
Chapter 10

Graphical User Interfaces and Event-
Driven Programming

10.1 Model-View-Controller Revisited

10.2 Events

10.3 The AWT/Swing Class Hierarchy

10.4 Simple Windows: Labels and Buttons

10.5 Handling an Event

10.5.1 A View as Action Listener

10.5.2 A Separate Controller

10.5.3 A Button-Controller

10.6 Richer Layout: Panels and Borders

10.6.1 An Animation in a Panel

10.7 Grid Layout

10.8 Scrolling Lists

10.9 Text Fields

10.10 Error Reporting with Dialogs

10.11 TextAreas and Menus

10.11.1 Case Study: Text Editor

10.12 Event-Driven Programming with Observers

10.12.1 Observers and the MVC-Architecture

10.13 Summary

10.14 Programming Projects

10.15 Beyond the Basics

10.1. MODEL-VIEW-CONTROLLER REVISITED 565

Just as the connection points between program components are called interfaces,
the “connection point” between a program and its human user is called its “user
interface.” A program that uses visual aids—buttons, scroll bars, menus, etc.—to
help a user enter input and read output is called a graphical user interface (“GUI”
for short, pronounced “goo-ee”).

In this chapter, we learn the following:

• how to employ Java’s AWT/Swing framework to design graphical user interfaces

• how to write programs whose controllers are distributed and event driven. That
is, a program has multiple controllers, and a controller executes when it is started
by a user action (event), e.g., a button press.

• how to use the observer design pattern to streamline the collaborations between
the components of a program that uses a GUI.

10.1 Model-View-Controller Revisited

The model-view-controller (MVC) architecture we have used for our programs was
first developed to manage programs with GUIs. The philosophy and terminology
behind MVC might be explained as follows:

• A computer program is a kind of “appliance,” like a television set, radio, or
hand-held calculator, so it should look like one: The program should have a
view or appearance like an appliance, so that its human user feels familiar with
it.

• Appliances have controls—switches, buttons, knobs, sliders—that their users
adjust to operate it. A program should also have controllers that its user adjusts
to execute the program. And for familiarity’s sake, the controllers should have
the appearance of switches, buttons, knobs, etc.

• An apppliance’s controls are connected to the appliance’s internal circuitry,
which does the work that its user intended. Similarly, a program’s controllers are
connected to the program’smodel, which calculates results that are portrayed by
the program’s view. By “portrayed,” we mean that the view presents a picture
of the internal state of the model. Indeed, a program’s model might even have
multiple views that are presented simultaneously.

The manner in which the model, view, and controller collaborate is equally impor-
tant: A user interacts with a program’s view, say, by adjusting one of its controllers.
This awakens the controller, which might examine the view for additional data and
then send messages to the program’s model. The model executes the controller’s
messages, computing results and updating its internal state. The view is then sent a

566

Figure 10.1: model-view-controller architecture

message (either indirectly by the model or directly by the controller) to display the
results. The view queries the model, getting information about the model’s state and
presenting this information to the user. Figure 1 depicts the situation.

Another important aspect about the MVC-architecture is that it can be composed,
that is, one component—say, the view—might be built from smaller components—
say, buttons, text fields, and menus—that are themselves constructed with their own
little MVC-architectures. For example, consider a text field, which is a component
within a view where a user can type text. The text field has its own little appearance
or view. (Typically, it is an area that displays the letters the user typed while the
mouse was positioned over the area.) When a user types a letter into the text field,
this activates the text field’s controller, which transfers the letter into the text field’s
internal model. Then, the text field’s view is told to refresh itself by asking the model
for all the letters that have been typed; the view displays the letters.

Of course, it would be a nightmare if we must design from scratch the little MVC
architectures for buttons, menus, text fields, and the other GUI components! For
this reason, we use a framework that contains prebuilt components and provides
interfaces for connecting them. In Java, the framework for building GUIs and con-
necting them to controllers and models is called AWT/Swing. (The AWT part is the
java.awt package; the Swing part is the javax.swing package. “AWT” stands for

10.2. EVENTS 567

“Abstract Window Toolkit.”) The bulk of this chapter introduces a useful subset of
AWT/Swing.

Exercise

Consider a television set. What are its controllers? model? view? Answer the same
questions for a calculator. How can a television have multiple views? How can a
calculator have multiple views?

10.2 Events

In the programs we built in previous chapters, the program’s controller was “in
control”—it controlled the sequence of steps the user took to enter input, it controlled
the computation that followed, and it controlled the production of the program’s out-
put. When one employs a GUI, this changes—the program’s user decides when to
enter input, and the controllers must react accordingly. The moving of the mouse,
the pushing of a button, the typing of text, and the selection of a menu item are all
forms of input data, and the controllers must be prepared to calculate output from
these forms of input. The new forms of input are called events, and the style of
programming used to process events is called event-driven programming.
Event-driven programming is more complex than the programming style we em-

ployed in earlier chapters: When a program receives events as input, a coherent “unit”
of input might consist of multiple events (e.g., a mouse movement to a menu, a menu
selection, text entry, mouse movement to a button, and a button push); the program
that receives this sequence of events must be written so that it can

• process each individual event correctly—this is called handling the event. The
controller that handles the event is sometimes called the event handler or event
listener.

• accumulate information from handling the sequence of events and generate out-
put. Typically, the controllers that handle the events save information about
them in model objects.

Further, the user of the program might generate events in unexpected or incorrect
orders, and event handlers must be prepared to handle unwelcome events.
The previous examples should also make clear that event-driven programs use

multiple controllers (event handlers), so there is no longer one controller that oversees
the execution of the entire program. Instead, execution is distributed across multiple
controllers that are activated at the whim of a user. For this reason, an event-driven
program is a bit like a crew of night-duty telephone operators who are repeatedly
awakened by telephone calls (events) and must process each call in a way that keeps
the telephone station operating smoothly through the night. The telephone operators

568

cannot predict when the telephone will ring and what each call’s request might be;
the operators must react to the evening’s events rather than dictate what they might
be.
To assist an event driven program, a programmer must design the program’s GUI

so that

• sequences of events are organized into natural units for processing

• it is difficult or impossible for the user to generate a truly nonsensical sequence
of events

To help with the first objective, we will usually design our GUIs so that computa-
tion occurs only after a sequence of events terminates with a button push or a menu
selection. (In Java, button pushes and menu selections are called action events, and
their event handlers are called action listeners.) We will let mouse-movement and
text-entry events be handled by the default event handlers that are already built into
the components of the Java AWT/Swing framework.
To assist with the second objective, we will design our GUIs so that the action

events that can be generated from a window can occur in any order at all. If a program
must enforce that one action event must occur before another, we will program the
GUI so that the first action event causes a secondary window to appear from which
the second action event can be generated.
Because we let the AWT/Swing components handle mouse movement events and

text entry events, we need not write extra controllers to monitor the position of the
mouse on the display or to monitor every key press into a text field—we use the
code that is already in place in the default codings of windows and text fields. This
should make clear why a framework is so useful for building graphical user interfaces:
Many intelligent classes are available for immediate use, and we need worry only
about programming controllers for those events (here, action events) that we choose
to handle in a customized way.

10.3 The AWT/Swing Class Hierarchy

Before we write GUIs with Java’s AWT/Swing framework, we must survey the com-
ponents provided by the framework. We begin with some terminology.
An entity that can have a position and size (on the display screen) and can have

events occur within it is called a component. A component that can hold other
components is a container; a panel is the standard container into which one inserts
components (including painted text and shapes). Panels are themselves inserted into
a container called a window, which is a “top-level” container, that is, a container that
can be displayed by itself.
A frame is a window with a title and menus; frames are “permanent” in that they

are created when an application starts and are meant to exist as long as the application

10.3. THE AWT/SWING CLASS HIERARCHY 569

Figure 10.2: frame with basic components

executes. A dialog is a “temporary” window that can appear and disappear while the
program is executing.
Examples of components that one finds within panels and frames are

• a label, which is text that the user can read but cannot alter

• a text component, into which a user can type text

• a button, which can be pushed, triggering an action event

• a list of items, whose items can be chosen (“selected”)

Figure 2 shows a frame that contains a label, a text component, a list, and three
buttons. Although it is not readily apparent, the text component and list are em-
bedded in a panel, which was inserted in the middle of the frame, and the label and
button live in their own panels in the top and bottom regions of the frame.
Figure 3 displays an example dialog, which might have appeared because the user

entered text and pushed a button in the frame behind. The dialog contains a label
and a button; when the button is pushed, the dialog disappears from the screen.
A frame can hold amenu bar, which holds one or moremenus. Each menu contains

menu items, which can be selected, triggering an action event. Figure 4 shows a frame
with a menu bar that holds two menus, where the second menu is open and displays
four menu items, one of which is itself a menu:
When a container holds multiple components, the components can be formatted

with the assistance of a layout manager. Three basic forms of layout are

• flow layout: the components are arranged in a linear order, like the words in a
line of text

570

Figure 10.3: sample dialog

Figure 10.4: frame with menus

10.4. SIMPLE WINDOWS: LABELS AND BUTTONS 571

• border layout: components are explicitly assigned to the “north,” “south,”
“east,” “west,” or “center” regions of the container

• grid layout: components are arranged as equally-sized items in rows and columns,
like the entries of a matrix or grid

In Figure 2, the frame is organized with a 3-by-1 grid layout, where the second element
of the grid is a panel containing a text component and list. The panel uses flow layout
to arrange its two components. We will see an example of border layout momentarily.
The AWT/Swing framework contains dozens of classes, each of which owns dozens

of methods. It is overwhelming to learn the entire framework, so we will master a
manageably sized subset of it. Figure 5 displays the parts of AWT/Swing we will use;
aside from reading the names of the various classes, do not study the Figure at this
point—use it as a reference as you progress through the chapter.
Since the AWT/Framework was developed in several stages by the Java designers,

the elegant hierarchy of component-container-panel-window-frame is obscured in the
final product in Figure 5.
The classes in Figure 5 require other classes that define points, type fonts, images,

layouts, and events. Figure 6 lists these extra classes. Again, study the Figure as you
progress through the chapter.
As all frameworks must do, AWT/Swing uses a variety of interfaces for connecting

view components to controllers. (Review Chapter 9 for uses of Java interfaces; an
introductory explanation appears later in this chapter, also.) The interfaces within
AWT/Swing that we employ appear in Figure 7.
Figures 5 through 7 list the constructs we use in this chapter, and you should use

the Figures as a road map through the examples that follow.

