
Child Actors



val childRef: ActorRef[String] = context.spawn(Child(), name)

Child Actors
Actors can create other actors

Actor organization
• tree-like hierarchy

• actor paths

• root guardian, /system guardian, /user guardian

ActorRef: a "pointer" to the actor instance we can use to send messages to

childRef ! message

New best practices
• keep the ActorSystem's behavior empty

• set up all your important actors and interactions at the setup of the ActorSystem



.receiveSignal {
case (context, PostStop) =>
// clean up resources that this actor might use
context.log.info("I'm stopping now.")
Behaviors.same // not used anymore in case of stopping

}

Stopping Actors
Stopping this actor: return Behaviors.stopped

Stopping a child: use the actor context

context.stop(childRef) // only works with CHILD actors

Optionally handle a PostStop signal



.receiveSignal {
case (context, Terminated(ref)) =>
context.log.info(s"[parent] Actor ${ref.path} was killed.")
// your business logic here

}

Watching Actors
Get a notification (signal) when the actor dies

Deregistering

context.watch(ref) // works with any actor

context.unwatch(ref) // works with any actor

Properties
• the Terminated signal gets sent even if the watched actor is already dead at registration time

• registering multiple times may/may not generate multiple Terminated signals

• unwatching will not process Terminated signals even if they have already been enqueued



Akka rocks


