLaunch.

The code segment below illustrates how to run a workflow from a java method. This example hard codes most

of the required workflow variable values, but they could also be set dynamically by passing in task variables

instead of literal values.

 import java.util.HashMap;

Defining and Modifying IdentityIQ Workflows Page 58 of 65

 import sailpoint.api.SailPointContext;
 import sailpoint.api.Workflower;
 import sailpoint.integration.ProvisioningPlan;
 import sailpoint.integration.ProvisioningPlan.AccountRequest;
 import sailpoint.integration.ProvisioningPlan.AttributeRequest;
 import sailpoint.object.Identity;
 import sailpoint.object.Workflow;
 import sailpoint.object.WorkflowLaunch;
 import sailpoint.tools.GeneralException;
 import sailpoint.tools.xml.XMLObjectFactory;

 HashMap launchArgsMap = new HashMap();

 String myIdentityName = "T339222";

 Identity myIdentity = context.getObjectByName(Identity.class, myIdentityName);

 //Create Provisioning Plan and add needed attribute values

 ProvisioningPlan plan = new ProvisioningPlan();

 plan.setIdentity(myIdentity);
 AccountRequest accountRequest = new AccountRequest();
 AttributeRequest attributeRequest = new AttributeRequest();

 accountRequest.setApplication("IIQ");
 accountRequest.setNativeIdentity(wbIdentity);
 accountRequest.setOperation("Modify");

 attributeRequest.setOperation("Add");

 attributeRequest.setName("assignedRoles");
 attributeRequest.setValue("Benefits Clerk");

 accountRequest.add(attributeRequest);
 plan.add(accountRequest);

 //Add needed Workflow Launch Variables to map of name/value pairs

 launchArgsMap.put("allowRequestsWithViolations","true");
 launchArgsMap.put("approvalMode","parallelPoll");
 launchArgsMap.put("approvalScheme","worldbank");
 launchArgsMap.put("approvalSet","");
 launchArgsMap.put("doRefresh","");
 launchArgsMap.put("enableRetryRequest","false");
 launchArgsMap.put("fallbackApprover","spadmin");
 launchArgsMap.put("flow","RolesRequest");
 launchArgsMap.put("foregroundProvisioning","true");
 launchArgsMap.put("identityDisplayName","John.Smith");
 launchArgsMap.put("identityName","John.Smith");
 launchArgsMap.put("identityRequestId","");
 launchArgsMap.put("launcher","spadmin");
 launchArgsMap.put("notificationScheme","user,requester");
 launchArgsMap.put("optimisticProvisioning","false");
 launchArgsMap.put("plan",plan);
 launchArgsMap.put("policiesToCheck","");
 launchArgsMap.put("policyScheme","continue");
 launchArgsMap.put("policyViolations","");
 launchArgsMap.put("project","");
 launchArgsMap.put("requireViolationReviewComments","true");
 launchArgsMap.put("securityOfficerName","");
 launchArgsMap.put("sessionOwner","spadmin");
 launchArgsMap.put("source","LCM");
 launchArgsMap.put("trace","true");
 launchArgsMap.put("violationReviewDecision","");
 launchArgsMap.put("workItemComments","");

 sailpoint.object.ProvisioningPlan spPlan = new sailpoint.object.ProvisioningPlan();
 spPlan.fromMap(plan.toMap());
 launchArgsMap.put("plan", spPlan);

Defining and Modifying IdentityIQ Workflows Page 59 of 65

 //Create WorkflowLaunch and set values

 WorkflowLaunch wflaunch = new WorkflowLaunch();
 Workflow wf = (Workflow) context.getObjectByName(Workflow.class,"myWorkflowName");
 wflaunch.setWorkflowName(wf.getName());
 wflaunch.setWorkflowRef(wf.getName());
 wflaunch.setCaseName("LCM Provisioning");
 wflaunch.setVariables(launchArgsMap);

 //Create Workflower and launch workflow from WorkflowLaunch

 Workflower workflower = new Workflower(context);
 WorkflowLaunch launch = workflower.launch(wflaunch);

 // print workflowcase ID (example only; might not want to do this in the task)

 String workFlowId = launch.getWorkflowCase().getId();
 System.out.println("workFlowId: "+workFlowId);

Workflows Run by Other Workflows

Installations commonly want to have one workflow kick off another workflow. This is done through the use of

the ScheduleWorkflowEvent method in the Standard Workflow Handler. That method is executed by one of the

initiating workflow’s steps through a “call” action.