Exercises

1. List all the methods owned by a JFrame. (Remember that the JFrame inherits
the methods of its superclasses.) Compare your answer to Table 21, Chapter 4.

2. Several of the classes in Figure 5 have methods named addSOMETHINGListener.
The classes that possess such methods are capable of generating SOMETHING

events. List the classes that generate events.

10.4 Simple Windows: Labels and Buttons

The standard graphical user interface for a program is a frame, generated from class

JFrame. We made extensive use of JFrame in previous chapters, using it to hold and
display panels. Now, we learn how to insert components like labels and buttons into
a frame.

572

Figure 10.5: partial AWT/Swing hierarchy

Object

|

+-Component [abstract]: setSize(int,int), setVisible(boolean), setFont(Font),

| isShowing():boolean, getLocationOnScreen():Point, setLocation(Point),

| paint(Graphics), repaint(), setForeground(Color),

| setBackground(Color), getGraphics()

|

+-Container: add(Component), add(Component,Object), setLayout(LayoutManager)

|

+-Window: pack(), dispose(), addWindowListener(WindowListener)

| |

| +-JFrame: JFrame(), setTitle(String), setJMenuBar(JMenuBar)

| getContentPane():Container

|

+-JApplet: JApplet(), init(), getParameter(String):String,

| getContentPane():Container, setJMenuBar(JMenuBar)

|

+-JComponent [abstract]: paintComponent(Graphics)

|

+-AbstractButton [abstract]: addActionListener(ActionListener),

| | setEnabled(Boolean), getText():String, setText(String),

| | setSelected(Boolean), isEnabled():boolean,

| | isSelected():boolean, doClick()

| |

| +-JButton: JButton(String), JButton(Icon), JButton(String, Icon),

| | setIcon(Icon)

| |

| +-JMenuItem: JMenuItem(String)

| |

| +-JMenu: JMenu(String), add(Component), addSeparator()

|

+-JLabel: JLabel(String), getText():String, setText(String)

|

+-JList: JList(Object[]),getSelectedIndex():int,setSelectedIndex(int),

| getSelectedIndices():int[], setSelectedIndices(int[]),

| setSelectionMode(int), clearSelection(),

| addListSelectionListener(ListSelectionListener)

|

+-JMenuBar: JMenuBar(), add(JMenu)

|

+-JOptionPane: showMessageDialog(Component,Object),

| showConfirmDialog(Component,Object):int,

| showInputDialog(Component,Object):String

...

10.4. SIMPLE WINDOWS: LABELS AND BUTTONS 573

Figure 10.5: partial AWT/Swing hierarchy (concl.)

|

+-JPanel: Panel(), Panel(LayoutManager)

|

+-JScrollPane: JScrollPane(Component)

|

+-JTextComponent [abstract]: cut(), paste(), copy(), getText():String,

| setText(String), getSelectionStart():int,

| getSelectionEnd():int, getSelectedText():String,

| replaceSelection(String), getCaretPosition():int,

| setCaretPosition(int), moveCaretPosition(int),

| isEditable():boolean, setEditable(boolean)

|

+-JTextField: JTextField(String,int),

| addActionListener(ActionListener)

+-JTextArea: JTextArea(String,int,int), insert(String,int)

replaceRange(String,int,int), setLineWrap(boolean)

The first example is a frame that holds the label, Press This, and a button named
OK. These two components must be inserted into the frame, and we must indicate the
form of layout. We use flow layout, which places the two components next to each
other. Here is the result,

which is produced by the program in Figure 8.
Let’s examine the statements in the constructor method one by one:

• JLabel label = new JLabel("Press This:") constructs a label object, label
that displays the string, Press This:.

• Similarly, JButton button = new JButton("OK") constructs a button.

• Container c = getContentPane() asks the frame to extract (the address of) its
content pane and assign it to c. Many examples in earlier chapters invoked
getContentPane, and now it is time to understand the activity.

For the moment, pretend that a JFrame object is in fact a real, physical, glass
window that is assembled from several layers of glass. The frame’s topmost

574

Figure 10.6: points, fonts, images, layouts, and events

Object

|

+-BorderLayout: BorderLayout(), BorderLayout.NORTH, BorderLayout.SOUTH,

| BorderLayout.EAST, BorderLayout.WEST, BorderLayout.CENTER

|

+-FlowLayout: FlowLayout(), FlowLayout(int), FlowLayout.LEFT,

| FlowLayout.RIGHT, FlowLayout.CENTER

|

+-GridLayout: GridLayout(int,int)

|

+-Font: Font(String,int,int), Font.PLAIN, Font.BOLD, Font.ITALIC

|

+-Point: Point(int,int), translate(int,int)

|

+-EventObject

| |

| +-AWTEvent [abstract]

| | |

| | +-ActionEvent: getActionCommand():String, getSource():Object

| | |

| | +-WindowEvent

| |

| +-ListSelectionEvent

|

+-WindowAdapter [implements WindowListener]

|

+-Image

|

+-ImageIcon [implements Icon]: ImageIcon(String), getImage():Image

|

+-Observable: addObserver(Observer), setChanged(), notifyObservers(),

notifyObservers(Object)

10.4. SIMPLE WINDOWS: LABELS AND BUTTONS 575

Figure 10.7: interfaces

public interface ActionListener

{ public void actionPerformed(ActionEvent e); }

public interface WindowListener

{ public void windowActivated(WindowEvent e);

public void windowClosed(WindowEvent e);

public void windowClosing(WindowEvent e);

public void windowDeactivated(WindowEvent e);

public void windowDeiconified(WindowEvent e);

public void windowIconified(WindowEvent e);

public void windowOpened(WindowEvent e);

}

public interface ListSelectionListener

{ public void valueChanged(ListSelectionEvent e); }

public interface Observer

{ public void update(Observable ob, Object arg); }

public interface Icon

{ public int getIconHeight();

public int getIconWidth();

public void paintIcon(Component c, Graphics g, int x, int y);

}

576

Figure 10.8: frame with label and button

import java.awt.*;

import javax.swing.*;

/** Frame1 is a frame with a label and a button */

public class Frame1 extends JFrame

{ /** Constructor Frame1 creates a frame with a label and button */

public Frame1()

{ JLabel label = new JLabel("Press This:");

JButton button = new JButton("OK");

Container c = getContentPane();

c.setLayout(new FlowLayout());

c.add(label);

c.add(button);

setTitle("Example1");

setSize(200, 60);

setVisible(true);

}

public static void main(String[] args)

{ new Frame1(); }

}

layer is called the glass pane, and it is possible (but not recommended) to paint
on it. When we insert components like panels, labels, and buttons into the
frame, the components are inserted into an inner layer, called the content pane.
(There are additional layers of “glass,” but we will not deal with them in this
chapter.)

The statement, Container c = getContentPane(), fetches the content pane. We
could also write the statement as

Container c = this.getContentPane();

but from this point onwards, we take advantage of Java’s convention: a message
that an object sends to itself need not be prefixed by this.

• The message, c.setLayout(new FlowLayout()) tells the content pane to arrange
the components in a flow layout, that is, where the components are arranged in
a line.

• c.add(label) uses the content pane’s add method to add label; c.add(button)
adds button also.

10.4. SIMPLE WINDOWS: LABELS AND BUTTONS 577

• Finally, the setTitle, setSize, and setVisible messages are the standard ones.
Again, we omit the this pronoun as the receiver.

The names, label and button, are not crucial to the example, and we might revise
the above statements to read,

Container c = getContentPane();

c.setLayout(new FlowLayout());

c.add(new JLabel("Press This:"));

c.add(new JButton("OK"));

Indeed, even the name, c, can be discarded, e.g., getContentPane().setLayout(new
FlowLayout()), getContentPane().add(new JLabel("Press This:")), etc.
The statement, setSize(200, 60), which sets the frame’s size, can be replaced

by pack(), which resizes the frame at a minimal size to display the components it
contains. (But take care when using pack(), because it occasionally creates a frame
with too small of a size for its components.)
As is the custom, we place a tiny main method at the end of the class so that we

can easily test the frame.
As noted earlier, it is possible to paint on the surface of a frame by using a method

named paint. if we add this method

public void paint(Graphics g)

{ g.setColor(Color.red);

g.fillRect(0, 0, 100, 100);

}

to Figure 8, we get this result,

because we have painted on the frame’s topmost, “glass,” pane, covering the compo-
nents we inserted into the content pane.
Although we should not paint directly onto a frame, we can set the background

and foreground colors of the content pane and the components we insert into it. For
example, to make the content pane’s background yellow, we state,

Container c = getContentPane();

c.setBackground(Color.yellow);

and we can make button a matching yellow by saying,

button.setBackground(Color.yellow);

578

We can color red the foreground text on both label and button by saying

label.setForeground(Color.red);

button.setForeground(Color.red);

This works because every component has a “background” and “foreground” that can
be colored.
Buttons usually have text displayed on their faces, but it is possible to display

images, called icons, as well. If you have an image formatted as a gif or jpg file, you
can place the image on the face of the button as follows:

ImageIcon i = new ImageIcon("mypicture.gif");

JButton b = new JButton(i);

which displays

That is, the image file, mypicture.gif, is used to construct an ImageIcon object,
which itself is used to construct the button. A button can display both an image and
text:

JButton b = new JButton("My Picture:", new ImageIcon("mypicture.gif"));

Once the frame and its button appear on the display, you can move the mouse
over the frame’s button and push it to your heart’s content. But the program takes
no action when the button is pushed, because the program has only a view object
but no model and no controller. We write these next.

