Characteristics and Properties of Functions Unit Test

Knowledge

- 1) Solve |2 7x| > 3 and show the solutions on a number line.
- 2) State the domain/range for each relation below and whether it is a function.

$$c) y = 4sin(x) - 3$$

3) State whether each function is odd, even or neither.

a)
$$y = -4x^3 + 3x$$

a)
$$y = -4x^3 + 3x$$
 b) $y = 2x^4 - x^2 + 4$ c) $y = sinx$

$$c) y = sinx$$

4) What is the range of $y = -3(x+4)^2 - 1$?

5) If
$$f(x) = \frac{2(x-1)}{3}$$
, find $\frac{f(4)-f^{-1}(4)}{f(1)-f^{-1}(1)}$

Application

1) If $f(x) = \sqrt{x}$, graph -4f(2x+6) - 1 and state the domain and range

2) Graph the function below. State if it's continuous or any discontinuities.

$$f(x) = \begin{cases} -7 & x \le 0 \\ x^2 + 4 & 0 < x < 3 \\ -x + 16 & x \ge 3 \end{cases}$$

3) If $f(x) = -x^2 - 2x + 4$ and $g(x) = 2^x + 1$, graph each below on the domain $-3 \le x \le 3$.

$$a) f + g$$
 $b) f - g$

4) Graph the function below and state it's domain and range.

$$f(x) = \frac{-4}{x+5} - 3$$

5) Write the equation for when f(x) = |x| undergoes the following transformations: vertical stretch by 4, horizontal stretch by $\frac{3}{2}$, reflected in the x and y axis, translated 4 units to the left and 1 unit down.

Thinking

- 1) Write a piecewise function modelling this tiered tax system. Income up to \$60,000 is taxed at 20%, income between \$60,000 and \$140,000 at 40%, income over \$140,000 at 55%.
- 2) What values of m and n will make this function continuous?

$$f(x) = \begin{cases} -4x + m & x \le -2\\ 2^x + n & -2 < x \le 3\\ 10 & x > 3 \end{cases}$$

- 3) (3,6) is on the graph $y = -3f(\frac{1}{2}x + 3) 4$. What is the original point on f(x)?
- 4) What is the domain and range for the inverse of $y = -1(x+2)^2 3$?
- 5) Draw a graph with the following properties:

$$\circ$$
 vertical asymptote at x = 3

$$\circ f(0) = -4$$
 and $f(-3) = 0$

$$\circ$$
 As $x \to -\infty$, $y \to 2$

- \circ interval of decrease $(-\infty,3)$
- \circ interval of increase $(3, \infty)$

Communication

- 1) State transformations performed on f(x) = |x| to get $y = \frac{1}{4}|\frac{2}{3}x + 4| 3$
- 2) State 3 different ways to find the inverse of function. Show the ways to find the inverse of $f(x) = 3x^2 1$.
- 3) State a characteristic that $f(x) = \sin(x)$ and $g(x) = \frac{1}{x}$ have in common and a characteristic that is different.
- 4) The function f(x) = x is its own inverse. Show that there are an infinite amount of linear functions with this property.
- 5) State the parent functions that have these characteristics
 - a) the function is neither odd or even and as $x \to \infty$, $y \to \infty$
 - b) intervals of decrease are $(-\infty,0)$ and $(0,\infty)$
 - c) domain is $[0, \infty)$