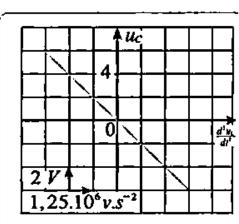
Cours de soutien en ligne en physique chimie 2BAC SMF – Prof Alaeddine ABIDA



TD 2BSM : RLC Libres

Exercice 01

7 On réalise le montage de la figure ci-contre. Le condensateur est déchargé. On place l'interrupteur à la position (1) pour le charger complétement sous la tension $E = 6V$ - A une date $t = 0$, on déplace l'interrupteur à la position 2, et à l'aide d'un système d'acquisition des données on visualise sur ordinateur les variations u_c en fonction de $\frac{d^2 u_c}{dt^2}$ figure (2) 1- Montrer que la tension u_c vérifie l'équation différentielle: $u_c + rC. \frac{du_c}{dt} + LC. \frac{d^2 u_c}{dt^2} = 0$ 2- Donner les noms des quatre modes possibles d'oscillations électriques au sein de ce type de circuit en classant ces régimes selon les valeurs de	
circuit. en classant ces régimes selon les valeurs de la résistance du circuit.	
 3- selon les résultats de cette expérience, le circuit étudié est le siège de quel type d'oscillations? Que peut t-on dire de la résistance de la bobine? 4- Déterminer son coefficient d'inductance L. 5- Sachant que la solution de l'équation différentielle étudiée est: 	2 V 1 1,25.10 ⁶ v.s ⁻² Figure-2
$u_{c} = U_{m} \cdot \cos\left(\frac{2\pi}{T_{0}} \cdot t + \varphi\right)$ Déterminer U_{m}, φ et T_{0} . Ecrire $u_{c}(t)$	
6- Exprimer les energies \mathscr{E}_{e} et \mathscr{C}_{m} en fonction de u_{c} et des paramètres du circuit.	
7- Pour quelle valeur de u_c , ces deux énergies s'égalisent?	
Exercice 02	
 10 Le circuit schématisé ci-contre comprend: - Un générateur de tension continue, E = 6V. - Une bobine de résistance r = 5Ω et de coefficient d'induction L réglable. - Un conducteur de capacité C. - Deux conducteurs ohmiques, l'un de résistance R₁ et l'autre de résistance R₂. 	

- Un interrupteur K.

1- On fait basculer l'interrupteur à la position 1, à une date prise comme origine du temps (t = 0).

1.1- Etablir l'équation différentielle qui régit les variations de la tension u_c .

1.2- Exprimer la tension u_c lorsque le régime permanent est supposé établi.

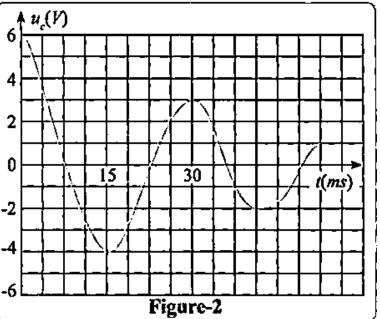
2- On fixe R_z sur la valeur $R_2 = 0\Omega$ et la valeur de L l'inductance sur la valeur L = 100mH.

A une date du régime permanent, on bascule K à la position (2) cette date est prise comme une nouvelle origine du temps (t = 0).

Onvisualise la tension aux bornes du condensateur à l'aide d'un oscilloscope.

w la figure 2.

21- Schématiser le montage équivalent de ce circuit.


Indiquer comment doit être branché l'oscilloscope pour obtenir la figure 2.

12- Quel phénomène est mis en évidence dans ce circuit?

13- Etablir l'équation différentielle:

$$\frac{d^2u_c}{dt^2} + \frac{1}{\tau}\frac{du_c}{dt} + \left(\frac{2\pi}{T_0}\right)^2 u_c = 0$$

t et To sont des constantes à exprimer en fonction des données du circuit.

14 Déterminer la dimension de τ . Calculer sa valeur.

15-On considère que la pseudo-période des oscillations est égale à la période propre T_{4} .

Déterminer la valeur de la capacité C.

2.6- La solution de l'équation différentielle précédente est de la forme:

 $u_{c}(t) = A \exp\left(-\frac{t}{2\tau}\right) \cos\left(\frac{2\pi}{T}t + \varphi\right)$ Calculer les valeurs des constantes A et φ .

Exercice 03

11 Un circuit RLC réel peut être le siège de plusieurs types d'oscillations électriques libres et ce selon les valeurs des paramètres R, L et C.

Pour distinguer ces modes d'oscillations, on propose le circuit ci-contre. 1- Etablir d'équation différentielle suivante:

$$\frac{d^2 u_c}{dt^2} + 2\lambda \frac{du_c}{dt} + \omega_0^2 u_c = 0,$$

avec: $\lambda = \frac{R}{2L}$ et $\omega_0^2 = \frac{1}{LC}$. R étant la résistance totale du circuit $(R = R_0 + r)$.