Exercises

1. Create a frame with three buttons whose labels state, Zero, One, and Two. Create
the frame with different sizes, e.g., setSize(300, 150), setSize(50, 300), and
pack().

2. Color the frame’s background white, color each button’s background a different
color, and color each button’s text (foreground) black.

3. Replace the three buttons with one label that states, Zero One Two. Color the
background and foreground of the label.

10.5. HANDLING AN EVENT 579

10.5 Handling an Event

Every component—button, label, panel, etc.—of a window is an object in its own
right. When an event like a button push or a mouse movement occurs, it occurs
within an object within the window. The object in which the event occurs is the
event source. In AWT/Swing, when an event occurs, the event source automatically
sends a message to an object, called its event listener, to handle the event. The event
listener is a controller—when it receives a message, it sends messages to model object
and view object to compute and display results.
As stated earlier, we focus upon action events—button pushes and menu selec-

tions. An action event, like a button push, is handled by an action-listener object; in
Java, an action-listener object must have a method named actionPerformed, and it
is this method that is invoked when an action event occurs.
When we write a class, C, that creates action-listener objects, we use this format:

public class C implements ActionListener

{ ...

public void actionPerformed(ActionEvent e)

{ ... instructions that handle a button-push event ... }

}

That is, the class’s header line asserts implements ActionListener, and the class
contains an actionPerformed method. As we learned in Chapter 9, we use a Java
interface to name the methods required of a class. In AWT/Swing, there is a
prewritten interface, named ActionListener, which is found in the java.awt.event

package. The interface was listed in Figure 7; once again, it looks like this:

/** ActionListener names the method needed by an action listener. */

public interface ActionListener

{ /** actionPerformed handles an action event, say, a button push

* @param e - information about the event */

public void actionPerformed(ActionEvent e);

}

The interface states that an action listener must have a method named actionPerformed.
AWT/Swing requires that a button’s action listener must be an object that is con-
structed from a class that implements ActionListener. We now study three standard
ways of writing action listeners.

10.5.1 A View as Action Listener

For our first, simplest example of event handling, we alter Frame1 so that each time
the the frame’s button is pushed, its label displays the total number of button pushes.

580

Figure 10.9: model class, Counter

/** Counter holds a counter */

class Counter

{ private int count; // the count

/** Constructor Counter initializes the counter

* @param start - the starting value for the count */

public Counter(int start)

{ count = start; }

/** increment updates count. */

public void increment()

{ count = count + 1; }

/** countOf accesses count.

* @return the value of count */

public int countOf()

{ return count; }

}

When created, the GUI appears

and after 3 button pushes, the view is

To create this behavior, we use a model-view-controller architecture, where class
Counter, from Figure 9, remembers the quantity of button pushes; it acts as the
model.
Next, we require a controller (action listener) for the OK button, and we must

connect the controller to the button. In this first example, the view and controller
are combined into the same class; this is a naive and inelegant but simple solution—see
Figure 10.

10.5. HANDLING AN EVENT 581

Figure 10.10: combined view/controller for counter example

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/** Frame2a shows a frame with whose label displays the number of times

its button is pushed */

class Frame2a extends JFrame implements ActionListener

{ private Counter count; // address of model object

private JLabel label = new JLabel("count = 0"); // label for the frame

/** Constructor Frame2a creates a frame with a label and button

* @param c - the model object, a counter */

public Frame2a(Counter c)

{ count = c;

Container cp = getContentPane();

cp.setLayout(new FlowLayout());

cp.add(label);

JButton button = new JButton("OK");

cp.add(button);

button.addActionListener(this); // this object---the view---is connected

// to button as its action listener

setTitle("Frame2a");

setSize(200, 60);

setVisible(true);

}

/** actionPerformed handles an action event---a button push */

public void actionPerformed(ActionEvent e)

{ count.increment();

label.setText("count = " + count.countOf());

}

}

/** Example2a starts the application */

public class Example2a

{ public static void main(String[] args)

{ Counter model = new Counter(0); // create the model

Frame2a view = new Frame2a(model); // create the controller and view

}

}

582

Since the view is also the controller, class Frame2a states in its header line that
it implements ActionListener. And indeed, method actionPerformed appears at the
end of the class. (We study the contents of actionPerformed momentarily.) Also, the
statement, import java.awt.event.*, appears at the beginning of the class because
the java.awt.event package contains the ActionListener interface.
Now, how do we connect the button to its action listener, the view object? The

answer appears within the view’s constructor method:

JButton button = new JButton("OK");

cp.add(button);

button.addActionListener(this);

The first two statements create the button and add it to the view, like before. The
third statement connects button to its action listener—every button has a method,
named addActionListener, which is invoked to connect a button to its action listener.
Here, the action-listener object is this very object—the view object, which displays
the button! From this point onwards, every push of button causes the view object’s
actionPerformed method to execute.

Frame2a’s actionPerformed method handles a button push by making the counter
increment and by resetting the text of the label to display the counter’s new value.
The method receives a parameter that contains technical information about the but-
ton push; we will not use the parameter at this time.
Here is a slightly detailed explanation of what happens when the program in

Figure 10 is started and its button is pushed. When Example2a is started:

1. The mainmethod creates objects for the model and the view/controller. Frame2a’s
constructor method creates a label and a button. The button is sent an addActionListener
message that tells the button that its action events will be handled by the
Frame2a object.

2. The view appears on the display, and the program awaits events.

When the user clicks on the frame’s OK button:

1. The computer’s operating system detects the event, and tells AWT/Swing
about it. AWT/Swing determines the event source (the button), and creates
an ActionEvent object that holds precise information about the event. The
ActionEvent object is sent as the actual parameter of an actionPerformed mes-
sage to the event source’s action listener, which is the Frame2a object.

2. The message arrives at actionPerformed in Frame2a. The actionPerformed

method sends an increment message to the counter object and a setText mes-
sage to the label.

3. When actionPerformed’s execution concludes, the computer automatically re-
freshes the view on the display; this displays the label’s new value.

10.5. HANDLING AN EVENT 583

4. The program awaits new events.

The explanation should make clear that computation occurs when events trigger exe-
cution of event listeners. This is why computation is “event driven.”

10.5.2 A Separate Controller

Our second approach to the the previous example uses a separate class to be the
button’s event listener—its controller. This style is preferred because it makes it
easier to build GUIs with multiple buttons and to reuse views and controllers. The
controller, class CountController, will be studied momentarily. This leaves the view,
class Frame2b, with the sole job of presenting the frame, label, and button on the
display. Figure 11 shows the view after we have extracted the controller from it.
The key change in the constructor method lies at

JButton button = new JButton("OK");

button.addActionListener(new CountController(count, this));

which constructs a new CountController object (see Figure 12), gives it the addresses
of the model object and view object (this object), and attaches the controller to the
button as the button’s action listener.
Because the controller is separate from the view, the former will need a way to

tell the latter when it is time to display a new value for the count. For doing this,
the view class has a method, update, which resets the text of the label with the latest
value of the count.
We have simple coding of the controller, class CountController, in Figure 12.
The controller implements ActionListener and it holds the actionPerformedmethod

that is invoked when the OK button is pushed. This controller resembles the ones we
saw in previous chapters, because its job is to tell the model object to compute results
and tell the view to display the results.

10.5.3 A Button-Controller

The third solution to the example merges the JButton object with its controller. This
follows the philosophy that, to the user, the button is the controller, and pushing the
button activates its methods. The button-controller we write appears in Figure 13.

CountButton is a “customized” JButton, hence it extends JButton. Its constructor
method starts work by invoking the constructor in JButton—this is what super(my label)

does—and creates the underlying JButton and attaches my label to the button’s face.
But the constructor for CountButton does more: The crucial statement is, addActionListener(this),

which tells the button that its action listener is this very same object. Thus, the
class implements ActionListener.