Arguments to the step should be as follows:

Name Value

workflow the name of the workflow to run

requestDefinition name of the RequestDefinition to launch (required) (RequestDefinitions are XML
objects viewable/editable through the Debug pages; specifies the appropriate
executor)
For requests invoking workflows, the RequestDefinition is “Workflow Request”, which
invokes the WorkflowRequestExecutor.

requestName Name to be assigned to the request (defaults to name of workflow if not specified)

scheduleDate Only specify if workflow should be initiated on a later date; omit if kicking off
immediately

scheduleDelaySeconds Specifying 1 (with no scheduleDate) runs the workflow after a one second delay –
basically immediately

Owner Workflow owner (usually same as owner of initiating workflow)

caseName Name for workflowCase (user friendly name -- will be shown in UI; defaults to name
of workflow if not specified)

Launcher Identity requesting the workflow to launch (usually launcher of the initiating
workflow)

NOTE: This is distinct from running a workflow as a subprocess. If a workflow is invoked as a subprocess, the

calling workflow will wait until the subprocess has finished (and returned control to the caller) before it

continues with its processing. This “call” causes a completely separate workflow to begin running, and as soon

as the new workflow has been kicked off, the calling workflow will move on to its next step.

Defining and Modifying IdentityIQ Workflows Page 60 of 65

Custom Forms

Although there are standard work item forms available for presenting approval (or other data) requests to

approvers, some installations may prefer to use custom forms for these activities. In some cases, the request

may require a custom form due to the nature of the data collection effort. Custom forms can be built through a

<Form> element in the XML, embedded within the <Approval> element.

NOTE: As mentioned in the Approval Steps section, the <Approval> element can be used to collect data from a

user, even if it is not actually an “approval”, per se. Custom forms are commonly used for these activities, since

the normal approval forms do not really apply. However, custom forms can also be used for traditional approval

activities when a different presentation format is desired.

The basic elements in a Form definition are:

<Form>

 <Attributes> (map of name/value pairs that influence the form renderer)

 <Button> (determine form processing actions)

 <Section> (Subdivision of form; may contain nested Sections and Fields)

 <Field> (may contain Attributes map, Script to set value, Allowed Values

Definition script, and Validation Script)

Attributes

Forms can include a map of attributes that are used by the renderer. These are specified by any of the following

keys:

Key Description

pageTitle Title to render at top of page (typically larger and a different color than the form title)

title Form Title (shown at top of form body)

subtitle Form subtitle (shown below title)

readOnly If “true”, makes form read-only so the fields are rendered as uneditable text or as
disabled HTML components

hideIncompleteFields If “true”, causes any fields that do not have all of their dependencies met to be hidden

NOTE: The Boolean attributes are only specified if they are true; they default to false if not included.

Attributes maps are specified as shown here:

<Attributes>

 <Map>

 <entry key=”pageTitle” value=”Review Non-Employee Request”/>

 <entry key=”readOnly” value=”true”/>

 </Map>

</Attributes>

Buttons

Buttons on the form must include two attributes: a label and an action.

Button Attributes Description

label Text displayed on button

Defining and Modifying IdentityIQ Workflows Page 61 of 65

action Indicates how to process the form based on the button clicked.
Possible actions are:
next: assimilate form data and advance to the next state (OK/Save/Approve/Submit
functionality); sets status of approval to “Approved”
cancel: stop form editing, return to previous page in UI, and leave work item active (to
be dealt with later)
back: assimilate form data and return to previous state; sets status of approval as
“Rejected” and advances workflows
refresh: assimilate the posted form data and regenerate the form; not a state transition
– just a redisplay of the form (rarely used)

This is an example of a Button element.

<Button label='Submit' action='next'/>

Sections

Sections are marked by the <Section> tag, can be modified by the attributes shown in the table below.

Section Attributes Description

name Internal name for section (may be referenced by field objects in some templates)

label If non-null, label is displayed above section fields; can be text, message catalog keys,
or $() variables

type Optional rendering type; default (when no type is specified) is a two-column form
containing editable fields
Other type options are:
datatable: two-column table with non-editable fields (for informational tables to give

form user context for the form’s requested data)
text: block of informational text (each field within form rendered with breaks

between them)

priority Used in form assembly to influence order of the fields

These are examples of Section elements.

<Section name=”authorizations” label=”Authorizations” type=”datatable”>

<Section name=”requestSelector”>

Sections contain nested Field elements, as described in the next section.

Fields

Fields are, of course, the core element of forms, since they are how data gets communicated to and from the

user to which the form is presented. Fields have many attribute options available to them, some of which are

commonly used and others of which are used very infrequently.