2- Cette équation différentielle possède trois types de solution selon le signe du discriminant: $\Delta' = \lambda^2 - \omega_0^2$.

1 er cas: • Si $\lambda^2 - \omega_0^2 < 0$ la solution est du type $u_c = u_{c_{m-1}}e^{-u} .\cos\left(\frac{2\pi}{T}t + \varphi\right)$ Les ocillations sont pseudo-périodiques de pseudo-période T dont l'expression est $T = \frac{T_0}{\sqrt{1 - L \cdot C \cdot \lambda^2}}$

 T_0 étant la période propre du circuit (LC).

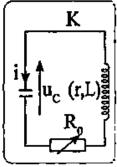
• Si $\lambda^2 - \omega_0^2 \ge 0$: le régime est dit apériodique.

La résistance du circuit vérifie dans ce cas, la condition suivante : $R \ge R_c$, R_c est appelée résistance critique du circuit.

2.1- Montrer que $R_c = 2\sqrt{\frac{L}{C}}$, que peut-on déduire?

2.2- Exprimer T en fonction de T_0 , R et R_c .

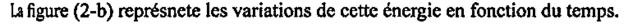
2.3- Comment varie T lorsqu'on fait augmenter la résistance R du circuit?

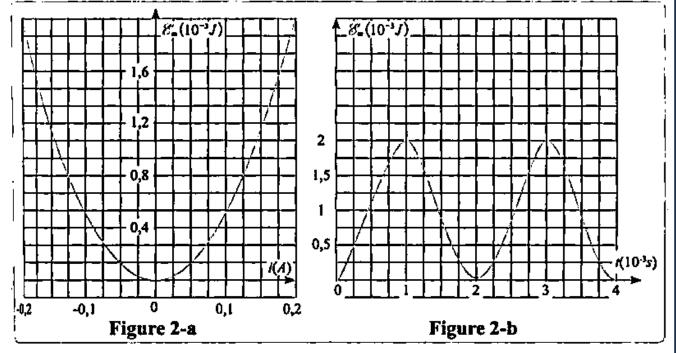

2.4- Calculer le rapport $\frac{T}{T_0}$, dans les deux cas suivants: $R = \frac{1}{2}R_c$ et $R = \frac{1}{5}R_c$.

2.5- Dans la pratique T est sensiblement égale T_0 lorsque $\frac{\Delta I}{T_0} < 5\%$ Dans quelle marge doit-on choisir la valeur de R pour pouvoir prendre $T \simeq T_0$? On donne: $R_c = 200\Omega$

Exercice 04

13 Un condensateur de capacité C est initialement chargé sous une tension U_t $(U_0 > 0)$.


On branche les armatures de ce condensateur avec une bobine de coefficien d'induction L et de résistance négligeable figure (1).



Le circuit est fermé à la date t = 0. 1- Etablir l'équation différentielle qui régit les variations de la tension $u_c(t)$ aux bornes du condensateur. 2- La solution de cette équation différentielle s'écrit sous la forme: $u_c(t) = U_m . \cos(2\pi N_0 t)$

Exprimer N_0 et U_* en fonction des paramètres du circuit C et L et U. 3-Etablir l'expression de l'intensité du courant i(t).

4 Une étude énergétique de ce circuit a permis d'obtenir la figure (2-a) représentant l'énergie magnétique \mathscr{E}_{*} emmagasinée dans la bobine en fonction de l'intensité du courant *i*.

4.1- En exploitant la figure 2-a, déterminer l'intensité maximale I_{m} du courant dans keireuit et la valeur du coefficient d'inductance L.

4.2-Montrer que l'énergie $\mathscr{C}_{m}(t)$ peut s'écrire : $\mathscr{C}_{m}(t) = \frac{1}{4}CU_{0}^{2}[1 - \cos(4\pi N_{0}t)]$ On rappelle que : $\sin^{2}\alpha = \frac{1}{2}[1 - \cos(2\alpha)]$

43-Vérifier que la période T de $\mathscr{B}_m(t)$ est $T = \frac{T_0}{2}$; T_0 étant la période propre du dipôle LC.

En déduire la valeur de N_0 .

44-Déterminer la valeur de la capacité C.

45-Montrer que l'énergie totale du circuit se conserve.

Endéduire la valeur de la tenstion U_0 . On prend $\pi^2 = 10$.

Exercice 05

On réalise le montage de la figure (1) à l'aide des dipôles électriques suivants :

- Un générateur de tension constante E = 12V.

· Un condensateur non chargé de capacité C.

- Une bobine d'inductance L et de résistance négligeable.
- Un conducteur ohmique (D) de résistance $R = 30\Omega$.

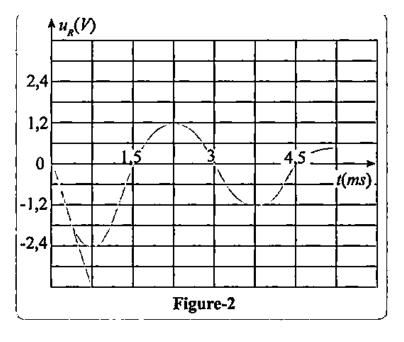
- Un interrupteur K.