584

Figure 10.11: view class for counter example

import java.awt.*; import javax.swing.*;

/** Frame2b shows a frame with whose label displays the number of times

its button is pushed */

public class Frame2b extends JFrame

{ private Counter count; // address of model object

private JLabel label = new JLabel("count = 0"); // label for the frame

/** Constructor Frame2b creates a frame with a label and button

* @param c - the model object, a counter */

public Frame2b(Counter c)

{ count = c;

Container cp = getContentPane();

cp.setLayout(new FlowLayout());

cp.add(label);

JButton button = new JButton("OK");

button.addActionListener(new CountController(count, this)); // see Fig. 12

cp.add(button);

setTitle("Frame2");

setSize(200, 60);

setVisible(true);

}

/** update revises the view */

public void update()

{ label.setText("count = " + count.countOf()); }

}

/** Example2b starts the application */

public class Example2b

{ public static void main(String[] args)

{ Counter model = new Counter(0);

Frame2b view = new Frame2b(model);

}

}

10.5. HANDLING AN EVENT 585

Figure 10.12: controller for counter example

import java.awt.event.*;

/** CountController handles button push events that increment a counter */

public class CountController implements ActionListener

{ private Frame2b view; // the view that must be refreshed

private Counter model; // the counter model

/** CountController constructs the controller

* @param my model - the model object

* @param my view - the view object */

public CountController(Counter my model, Frame2b my view)

{ view = my view;

model = my model;

}

/** actionPerformed handles a button-push event */

public void actionPerformed(ActionEvent evt)

{ model.increment();

view.update();

}

}

The view that uses the button-controller is in Figure 14, and it is the simplest of
the three versions we have studied.
Figure 15 summarizes the architecture that we have assembled for the third variant

of the counter application.
The interface, written in italics, serves as the connection point between the button-

controller and the AWT/Swing framework.
We can revise the application in Figure 15 so that it it presents two buttons, an OK

button that changes the count, and an Exit button that terminates the application:

The result holds interest because there are now two controllers, one for each action
event. The controller for terminating the program appears in Figure 16. (Recall that
System.exit(0) terminates an application.)
Next, Figure 17 defines the view, class Frame3, as a quick extension of class

Frame2c from Figure 14. Although an abstract class, like those in Chapter 9, might
be a better solution for organizing the previous and revised views, we use the existing

586

Figure 10.13: button-controller for counter example

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

/** CountButton defines a button-controller */

public class CountButton extends JButton implements ActionListener

{ private Frame2c view; // the view that holds this controller

private Counter model; // the model that this controller collaborates with

/** Constructor CountButton builds the controller

* @param my label - the label on the button that represents the controller

* @param my model - the model that the controller collaborates with

* @param my view - the view that the controller updates */

public CountButton(String my label, Counter my model, Frame2c my view)

{ super(my label); // attach label to the button in the superclass

view = my view;

model = my model;

addActionListener(this); // attach this very object as the ‘‘listener’’

}

/** actionPerformed handles a push of this button

* @param evt - the event that occurred, namely, the button push */

public void actionPerformed(ActionEvent evt)

{ model.increment();

view.update();

}

}

10.5. HANDLING AN EVENT 587

Figure 10.14: view for Example2

import java.awt.*;

import javax.swing.*;

/** Frame2c shows a frame with whose label displays the number of times

its button is pushed */

public class Frame2c extends JFrame

{ private Counter count; // address of model object

private JLabel label = new JLabel("count = 0"); // label for the frame

/** Constructor Frame2c creates a frame with a label and button

* @param c - the model object, a counter */

public Frame2c(Counter c)

{ count = c;

Container cp = getContentPane();

cp.setLayout(new FlowLayout());

cp.add(label);

cp.add(new CountButton("OK", count, this)); // the button-controller

setTitle("Example2");

setSize(200, 60);

setVisible(true);

}

/** update revises the view */

public void update()

{ label.setText("count = " + count.countOf()); }

}

/** Example2c starts the application */

public class Example2c

{ public static void main(String[] args)

{ Counter model = new Counter(0);

Frame2c view = new Frame2c(model);

}

}

588

Figure 10.15: architecture of Example2c

JButton ActionListener

actionPerformed(ActionEvent e)

actionPerformed(ActionEvent e)

CountButton

AWT/Swing classes

that detect events

increment()
countOf()

Counter

update()

Frame2c JFrame

Figure 10.16: exit controller

import javax.swing.*;

import java.awt.event.*;

/** ExitButton defines a controller that terminates an application */

public class ExitButton extends JButton implements ActionListener

{

/** Constructor ExitButton builds the controller

* @param my label - the label for the controller’s button */

public ExitButton(String my label)

{ super(my label);

addActionListener(this);

}

/** actionPerformed handles a button-push event

* @param evt - the event */

public void actionPerformed(ActionEvent evt)

{ System.exit(0); }

}

10.5. HANDLING AN EVENT 589

Figure 10.17: view for two-button view

import java.awt.*;

import javax.swing.*;

/** Frame3 shows a frame with whose label displays the number of times

its button is pushed */

class Frame3 extends Frame2c

{

/** Constructor Frame3 creates a frame with a label and button

* @param c - the model object, a counter */

public Frame3(Counter c)

{ super(c); // tell superclass to construct most of the frame

Container cp = getContentPane();

cp.add(new ExitButton("Exit")); // add another button-controller

setTitle("Example 3"); // reset the correct title and size:

setSize(250, 60);

setVisible(true);

}

}

/** Example3 starts the application */

public class Example3

{ public static void main(String[] args)

{ Counter model = new Counter(0);

Frame3 view = new Frame3(model);

}

}

approach if only to show that components can be added to a frame’s content pane
incrementally. (See Frame3’s constructor method.)

Finally, users of Windows-style operating systems have the habit of terminating
applications by clicking the “X” button that appears at a window’s upper right cor-
ner. The buttons at the upper right corner are monitored through the AWT/Swing
WindowListener interface. (See Figure 7 for the interface.) Since it does not deserve
a long explanation, we merely note that the changes presented in Figure 18 will make
a mouse click on the “X” button terminate a program.

Exercises

1. Create an interface for an application whose model possesses two Counter ob-
jects. Create two buttons, each of which increments one of the counters when
pushed. Use labels to display the values of the two counters.

590

Figure 10.18: terminating a program with the X-button

// Define this class:

import java.awt.event.*;

public class ExitController extends WindowAdapter

{ public void windowClosing(WindowEvent e)

{ System.exit(0); }

}

// Within the frame’s constructor method, add this statement:

addWindowListener(new ExitController());

2. As noted in Figure 5, buttons have a setText(String s) method, which changes
the text that appears on a button’s face to s. Revise your solution to the
previous exercise so that each button displays the number of times that it has
been pushed.

3. Create an application whose GUI has an Increment button, a Decrement button,
and label that displays an integer. Each time Increment is pushed, the integer
increases, and each time Decrement is pushed, the integer decreases. (Hint:
Write a new model class.)

4. Create a GUI with a red button, a yellow button, and a blue button. The
frame’s background turns into the color of the button last pushed.

10.6 Richer Layout: Panels and Borders

We can rebuild the above GUI so that its label appears at the top of the frame,
the OK and Exit buttons are positioned along the frame’s bottom, and a drawing of
the current count appears in the center. Figure 19 shows this. To do this, we use
panels. We construct a panel, insert the label in it, and place the panel in the “north”
region of the frame. Next, we construct another panel, paint it, and place it in the
frame’s “center” region. Finally, we insert the two buttons into a third panel and
place the panel in the “south” region. Border layout lets us specify the regions where
components can be inserted; in addition to the region used in the example in Figure
19, there are also “east” and “west” regions. Here is a picture of how the regions are

10.6. RICHER LAYOUT: PANELS AND BORDERS 591

Figure 10.19: frame with two depictions of the count

positioned in a container by the border layout manager:

The north and south regions take precedence in layout, followed by the east and
west regions. Any space left in the middle becomes the center region. The layout is
delicate in the sense that an undersized window may cause components in a region
to be partially hidden.
Figure 20 presents the view for the GUI in Figure 19.
In Frame4’s constructor, the content pane is told to use border layout:

Container cp = getContentPane();

cp.setLayout(new BorderLayout());

Next, components are added to the regions of the content pane, e.g.,

cp.add(drawing, BorderLayout.CENTER);

In addition to the regions used in the Figure, one can also use BorderLayout.EAST

and BorderLayout.WEST.
Panels are simply created and inserted into the frame, e.g.,

592

Figure 10.20: view class with border layout and panels

import java.awt.*;

import javax.swing.*;

/** Frame4 is a frame with a label and a button */

public class Frame4 extends JFrame

{ private Counter count; // address of model object

private JLabel lab = new JLabel("count = 0"); // label for the frame

private JPanel drawing; // a drawing for the center of the frame

/** Constructor Frame4 creates a frame with label, drawing, and 2 buttons

* @param c - the model object, a counter

* @param panel - a panel that displays a drawing */

public Frame4(Counter c, JPanel panel)

{ count = c;

drawing = panel;

Container cp = getContentPane();

cp.setLayout(new BorderLayout());

JPanel p1 = new JPanel(new FlowLayout());

p1.add(lab);

cp.add(p1, BorderLayout.NORTH);

cp.add(drawing, BorderLayout.CENTER);

JPanel p2 = new JPanel(new FlowLayout());

p2.add(new CountButton("Count", count, this));

p2.add(new ExitButton("Quit"));

cp.add(p2, BorderLayout.SOUTH);

setTitle("Example4");

setSize(200,150);

setVisible(true);

}

/** update revises the view */

public void update()

{ lab.setText("count = " + count.countOf());

drawing.repaint();

}

}

10.6. RICHER LAYOUT: PANELS AND BORDERS 593

Figure 10.20: view class with border layout and panels (concl.)

import java.awt.*;

import javax.swing.*;

/** Drawing creates a panel that displays a small drawing */

public class Drawing extends JPanel

{ private Counter count; // the model object

public Drawing(Counter model)

{ count = model;

setSize(200, 80);

}

public void paintComponent(Graphics g)

{ g.setColor(Color.white);

g.fillRect(0, 0, 150, 80);

g.setColor(Color.red);

for (int i = 0; i != count.countOf(); i = i+1)

{ g.fillOval(i * 25, 0, 20, 20); }

}

}

/** Example4 starts the application */

public class Example4

{ public static void main(String[] args)

{ Counter model = new Counter(0);

Drawing drawing = new Drawing(model);

Frame4 view = new Frame4(model, drawing);

}

}

JPanel p2 = new JPanel(new FlowLayout());

p2.add(new CountButton("Count", count, this));

p2.add(new ExitButton("Quit"));

cp.add(p2, BorderLayout.SOUTH);

The first statement simultaneously creates a panel and sets its layout. Components
are added to panels just like they are to frames, and panels are added to frames just
like other components are added.
Class Drawing extends JPanel. It repaints the drawing when told.
An image file can be displayed within a panel by using the panel’s graphics pen.

