MATHSFORNURSES

Doses with Unit Conversions - Worked Solutions

Question 1

A patient is prescribed 39 of a drug that is available in a solution with a stock dose of $600 \mathrm{mg} / 100 \mathrm{ml}$. How much of the solution should the patient be given?

The first step is to make sure that the prescribed dose (3g) and the stock dose (600mg) are in the same unit. The easiest way to do this is to convert them both into the smaller unit (mg), so you need to convert 3 g into mg .

Because you are converting from a larger unit to a smaller one, you multiply by the scale factor of 1000 , so the new prescribed dose will be $3 \times 1000=3000 \mathrm{mg}$.

Now to work out the volume that you would give, you can divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in as before.

The prescribed dose is now 3000 mg . The stock dose is 600mg and it is in a volume of 100 ml .

First, work out $3000 \div 600$. Write this as the fraction $3000 / 600$ then simplify this by dividing both numbers by 100 to get ${ }^{30} / 6$, and then divide both numbers by 6 to end up with $5 / 1$, or just 5 .

Then work out $5 \times 100 \mathrm{ml}$, which will be 500 ml .
Answer: 500ml

Question 2

A patient is prescribed 1.5 g of a drug that is available in a solution with a stock dose of $125 \mathrm{mg} / 20 \mathrm{ml}$. How much of the solution should the patient be given?

The first step is to make sure that the prescribed dose $(1.5 \mathrm{~g})$ and the stock dose (125 mg) are in the same unit. The easiest way to do this is to convert them both into the smaller unit (mg), so you need to convert 1.5 g into mg .

Because you are converting from a larger unit to a smaller one, you multiply by the scale factor of 1000 , so the new prescribed dose will be $1.5 \times 1000=1500 \mathrm{mg}$.

Now to work out the volume that you would give, you can divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in as before.

MATHSFORNURSES

Doses with Unit Conversions - Worked Solutions

The prescribed dose is now 1500 mg . The stock dose is 125 mg and it is in a volume of 20ml.

First, work out $1500 \div 125$. Write this as the fraction ${ }^{1500} / 125$ then simplify this by dividing both numbers by 5 to get $300 / 25$, and then divide both numbers by 5 again to end up with $60 / 5$, and then by 5 one more time to end up with ${ }^{12} /{ }_{1}$, or just 12 .

Then work out $12 \times 20 \mathrm{ml}$, which will be 240 ml .

Answer: 240ml

Question 3

A patient is prescribed 400 mg of a drug that is available in a solution with a stock dose of $\mathbf{2 g} / \mathbf{1 5 0 m l}$. How much of the solution should the patient be given?

The first step is to make sure that the prescribed dose (400mg) and the stock dose (2g) are in the same unit. The easiest way to do this is to convert them both into the smaller unit (mg), so you need to convert 2 g into mg .

Because you are converting from a larger unit to a smaller one, you multiply by the scale factor of 1000 , so the new stock dose will be $2 \times 1000=2000 \mathrm{mg}$.

Now to work out the volume that you would give, you can divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in as before.

The prescribed dose is 400 mg . The stock dose is now 2000mg and it is in a volume of 150 ml .

First, work out $400 \div 2000$. Write this as the fraction ${ }^{400} / 2000$ then simplify this by dividing both numbers by 100 to get $4 / 20$, and then divide both numbers by 4 to end up with $1 / 5$, which is the same as the decimal 0.2

Then work out $0.2 \times 150 \mathrm{ml}$, which will be $30 \mathrm{ml}(2 \times 150=300$, so $0.2 \times 150=30)$.
Answer: 30ml

Question 4

A patient is prescribed 10 mg of a drug that is available in a solution with a stock dose of $500 \mu \mathrm{~g} / 5 \mathrm{ml}$. How much of the solution should the patient be given?

MATHSFORNURSES

Doses with Unit Conversions - Worked Solutions

The first step is to make sure that the prescribed dose (10mg) and the stock dose ($500 \mu \mathrm{~g}$) are in the same unit. The easiest way to do this is to convert them both into the smaller unit ($\mu \mathrm{g}$), so you need to convert 10 mg into $\mu \mathrm{g}$.

Because you are converting from a larger unit to a smaller one, you multiply by the scale factor of 1000 , so the new prescribed dose will be $10 \times 1000=10000 \mu \mathrm{~g}$.

Now to work out the volume that you would give, you can divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in as before.

The prescribed dose is now $10000 \mu \mathrm{~g}$. The stock dose is $500 \mu \mathrm{~g}$ and it is in a volume of 5 ml .

First, work out $10000 \div 500$. Write this as the fraction ${ }^{10000} / 500$ then simplify this by dividing both numbers by 100 to get ${ }^{100} / 5$, and then divide both numbers by 5 to end up with ${ }^{20} / 1$, which is just 20 .

Then work out $20 \times 5 \mathrm{ml}$, which is 100 ml .
Answer: 100ml

Question 5

A patient is prescribed $6 \mu \mathrm{~g}$ of a drug that is available in a solution with a stock dose of $750 \mathrm{ng} / \mathrm{ml}$. How much of the solution should the patient be given?

The first step is to make sure that the prescribed dose ($6 \mu \mathrm{~g}$) and the stock dose (750ng) are in the same unit. The easiest way to do this is to convert them both into the smaller unit (ng), so you need to convert $6 \mu \mathrm{~g}$ into ng .

Because you are converting from a larger unit to a smaller one, you multiply by the scale factor of 1000 , so the new prescribed dose will be $6 \times 1000=6000$ ng

Now to work out the volume that you would give, you can divide the prescribed dose by the stock dose and multiply your answer by the volume that the stock dose is in as before.

The prescribed dose is now 6000ng. The stock dose is 750 ng and it is in a volume of 1 ml .

First, work out $6000 \div 750$. Write this as the fraction ${ }^{6000} / 750$ then simplify this by dividing both numbers by 10 to get $600 / 75$, and then divide both numbers by 5 to end up with ${ }^{120} / 15$, then divide the numbers by 5 again to get ${ }^{24} / 3$, and finally divide both numbers by 3 to get $8 / 1$, which is just 8 .

MATHSFORNURSES

Doses with Unit Conversions - Worked Solutions

Then work out $8 \times 1 \mathrm{ml}$, which is 8 ml .
Answer: 8ml