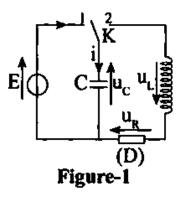
Au début, on laisse le condensateur se charger totalement, et à une date t = 0, on bascule l'interrupteur à la position (2), et on visualise à l'aide d'un oscilloscope l'évolution de la tension u_R en fonction du temps.

L'oscillogramme obtenu est représenté sur la figure (2).

La droite (T) contenue dans cette figure est tangente à la courbe de $u_R(t)$ à l'origine des dates (t = 0).

1-Quel est le régime des oscillations se produisant dans ce circuit?

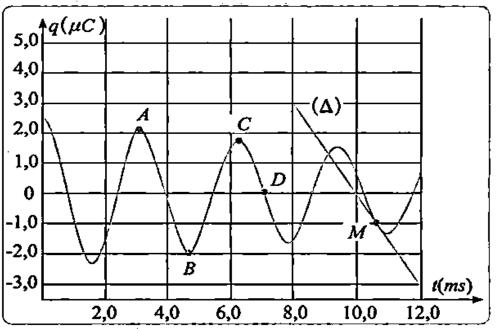

2-Montrer que la tension u_R vérifie l'équation différentielle :


$$u_R + RC.\frac{du_R}{dt} + L.C.\frac{d^2u_R}{dt^2} = 0$$

3-Quelle est la valeur de la tension u_L aux bornes de la bobine à la date t = 0.

4 Déterminer en utilisant la figure 2, la valeur de $\frac{di}{dt}$ à la date t = 0.

5- En déduire la valeur de L.



Exercice 06

On réalise l'étude expérimentale d'un oscillateur électrique contenant un condensateur de capacité $C = 0,50\mu F$ et une bobine d'inductance L = 0,50H. Soit R la résistance totale du circuit.

A l'aide d'une carte d'acquisit ion reliée à un ordinateur et d'un logiciel de traitement des données, on obtient les variations de la charge du q condensateur en fonction du temps t.

1- Vérifier que l'énergie électrique du circuit se trouve entièrement emmagasinée dans le condensateur. aux dates telles que t_A , t_B et t_C .

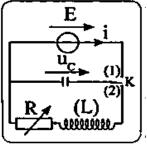
2- Que peut-on dire de l'énergie électrique du circuit à la date t_D ?

3- Considérons le point M de la figure où (Δ) est la droite tangente à la courbe de q(t) en ce point.

Calculer l'énergie électrique emmagasinée dans le circuit à la date t_M .

Exercice 07

20 Le montage de la figure suivante comprend:


-Un générateur de tension constante E = 6V

-Un condensateur de capacité C = 40nF

Une bobine d'inductance L = 10mH et de résistance négligeable.

-Un conducteur Otmique de résistance R réglable sur des valeurs

permettant d'obtenir des oscillations éléctriques libres pseudo-périodiques de pseudo-période T

•Un interrupteur K à deux positions (1) et (2).

On bascule l'interrupteur K à la position (1), une fois le condensateur est totalement chargé; on bascule (K) à la position (2) à une date prise comme origine des temps (t=0).

les pertes par effet Joule de l'énergie électrique emmagasinée dans le circuit sont exprimées par la relation suivante: $\frac{d\mathscr{S}}{dt} = -Ri^2$, où R est la résistance du circuit et il'intensité du courant électrique à une date t.

1-En utilisant une méthode énergétique, montrer que l'équation différentielle vérifiée par la tension u_c est de la forme:

 $\frac{d^{2}uc}{dt^{2}} + \frac{R}{L} \cdot \frac{duc}{dt} + \omega_{0}^{2} \cdot uc = 0$ Avec; $\omega_{0} = \frac{2\pi}{T_{0}} = \frac{1}{\sqrt{Lc}}$; T_{0} : période propre du cicruit.

1-On exprime la solution de l'équation différentielle précédente par:

$$\mu(t) = E.e^{-\frac{\omega_0}{2Q^2}} \cos \omega t , \text{ où:}$$

$$Q = \frac{L\omega_0}{R} \quad \text{et} \quad \omega = \sqrt{\omega_0^2 - \left(\frac{R}{2L}\right)^2}$$

2.1- Etablir que:
$$T = \frac{T_0}{\sqrt{1 - \frac{1}{4Q^2}}}$$

2.2- Quelle est la valeur de Q_{\min} , valeur minimale que doit prendre le coefficient Q pour que les oscillations soient pseudo-périodiques.

2.3- Q est appelé «facteur de qualité des oscillations» justifier cette appelation.

3- Quelle valeur doit-on donner à R, pour obtenir des ascillations de pseudo-période T égale à $126\mu s$?