Insert these statements into the panel’s paintComponent method:

ImageIcon i = new ImageIcon("mypicture.gif");

Image j = i.getImage();

594

g.drawImage(j, 20, 20, this);

The first statement converts the image file into an ImageIcon, as we did for creating
labels for buttons. The second statement extracts an Image object from the icon,
and the third employs the panel’s graphics pen to draw the image with its upper left
corner at position 20, 20.

Exercises

1. Test Example4 by pushing its Count button 10 times. What happens to the
drawing? Resize the frame to a larger size; what do you observe? Propose a
solution to this problem.

2. Experiment with border layout: Rewrite Frame4 in Figure 20 so that the three
panels are inserted into the east, center, and west regions, respectively; into the
center, north, and east regions, respectively. Next, delete panel p1 from the
constructor method and insert the label directly into the north region.

3. Write a application that lets you grow and shrink an egg: The GUI has two
buttons, Grow and Shrink. An egg is displayed underneath the buttons; when
you push Grow, the egg gets 10% larger; when you push Shrink, the egg becomes
10% smaller. Use method paintAnEgg from Figure 2, Chapter 5, to paint the
egg.

10.6.1 An Animation in a Panel

Animations, like the moving ball example in Chapter 7, can be easily reformatted
to appear within a panel of a GUI. The GUI might also display buttons that, when
pressed, alter the animation’s progress—video games are built this way.

Here is a simple example. Perhaps we have an animation that displays a ball that

10.6. RICHER LAYOUT: PANELS AND BORDERS 595

Figure 10.21: architecture of throbbing ball animation

ThrobController
ThrobbingBall

ColorButton ThrobPanel ThrobFrame

“throbs” between large and small:

When the button is pressed, the ball in the animation changes color; in this simple
way, the user “plays” the animation.
The animation is displayed in a panel that is embedded into a frame. Like the ani-

mation in Chapter 7, this animation has its own controller, and there is an additional
button-controller for changing the color of the ball. Figure 21 displays the architec-
ture. The ball is modelled by class ThrobbingBall; the view consists of ThrobPanel,
which paints the ball on a panel, and ThrobFrame, which displays the panel and the
color-change button on a frame. Figure 22 displays these classes.
The application’s controllers hold the most interest: ThrobController contains

a run method whose loop resizes the throbbing ball and redraws it on the panel;
ColorButton changes the ball’s color each time its button is pressed. The controllers
are connected to the model and view by means of the start-up class, StartThrob. All
three classes appear in Figure 23.
Because the ThrobController’s run method is a nonterminating loop, it is crucial

that this method is invoked as the last statement in the animation. (The section,

596

Figure 10.22: model and view classes for animation

/** ThrobbingBall models a ball that changes size from large to small */

public class ThrobbingBall

{ private boolean is it currently large; // the ball’s state---large or small

public ThrobbingBall() { is it currently large = true; }

/** isLarge returns the current state of the ball */

public boolean isLarge() { return is it currently large; }

/** throb makes the ball change state between large and small */

public void throb() { is it currently large = !is it currently large; }

}

import java.awt.*;

import javax.swing.*;

/** ThrobPanel draws a throbbing ball */

public class ThrobPanel extends JPanel

{ private int panel size; // size of this panel

private int location; // where ball will be painted on the panel

private int ball size; // the size of a ‘‘large’’ ball

private Color c = Color.red; // the ball’s color

private ThrobbingBall ball; // the ball object

public ThrobPanel(int size, ThrobbingBall b)

{ panel size = size;

location = panel size / 2;

ball size = panel size / 3;

ball = b;

setSize(panel size, panel size);

}

/** getColor returns the current color of the ball */

public Color getColor() { return c; }

/** setColor resets the color of the ball to new color */

public void setColor(Color new color) { c = new color; }

...

10.6. RICHER LAYOUT: PANELS AND BORDERS 597

Figure 10.22: model and view classes for animation (concl.)

/** paintComponent paints the ball */

public void paintComponent(Graphics g)

{ g.setColor(Color.white);

g.fillRect(0, 0, panel size, panel size);

g.setColor(c);

if (ball.isLarge())

{ g.fillOval(location, location, ball size, ball size); }

else { g.fillOval(location, location, ball size / 2, ball size / 2); }

}

}

import java.awt.*;

import javax.swing.*;

/** ThrobFrame displays the throbbing-ball panel and color-change button */

public class ThrobFrame extends JFrame

{ /** Constructor ThrobFrame builds the frame

* @param size - the frame’s width

* @param p - the panel that displays the ball

* @param b - the color-change button */

public ThrobFrame(int size, ThrobPanel p, ColorButton b)

{ Container cp = getContentPane();

cp.setLayout(new BorderLayout());

cp.add(p, BorderLayout.CENTER);

cp.add(b, BorderLayout.SOUTH);

setTitle("Throb");

setSize(size, size + 40);

setVisible(true);

}

}

598

Figure 10.23: Controllers for animation

/** ThrobController runs the throbbing-ball animation */

public class ThrobController

{ private ThrobPanel writer; // the output-view panel

private ThrobbingBall ball; // the ball model object

private int time; // how long animation is delayed before redrawn

/** ThrobController initializes the controller

* @param w - the panel that is controlled

* @param b - the ball that is controlled

* @param delay time - the amount of time between redrawing the animation */

public ThrobController(ThrobPanel w, ThrobbingBall b, int delay time)

{ writer = w;

ball = b;

time = delay time;

}

/** run runs the animation forever */

public void run()

{ while (true)

{ ball.throb();

writer.repaint(); // redisplay ball

delay();

}

}

/** delay pauses execution for time milliseconds */

private void delay()

{ try { Thread.sleep(time); }

catch (InterruptedException e) { }

}

}

10.6. RICHER LAYOUT: PANELS AND BORDERS 599

Figure 10.23: Controllers for animation (concl.)

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/** ColorButton controls the color of the ball */

public class ColorButton extends JButton implements ActionListener

{ private ThrobPanel view; // the view object where shapes are drawn

public ColorButton(ThrobPanel f)

{ super("OK");

view = f;

addActionListener(this);

}

/** actionPerformed handles a click */

public void actionPerformed(ActionEvent e)

{ Color c = view.getColor();

if (c == Color.red)

{ view.setColor(Color.blue); }

else { view.setColor(Color.red); }

}

}

/** StartThrob assembles the objects of the animation */

public class StartThrob

{ public static void main(String[] a)

{ int frame size = 180; // size of displayed frame

int pause time = 200; // speed of animation (smaller is faster)

ThrobbingBall b = new ThrobbingBall();

ThrobPanel p = new ThrobPanel(frame size, b);

ThrobFrame f = new ThrobFrame(frame size, p, new ColorButton(p));

new ThrobController(p, b, pause time).run(); // important: do this last!

}

}

600

“Threads of Execution,” at the end of this chapter explains why.) It is also crucial
that the loop within run has a delay, because it is during the period of delay that
the computer detects action events and executes action listeners.

Exercises

1. Add a “Pause” button to the throbbing-ball animation that, when pushed,
causes the ball to stop throbbing until the button is pushed again. (Hint: add
another boolean field variable to ThrobbingBall.)

2. Swap the last two statements of main in StartThrob. Explain what the anima-
tion no longer operates.

3. Embed the moving-ball animation of Figure 7, Chapter 7 into a panel; insert
the panel into a frame. Next, add two buttons, “Faster” and “Slower,” which
increase and decrease, respectively, the velocity at which the ball travels in the
animation. (You will have to write additional methods for class MovingBall in
Figure 8, Chapter 7; the methods will adjust the ball’s x- and y-velocities.)

10.7 Grid Layout

When you have a collection of equally-sized components to be arranged as a table or
grid, use grid layout. As an example, consider the slide puzzle program from Figure
11, Chapter 8, where its output view, class PuzzleWriter, is replaced by a GUI
where buttons portray the pieces of the puzzle—a click on a button/piece moves the

10.7. GRID LAYOUT 601

puzzle piece. The view might look like this:

The frame is laid out as a 4-by-4 grid, where each cell of the grid holds a button-
controller object created from class PuzzleButton (which will be studied momentar-
ily). Figure 24 shows class PuzzleFrame, the puzzle’s GUI.
A grid layout of m rows by n columns is created by new GridLayout(m, n). Adding

components to a grid layout is done with the add method, just like with flow layout.
In the constructor method in the Figure, the nested for-loop creates multiple distinct
PuzzleButton objects and inserts them into a grid layout; the grid is filled row by
row. As explained in the next paragraph, it is helpful to retain the addresses of the
button objects in an array, named button, but such an array is not itself required
when using grid layout.
Each button displays a numerical label on its face, stating the numbered piece it

represents. A user “moves” a slide piece by clicking on it. Unfortunately, the buttons
themselves do not move—the labels on the buttons move, instead. When a button
is clicked, its event handler sends a message to method update, which consults array
button and uses the setBackground and setText methods to repaint the faces of the
buttons.
Figure 25 displays the controller class, PuzzleButton. When pushed, the button’s

actionPerformed method uses getText() to ask itself the number attached to its face;
it then tries to move that number in the model. If the move is successful, the view is
told to update.
The controller in Figure 25 should be contrasted with the one in Figure 12, Chapter

8. The Chapter 8 controller used one central loop to read integers and make moves

602

Figure 10.24: grid layout for slide puzzle game

import java.awt.*; import javax.swing.*;