Commonly used field attributes in custom forms are:

Field Attributes Description

displayName Label for the field; may be text or a message key

Defining and Modifying IdentityIQ Workflows Page 62 of 65

name Variable name in which the field’s value will be stored

required Boolean indicating whether the field must be given a value or not (marks field with *
on form to indicate required, if true)

type Field datatype; Valid values are: string, int, long, boolean, date; also Permission, Rule,
Identity
SailPoint objects (Permission, Rule, Identity) are displayed as drop-down lists. The
name of the object, rather than an actual object, should be used as the Field “name”
attribute to cause the desired object to be pre-selected in the drop-down list.
Boolean fields are rendered as a checkbox.

helpKey Pop up help text; may be text or a message key

multi Boolean indicating whether the field is multi-selectable (used along with
AllowedValuesDefinition that populates field selection list)

These are the less-commonly used attributes that can be specified for a field:

Field Attributes Description

filter for fields where “type” is a SailPointObject subclass, a filter may be specified to
restrict the set of selectable objects presented in the drop-down list

allowedValues List of allowed values for the field; more commonly specified in an
AllowedValuesDefinition element nested within the Field element

readOnly the field is used for information display only

dependencies list of other fields that must be evaluated first

value Default/initial value for field (can be specified by string, rule, script, call, or reference;
string is default); used within “text” sections to specify the text to display; in data
entry fields, this can be overwritten by user

validation script to validate the value entered by the user

attributes extensible rendering attributes specific to the type or inputTemplate

priority a number that can be used to influence the ordering of fields in a section

inputTemplate Path to an xhtml template used to generate the UI input when a form is being created
from a signature

Fields often contain nested elements that help control the display or usage of the field. The field’s display can

be modified by an Attribute map that specifies the height, width, or field type (most notably “textarea”). Fields

can also be created as selectable lists by specifying an AllowedValuesDefinition. Entered Field values can be

validated based on a ValidationScript, and a default value for the Field can be specified through an embedded

Script element.

Nested Elements within
Field Elements

Description

Attributes Attribute map to control field rendering (primarily used for textareas)
Example:

<Attributes>
 <Map>
 <entry key=”height” value=”200”/>
 <entry key=”width” value=”450”/>
 <entry key=”xtype” value=”textarea”/>
 </Map>

Defining and Modifying IdentityIQ Workflows Page 63 of 65

</Attributes>
NOTE: Height and width are in pixels. Xtype is used to specify a textarea field type
(e.g. for “comments” fields)

Script Script used to initialize the value of the field (must contain nested <Source> block in
which java beanshell code is housed)

AllowedValuesDefinition Populates a list of values from which the user can select a value for the field; usually
contains a <Script> block that specifies the list programmatically, but it’s also
possible to specify the list using <String> elements that contain the actual text to
display in the field’s drop-down list.

ValidationScript Script used to examine and validate the field value entered by the user; value
entered is given to the Validation Script in the variable named “value” (must contain
nested <Source> block in which java beanshell code is housed)

Example of Custom Form XML

This example XML creates a custom form that displays the Identity’s name and asks the user to select a Region

to which the Identity should be assigned.

<Step name="Need Region" posX="359" posY="182">

 <Approval name="Need Region" owner="ref:launcher" return="region"

 send="identityName">

 <Arg name="workItemDescription"

 value="string:Fill in Region for $(identityName)"/>

 <Form>

 <Attributes>

 <Map>

 <entry key="pageTitle" value="Get Region"/>

 <entry key="title" value="Need Region for Identity"/>

 </Map>

 </Attributes>

 <Button action="back" label="Abort"/>

 <Button action="next" label="Submit"/>

 <Button action="cancel" label="Return Item to Inbox"/>

 <Section name='userInstructions' type='text'>

 <Field value=”Employees must be assigned to a region. Please provide the

correct region for this employee.” />

 </Section>

 <Section type="datatable">

 <Field displayName="Employee Name" name="identityName" readOnly="true"/>

 </Section>

 <Section name="Edit These Fields">

 <Field displayName="Region Value" name="region" required="true"

 type="String">

 <AllowedValuesDefinition>

 <Script>

 <Source>

 import java.util.ArrayList;

 import sailpoint.api.*;

 import sailpoint.object.*;

 List regions = new ArrayList();

 QueryOptions qo = new QueryOptions();

 qo.setDistinct(true);

Defining and Modifying IdentityIQ Workflows Page 64 of 65

 qo.addOrdering("region", true);

 List props = new ArrayList();

 props.add("region");

 Iterator result = context.search(Identity.class, qo, props);

 while (result.hasNext()) {

 Object [] record = result.next();

 String region= (String) record[0];

 System.out.println("region: " + region);

 regions.add(region);

 }

 return regions;

 </Source>

 </Script>

 </AllowedValuesDefinition>

 <ValidationScript>

 <Source>

 // validation variable comes in as value

 import sailpoint.tools.Message;

 List messages = new ArrayList();

 if(value.length() < 7) {

 Message msg = new Message();

 msg.setKey("New region must be more than 7 characters.");

 messages.add(msg);

 }

 return messages;

 </Source>

 </ValidationScript>

 </Field>

 </Section>

 </Form>

 </Approval>

</Step>

Defining and Modifying IdentityIQ Workflows Page 65 of 65

Document Revision History

Revision Date Written/Edited By Comments

March 2012 Jennifer Mitchell Initial Creation (Current IdentityIQ Version: 5.5)

