5 A curve has equation $x^3 - 3x^2y + y^2 + 1 = 0$.

(a) Show that
$$\frac{dy}{dx} = \frac{6xy - 3x^2}{2y - 3x^2}$$
. [4]

- (b) Find the equation of the normal to the curve at the point (1, 2). [4]
- 6 Let $f(x) = 2x^3 + 3x$. Use differentiation from first principles to show that $f'(x) = 6x^2 + 3$. [6]

7 In this question you must show detailed reasoning.

A sequence $u_1, u_2, u_3 \dots$ is defined by $u_n = 25 \times 0.6^n$. Use an algebraic method to find the smallest value of N such that $\sum_{n=1}^{\infty} u_n - \sum_{n=1}^{N} u_n < 10^{-4}$. [8]

8 A cylindrical tank is initially full of water. There is a small hole at the base of the tank out of which the water leaks.

The height of water in the tank is x m at time t seconds. The rate of change of the height of water may be modelled by the assumption that it is proportional to the square root of the height of water.

When t = 100, x = 0.64 and, at this instant, the height is decreasing at a rate of $0.0032 \,\mathrm{ms}^{-1}$.

(a) Show that
$$\frac{dx}{dt} = -0.004\sqrt{x}$$
. [2]

- (b) Find an expression for x in terms of t.
- (c) Hence determine at what time, according to this model, the tank will be empty. [2]
- 9 (a) Express $3\cos 3x + 7\sin 3x$ in the form $R\cos(3x-\alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. [3]
 - (b) Give full details of a sequence of three transformations needed to transform the curve $y = \cos x$ to the curve $y = 3\cos 3x + 7\sin 3x$. [4]
 - (c) Determine the greatest value of $3\cos 3x + 7\sin 3x$ as x varies and give the smallest positive value of x for which it occurs. [2]
 - (d) Determine the least value of $3\cos 3x + 7\sin 3x$ as x varies and give the smallest positive value of x for which it occurs. [2]

[4]