/** PuzzleFrame shows a slide puzzle */

public class PuzzleFrame extends JFrame

{ private SlidePuzzleBoard board; // the model; see Fig. 10, Ch. 8

private int size; // the board’s size

private int button size = 60; // width/height of each button

private PuzzleButton[][] button; // the buttons on the face of the view

/** Constructor PuzzleFrame builds the view

* @param board size - the width and depth of the puzzle

* @param b - the model, a slide puzzle board */

public PuzzleFrame(int board size, SlidePuzzleBoard b)

{ size = board size;

board = b;

button = new PuzzleButton[size][size];

Container cp = getContentPane();

cp.setLayout(new GridLayout(size, size));

// create the button-controllers and insert them into the layout:

for (int i = 0; i != size; i = i+1)

{ for (int j = 0; j != size; j = j+1)

{ button[i][j] = new PuzzleButton(board, this);

cp.add(button[i][j]);

}

}

update(); // initialize the pieces with their numbers

addWindowListener(new ExitController()); // activates X-button; see Fig. 15

setTitle("PuzzleFrame");

setSize(size * button size + 10, size * button size + 20);

setVisible(true);

}

/** update consults the model and repaints each button */

public void update()

{ PuzzlePiece[][] r = board.contents(); // get contents of the puzzle

for (int i = 0; i != size; i = i+1) // redraw the faces of the buttons

{ for (int j = 0; j != size; j = j+1)

{ if (r[i][j] != null)

{ button[i][j].setBackground(Color.white);

button[i][j].setText("" + r[i][j].valueOf()); }

else { button[i][j].setBackground(Color.black);

button[i][j].setText("");

}

}

}

}

}

10.7. GRID LAYOUT 603

Figure 10.24: grid layout for slide puzzle game (concl.)

/** Puzzle creates and displays the slide puzzle */

public class Puzzle

{ public static void main(String[] args)

{ int size = 4; // a 4 x 4 slide puzzle

SlidePuzzleBoard board = new SlidePuzzleBoard(size); // see Fig. 10, Ch. 8

PuzzleFrame frame = new PuzzleFrame(size, board);

}

}

Figure 10.25: button-controller for slide puzzle

import javax.swing.*;

import java.awt.event.*;

/** PuzzleButton implements a button controller for a puzzle game */

public class PuzzleButton extends JButton implements ActionListener

{ private SlidePuzzleBoard puzzle; // address of the SlidePuzzle model

private PuzzleFrame view; // address of Frame that displays this button

/** Constructor PuzzleButton builds the button

* @param my puzzle - the address of the puzzle model object

* @param my view - the address of the puzzle’s view */

public PuzzleButton(SlidePuzzleBoard my puzzle, PuzzleFrame my view)

{ super(""); // set label to nothing, but this will be repainted by the view

puzzle = my puzzle;

view = my view;

addActionListener(this);

}

/** actionPerformed processes a move of the slide puzzle */

public void actionPerformed(ActionEvent evt)

{ String s = getText(); // get the number on the face of this button

if (!s.equals("")) // it’s not the blank space, is it?

{ boolean ok = puzzle.move(new Integer(s).intValue()); // try to move

if (ok) { view.update(); }

}

}

}

604

forever. But the just class just seen is used to construct multiple controllers, each of
which is programmed to make just one move. There is no loop to control the moves.
Instead, the application is controlled by the user, who can push buttons forever.
Whenever the user tires, the application patiently waits for more events.

Exercises

1. Experiment with grid layout: Rewrite Frame4 in Figure 20 so that the three com-
ponents are added into a frame with new GridLayout(3,1); with new GridLayout(1,3);
with new GridLayout(2,2).

2. Add to the GUI in Figure 24 a label that displays the count of the number of
pieces that have been moved since the slide-puzzle was started. (Hint: Use the
counter from Figure 9.)

3. Create a GUI that looks like a calculator. The GUI displays 9 buttons, arranged
in a 3-by-3 grid, and a numerical display (label) attached to the top.

10.8 Scrolling Lists

A scrolling list (or “list”, for short) can be used when a user interface must display
many items of information. The scrolling list has the added advantage that a user can
click on one or more of its items, thus highlighting or selecting them. (Selecting a list
item generates an event—not an action event, but a list selection event. The default
event listener for a list selection event highlights the selected item.) At a subsequent
button push, the list’s items can be examined and altered.
Here is a small example that uses a scrolling list. The list displays the values of

eight counters. When a user clicks on a list item, it is highlighted. Here, the third
item is selected:

10.8. SCROLLING LISTS 605

When the user pushes the Go button, an action event is triggered, and the associated
action listener increments the counter associated with the selected item. For example,
if the Go button was clicked on the above interface, we obtain this new view:

In this manner, a scrolling list can present choices, like buttons do, and give useful
output, like labels do.
A scrolling list is built in several steps: You must create a “model” of the list,

you must insert the model into a JList object, and you must insert the JList into a
JScrollPane object to get a scroll bar. These steps might look like this:

String[] list_labels = new String[how_many]; // the list’s ‘‘model’’

JList items = new JList(list_labels); // embed model into the list

JScrollPane sp = new JScrollPane(items); // embed list into a scroll pane

Now, sp can be added into a content pane, e.g.,

Container cp = getContentPane();

...

cp.add(sp);

Whatever strings that are assigned to the elements of list labels will be displayed
as the items of the list, e.g.,

for (int i = 0; i != list_labels.length; i = i+1)

{ list_labels[i] = "Counter " + i + " has 0"; }

At the beginning of the chapter, we noted that each AWT/Swing component is
built as a little MVC-architecture of its own. When we create a JList object, we must
supply its model part, which must be an array of objects, e.g., strings like list labels

just seen. If the objects are not strings, then we must ensure that the objects have

606

Figure 10.26: model and view for scrolling list of counters

/** ListExample displays an array of counters as a scrolling list */

public class ListExample

{ public static void main(String[] a)

{ int how many counters = 8;

Counter2[] counters = new Counter2[how many counters]; // the model

for (int i = 0; i != how many counters; i = i+1)

{ counters[i] = new Counter2(0, i); } // see below

new ListFrame(counters); // the view

}

}

/** Counter2 is a Counter that states its identity with a toString method */

public class Counter2 extends Counter

{ private int my index;

public Counter2(int start, int index)

{ super(start);

my index = index;

}

public String toString()

{ return "Counter " + my index + " has " + countOf(); }

}

a toString method, which JList’s internal view uses to display the objects as list
items.
Here is how we build the example program displayed above:

• We extend class Counter in Figure 9 to class Counter2 by writing a toString
method for it.

• We use as the application’s model, a Counter2[] object, that is, an array of
counters.

• We create a view that contains a JList whose internal model is exactly the
array of counters.

• We add a Go button that, when pushed, asks the JList which Counter2 item
was selected and then tells that item to increment itself.

Figure 26 shows the model and view classes that generates the example, and Figure
27 shows the controller-button that updates the model.

10.8. SCROLLING LISTS 607

Figure 10.26: model and view for scrolling list of counters (concl.)

import java.awt.*;

import javax.swing.*;

/** ListFrame shows a scrolling list */

public class ListFrame extends JFrame

{ private Counter2[] counters; // the address of the model object

private JList items; // the list that displays the model’s elements

/** Constructor ListFrame generates the frame with the list

* @param model - the model object that will be displayed as a list */

public ListFrame(Counter2[] model)

{ counters = model;

items = new JList(counters); // embed the model into a JList

JScrollPane sp = new JScrollPane(items); // attach a scroll bar

Container cp = getContentPane();

cp.setLayout(new GridLayout(2,1));

cp.add(sp); // add the scrolling list to the pane

JPanel p = new JPanel(new GridLayout(2,1));

p.add(new ListButton("Go", counters, this)); // see Figure 27

p.add(new ExitButton("Quit")); // see Figure 16

cp.add(p);

update(); // initialize the view of the list

setTitle("ListExample");

setSize(200,200);

setVisible(true);

}

/** getSelection returns which list item is selected by the user

* @return the element’s index, or -1 is no item is selected */

public int getSelection()

{ return items.getSelectedIndex(); }

/** update refreshes the appearance of the list */

public void update()

{ items.clearSelection(); } // deselect the selected item in the list

}

608

Figure 10.27: button-controller for scrolling list example

import java.awt.event.*;

import javax.swing.*;

/** ListButton implements a button that alters a scrolling list */

public class ListButton extends JButton implements ActionListener

{ private Counter2[] counters; // address of model object

private ListFrame view; // address of view object

/** Constructor ListButton constructs the controller */

public ListButton(String label, Counter2[] c, ListFrame v)

{ super(label);

counters = c;

view = v;

addActionListener(this);

}

/** actionPerformed handles a button-push event */

public void actionPerformed(ActionEvent evt)

{ int choice = view.getSelection(); // get selected index number

if (choice != -1) // Note: -1 means no item was selected.

{ counters[choice].increment();

view.update();

}

}

}

Class ListFrame builds its scrolling list, items, from the array of Counter2[] ob-
jects that its constructor method receives. When the frame is made visible, the view
part of items automatically sends toString messages to each of its array elements
and it displays the strings that are returned in the list on the display.

ListFrame is equipped with two small but important public methods, getSelection
and update. When invoked, the first asks the list for which item, if any, is selected at
this time by the user. The second method tells the list to deselect the item so that
no list item is selected.

