5 A curve has equation $x^{3}-3 x^{2} y+y^{2}+1=0$.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x y-3 x^{2}}{2 y-3 x^{2}}$.
(b) Find the equation of the normal to the curve at the point $(1,2)$.

6 Let $\mathrm{f}(x)=2 x^{3}+3 x$. Use differentiation from first principles to show that $\mathrm{f}^{\prime}(x)=6 x^{2}+3$.

7 In this question you must show detailed reasoning.
A sequence $u_{1}, u_{2}, u_{3} \ldots$ is defined by $u_{n}=25 \times 0.6^{n}$.
Use an algebraic method to find the smallest value of N such that $\sum_{n=1}^{\infty} u_{n}-\sum_{n=1}^{N} u_{n}<10^{-4}$.

8 A cylindrical tank is initially full of water. There is a small hole at the base of the tank out of which the water leaks.

The height of water in the tank is $x \mathrm{~m}$ at time t seconds. The rate of change of the height of water may be modelled by the assumption that it is proportional to the square root of the height of water.

When $t=100, x=0.64$ and, at this instant, the height is decreasing at a rate of $0.0032 \mathrm{~ms}^{-1}$.
(a) Show that $\frac{\mathrm{d} x}{\mathrm{~d} t}=-0.004 \sqrt{x}$.
(b) Find an expression for x in terms of t.
(c) Hence determine at what time, according to this model, the tank will be empty.

9 (a) Express $3 \cos 3 x+7 \sin 3 x$ in the form $R \cos (3 x-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
(b) Give full details of a sequence of three transformations needed to transform the curve $y=\cos x$ to the curve $y=3 \cos 3 x+7 \sin 3 x$.
(c) Determine the greatest value of $3 \cos 3 x+7 \sin 3 x$ as x varies and give the smallest positive value of x for which it occurs.
(d) Determine the least value of $3 \cos 3 x+7 \sin 3 x$ as x varies and give the smallest positive value of x for which it occurs.