Perhaps the user pushes the Go button; the actionPerformedmethod for ListButton
sends a getSelection message to the view and uses the reply to increment the ap-
propriate counter in the model. Then an update message deselects the selected item.
Once actionPerformed finishes, the scrolling list is redrawn on the display, meaning
that the toString methods of the counters report their new values.
It is possible to attach event listeners directly to the scrolling list, so that each

time the user selects an item, an event is generated and an event handler is in-
voked. A controller that handles such list selection events must implement the

10.8. SCROLLING LISTS 609

ListSelectionListener interface in Figure 7. For example, we can remove the Go

button from the frame in Figure 26, delete Figure 27 altogether, and replace the
latter with this controller:

import javax.swing.*;

import javax.swing.event.*;

/** ListController builds controllers for lists of counters */

public class ListController implements ListSelectionListener

{ private Counter2[] counters; // address of model object

private ListFrame view; // address of view object

/** Constructor ListController constructs the controller */

public ListController(Counter2[] c, ListFrame v)

{ counters = c;

view = v;

}

/** valueChanged responds to a list item selection */

public void valueChanged(ListSelectionEvent e)

{ int choice = view.getSelection(); // get selected index number

if (choice != -1)

{ counters[choice].increment();

view.update();

}

}

}

Then, within the constructor method of class ListFrame, we attach the controller as
a listener to the JList items:

items.addListSelectionListener(new ListController(counters, this));

This makes the list’s items behave as if they are buttons, all connected to the same
controller.
Finally, it is possible to tell a scrolling list to allow simultaneous selection of

multiple items;

items.setSelectionMode(ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);

tells list items to allow multiple selections. Of course, when an event listener examines
the list, it should ask for all the selected items; this is done by

items.getSelectedIndices()

which returns as its answer an array of integers.

610

Exercises

1. Create a GUI that displays a scrolling list whose items are the first 10 letters
of the alphabet. (Hint: use as the list’s model this array: String [] letters =

{"a", "b", "c", "d", "e", "f", "g", "h", "i", "j"}.)

2. Augment the GUI from the previous Exercise with a label and a button. When
the user selects a list item and pushes the button, the letter on the selected list
item is displayed on the label.

3. Augment the GUI from the previous Exercise so that when the user pushes
the button, the text in the selected item is “doubled,” e.g., if a is selected, it
becomes aa.

4. Create a list that contains the strings, Red, Yellow, and Blue. Insert the list
and a button into a GUI, and program the button so that when the user pushes
it, the GUI’s background is colored with the color selected in the list.

10.9 Text Fields

AWT/Swing provides a JTextField component, which lets a user type one line of
text into a text field. An example text field appears in Figure 2 at the start of this
Chapter. Typing text into a text field generates events (but not action events) that
are processed by the default event listener for a text field; the event listener displays
the typed text in the text field, and it will accommodate backspacing and cursor
movement. One problem that arises with text fields is that a program’s user might
type something inappropriate into the text field, so the program must be prepared to
issue error messages in response.
Creating and adding a text field to a frame is easy, e.g.,

JTextField input_text = new JTextField("0", 8);

Container cp = getContentPane();

...

cp.add(input_text);

The first statement creates a JTextField object that displays 8 characters of text and
initially shows the string, "0".
The standard operations one does with a text field is extract the text the user has

typed, e.g.,

String data = input_text.getText();

and reset the text in the text field with a new string:

input_text.setText("0");

10.9. TEXT FIELDS 611

These operations might be used when, say, the user pushes a button that starts an
action listener that extracts and resets the text field’s contents.
As Figure 5 indicates, a JTextField is a subclass of a JTextComponent and therefore

inherits a variety of methods for cutting, copying, pasting, and selecting. We will not
study these methods for the moment; they are more useful for so-called text areas
(multi-line text components), which we study in a later section.
To show use of a text field, we develop a simple temperature convertor, which

accepts a numerical temperature, either Fahrenheit or Celsius, and converts it to the
equivalent temperature of the other scale. When the user types a temperature into
a text field, selects either the Celsius or Fahrenheit scale, and pushes the Go button,
the result is displayed in the view:

Figure 28 displays the view class for the temperature converter. It is written in
two parts: An abstract class provides all the methods but one, and a concrete class
extends the abstract one with a coding for displayError, a method that displays
error messages.
The view’s public methods will be used by the controllers, ResetButton and

ComputeTempButton, to fetch the text the user typed, to display the answer that the
model computes, and to reset the text field for another conversion. Figure 29 displays
the two controllers as well as a simplistic model class, TempCalculator.

ComputeTempButton uses the model to convert temperatures. For the moment, ig-
nore the try...catch exception handler within the button’s actionPerformed method
and examine its interior: The controller sends the view a getInputsmessage to receive
an array of two strings, one containing the input temperature and one containing the
temperature’s scale. The first string is converted into a double. Assuming that the
conversion is successful, the scale is examined and used to choose the correct conver-
sion method from the model object. Finally, the view’s displayAnswer method shows
the converted temperature.
What happens if the user types a bad temperature, e.g., "abc0"? In this case, the

statement,

612

Figure 10.28: view class for temperature converter

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/** AbsTempFrame creates a view that displays temperature conversions */

public abstract class AbsTempFrame extends JFrame

{ private String START TEXT = "0";

private String BLANKS = " ";

private JTextField input text = new JTextField(START TEXT, 8);

private JLabel answer = new JLabel(BLANKS);

// components for the temperature scales list:

private String[] choices = {"Celsius", "Fahrenheit"};

private JList scales = new JList(choices);

/** AbsTempFrame constructs the frame */

public AbsTempFrame()

{ // the controller that triggers temperature conversion; see Figure 29:

ComputeTempButton compute controller = new ComputeTempButton("Go", this);

Container cp = getContentPane();

cp.setLayout(new GridLayout(4, 1));

JPanel p1 = new JPanel(new FlowLayout());

p1.add(new JLabel("Convert degrees:"));

cp.add(p1);

JPanel p2 = new JPanel(new FlowLayout());

p2.add(input text);

p2.add(scales);

cp.add(p2);

JPanel p3 = new JPanel(new FlowLayout());

p3.add(answer);

cp.add(p3);

JPanel p4 = new JPanel(new FlowLayout());

p4.add(compute controller);

p4.add(new ResetButton("Reset", this)); // see Figure 29

p4.add(new ExitButton("Bye")); // see Figure 16

cp.add(p4);

resetFields(); // initialize the view

setSize(240, 180);

setTitle("Temperature Convertor");

setVisible(true);

}

...

10.9. TEXT FIELDS 613

Figure 10.28: view class for temperature converter (concl.)

/** getInputs returns the inputs the user typed and selected.

* @return (1) the string the user typed, and

* (2) "Celsius" or "Fahrenheit" */

public String[] getInputs()

{ String[] input = new String[2];

input[0] = input text.getText();

input[1] = choices[scales.getSelectedIndex()];

return input;

}

/** displayAnswer resets the label

* @param s - the string used to reset the label */

public void displayAnswer(String s)

{ answer.setText(s); }

/** displayError displays an error message

* @param s - the message */

public abstract void displayError(String s); // will be coded later

/** resetFields resets the view’s text field */

public void resetFields()

{ input text.setText(START TEXT);

answer.setText(BLANKS);

scales.setSelectedIndex(0); // reset scale selection

}

}

/** TempFrame builds a completed view for a temperature converter */

public class TempFrame extends AbsTempFrame

{

public TempFrame()

{ super(); }

public void displayError(String s)

{ displayAnswer("Error: " + s); } // invoke method in superclass

}

614

Figure 10.29: controllers and model for temperature conversion

import javax.swing.*;

import java.awt.event.*;

/** ComputeTempButton implements a button that converts temperatures */

public class ComputeTempButton extends JButton implements ActionListener

{ private TempCalculator calc = new TempCalculator();

// the model object for calculating temperatures; see Fig. 5, Ch. 6

private AbsTempFrame view; // address of the view object

/** Constructor ComputeTempButton constructs the button

* @param v - the address of the view object */

public ComputeTempButton(String label, AbsTempFrame v)

{ super("Go");

view = v;

addActionListener(this);

}

/** actionPerformed calculates the temperature */

public void actionPerformed(ActionEvent evt)

{ try { String[] s = view.getInputs(); // get temp and scale

double start temp = new Double(s[0].trim()).doubleValue();

String answer = "is ";

if (s[1].equals("Celsius"))

{ answer = answer + calc.celsiusIntoFahrenheit(start temp)

+ " Fahrenheit"; }

else { answer = answer + calc.fahrenheitIntoCelsius(start temp)

+ " Celsius"; }

view.displayAnswer(answer);

}

catch(RuntimeException e) // if s[0] is nonnumeric, an exception occurs

{ view.displayError(e.getMessage()); }

}

}

10.9. TEXT FIELDS 615

Figure 10.29: controllers and model for temperature conversion (concl.)

import javax.swing.*;

import java.awt.event.*;

/** ResetButton resets the fields of a lottery GUI */

public class ResetButton extends JButton implements ActionListener

{ private AbsTempFrame view; // address of the view object that gets reset

/** Constructor ResetButton constructs the button

* @param v - the address of the view object */

public ResetButton(String label, AbsTempFrame v)

{ super(label);

view = v;

addActionListener(this);

}

/** actionPerformed resets the view’s text fields */

public void actionPerformed(ActionEvent evt)

{ view.resetFields(); }

}

/** TempCalculator models conversion between Celsius and Fahrenheit */

public class TempCalculator

{ /** celsiusIntoFahrenheit translates degrees Celsius into Fahrenheit

* @param c - the degrees in Celsius

* @return the equivalent degrees in Fahrenheit */

public double celsiusIntoFahrenheit(double c)

{ return ((9.0/5.0) * c) + 32; }

/** fahrenheitIntoCelsius translates degrees Fahrenheit into Celsius

* @param f - the degrees in Fahrenheit

* @return the equivalent degrees in Celsius */

public double fahrenheitIntoCelsius(double f)

{ return (f - 32) * (5.0/9.0); }

}

616

Figure 10.30: architecture of temperature converter

actionPerformed

ResetButton

actionPerformed

ComputeTempButton

celsiusIntoFahrenheit
fahrenheitIntoCelsius

TemperatureCalculator

actionPerformed

ActionListener
getInputs
displayAnswer
displayError

AbsTempFrame

resetFields

displayError

TempFrame

AWT/Swing classes that detect events

JFrame

double start_temp = new Double(s[0].trim()).doubleValue();

cannot complete—it generates a RuntimeException. As we learned in Chapter 3, the
exception can be caught by the catch clause of the exception handler,

try { ...

double start_temp = new Double(s[0].trim()).doubleValue();

...

}

catch(RuntimeException e) // if s[0] is nonnumeric, an exception occurs

{ view.displayError(e.getMessage()); }

and the statement, view.displayError(e.getMessage()) executes. This sends a displayError
message to the view object, where the parameter, e.getMessage(), computes to a
string that describes the error.
Figure 30 surveys the architecture of the temperature converter. A startup class

is needed to create objects from the classes in the Figure. The startup class can be
just this:

public class Temp

{ public static void main(String[] args)

{ new TempFrame(); }

}

Finally, when a user types text into a text field, she often terminates her typing
by pressing the Enter key. If we desire, we can make the Enter key generate an action
event; all we need do is add an action listener to the text field object. In Figure 28,
the text field was constructed as follows:

private JTextField input_text = new JTextField(START_TEXT, 8);

10.10. ERROR REPORTING WITH DIALOGS 617

and the controller that responds to user input was defined as

ComputeTempButton compute_controller = new ComputeTempButton("Go", this);

Now, we merely add this statement to the constructor in Figure 28:

input_text.addActionListener(compute_controller);

This registers the compute controller as the event handler for action events for
input text. Now, either a press of the Enter key or a click on the Go button generates
an action event that is handled by actionPerformed in class ComputeTempButton.

Exercises

1. Create a GUI that contains a text field, a button, and a label. When the user
pushes the button, whatever text that appears in the text field is copied to the
label, and the text field is reset to hold an empty string.

2. Create a child’s arithmetic calculator: Its interface displays two text fields, a
label, and a four-item list, where the items are +, -, *, and /. When the child
types two integers into the two text fields and selects one of the four items, the
calculator computes the selected arithmetic operation on the two numbers and
displays the result in the label.

3. Revise the temperature converter GUI in Figure 28 so that its answer label is
removed and is replaced by the output view class, TemperaturesWriter in Figure
6, Chapter 5. (Hint: Change its header line to read, class TemperaturesWriter

extends JPanel, and remove the setTitle method from its constructor method.
Now, you have a panel you can insert into the AbsTempFrame in Figure 28.)

4. Make a GUI that displays a ten-item list, where all ten items are blank. The
GUI also has a text field. When the user types a word into the text field and
presses Enter, the word is copied into the lowest-numbered blank item in the
list, if it is not in the list already. (If the word is already in the list or if the list
is completely filled, no action is taken.)

10.10 Error Reporting with Dialogs

A graphical user interface usually reports an error by constructing a dialog that
displays an error message. A dialog is meant to halt an application’s execution and
alert its user to a situation that demands immediate attention. After the user responds
to the dialog—typically, by pushing one of its buttons—the dialog disappears and the
application resumes execution.

618

Figure 3 at the beginning of the chapter showed the dialog that the tempera-
ture converter program might produce when a user enters an invalid temperature for
conversion.

As we already know, the AWT/Swing framework contains a class JOptionPane

that lets one simply generate forms of dialogs. The simplest form of dialog, a message
dialog,

is created by stating,

JOptionPane.showMessageDialog(owner, "Some information for you to read");

where owner is the address of the frame to which the dialog refers. The owner is
supplied to the dialog so that the dialog can be displayed near its owner. (If owner
is null, the dialog appears in the center of the display.)

Execution of the application pauses while the dialog appears on the display; once
the user pushes the OK button, execution resumes at the position in the program
where the dialog was created.

In the previous section, we studied a temperature converter application that
displayed error messages in a label in the application’s view. The view was con-
structed from a class, TempFrame (see Figure 28), which extended an abstract class,
AbsTempFrame (Figure 28). We can easily extend AbsTempFrame to build a frame that
displays error messages within message dialogs. Figure 31 presents class TempFrame2,
whose displayError method generates message dialogs, like the one in Figure 3.
Recall that displayError is invoked from the actionPerformed method within

class ComputeTempButton (Figure 29) when a bad number has been typed into the
frame’s text field. The dialog halts execution of the frame until the user pushes OK
(or the “X”-button at the dialog’s top right corner). We initiate this variant of the
temperature converter with this class:

public class Temp2

{ public static void main(String[] args)

{ new TempFrame2(); }

}

A second form of dialog is the confirm dialog, which displays a message and asks

10.10. ERROR REPORTING WITH DIALOGS 619

Figure 10.31: frame that generates a message dialog

import java.awt.*;

import javax.swing.*;

/** TempFrame2 builds a complete view for a temperature converter that

* displays a message dialog in case of an error. */

public class TempFrame2 extends AbsTempFrame // see Figure 28

{ public TempFrame2()

{ super(); }

public void displayError(String s)

{ JOptionPane.showMessageDialog(this, "Error in input: " + s); }

}

the user for a decision:

The dialog is generated by a statement like this one:

int i = JOptionPane.showConfirmDialog(owner, "Please choose one:");

Again, owner is the address of the component whose execution should be paused while
the dialog appears. When the user pushes one of the Yes, or No, or Cancel buttons,
an integer value is returned, and in the above case, saved in variable i. The value
can be queried, e.g.,

if (i == JOptionPane.YES_OPTION)

{ System.out.println("‘Yes’ was pushed"); }

The possible values returned are JOptionPane.YES OPTION, JOptionPane.NO OPTION,
JOptionPane.CANCEL OPTION, and JOptionPane.CLOSED OPTION, the last arising when
the user pushes the “X”-button to terminate the dialog.

The third form of dialog is an input dialog, which lets the user type text before

620

dismissing the dialog:

This dialog is created by

String s = JOptionPane.showInputDialog(owner, "Please type a string:");

When the user types a string into the text field and pushes OK, the string is returned,
and in this case, assigned to s. If the user types nothing but pushes OK, the empty
string, "", is returned. If the user pushes Cancel, a null value is returned, regardless
of what was typed into the text field. Finally, if the user pushes the “X”-button, null
is returned as well.

Exercises

1. Write a GUI with three buttons and a label. When the user pushes the first
button, a message dialog appears; when the user pushes the button on the
confirm dialog, the label displays, Message dialog dismissed. When the user
pushes the second button, a confirm dialog appears; when the user pushes a
button on the confirm dialog, the label displays the name of the button pushed.
When the user pushes the third button, an input dialog appears; when the user
enters text and pushes the dialog’s Ok button, the label displays the text the
user typed.

2. Improve the arithmetic calculator from Exercise 2 of the previous section so
that a message dialog is displayed if the user types a nonnumber into one of the
calculator’s text fields.

10.11 TextAreas and Menus

A text area is a text component into which multiple lines of text can be typed; an
example of one appears in Figure 4 at the start of the Chapter—the large white area
in the frame is the text area. Like buttons, lists, and text fields, a text area has its
own little MVC-architecture, where the model part holds the lines of text that the
user types into the text area, and the view part displays the model’s contents in the

10.11. TEXTAREAS AND MENUS 621

large white area. The controller for a text area responds to a user’s typing by copying
the typed letters into the model part and refreshing the view part so that the user
sees the text she typed. The controller also allows the user to move the insertion
caret by clicking the mouse and to select text by dragging the mouse.
An easy way to create a text area and embed it into a frame goes as follows:

Container cp = getContentPane();

...

JTextArea text = new JTextArea("", 20, 40);

text.setLineWrap(true);

text.setFont(new Font("Courier", Font.PLAIN, 14));

JScrollPane sp = new JScrollPane(text);

cp.add(sp);

In the above example, the constructor, JTextArea("", 20, 40), creates a text area
that displays 20 lines, each line of length 40 columns, where the empty string is dis-
played initially. (That is, the text area is a big, empty space.) Next, text.setLineWrap(true)
tells the text area to “wrap” a line of length greater than 40 by spilling the extra
characters onto the next line.
If we desire a font different from the text area’s default, we state text.setFont(new

Font("Courier", Font.PLAIN, 14)), where setFont sets the font and new Font(name,

style, size) creates a font in the name, style, and point size that we desire. Standard
examples of font names are "Courier", "TimesRoman", and "SansSerif"; styles include
Font.PLAIN, Font.BOLD, and Font.ITALIC; and sizes between 10 and 16 points are
commonly available.
The fourth statement embeds the text area into a scroll bar, so that user input

exceeding 20 lines can be scrolled forwards and backwards. Finally, the scrolling text
area is embedded into the content pane. The text area in Figure 4 was assembled
essentially in this manner.
Text areas possess a wide variety of methods, many of which are inherited from

its superclass, JTextComponent. Table 32 lists some of the most useful ones. Rather
than study the methods in the Table now, we encounter them in the case study in
the next section.
A text area’s default controller processes typed text, including Backspace and

Enter keys, as expected. It processes mouse movements, clicks, and drags correctly
as well. Rather than attach event listeners directly to a text area, we should create
menus that we hang above the text area. When a user selects an item from a menu,
this generates an action event that can signal an event handler that can examine and
update the text area.
Menu items are embedded into menus, which are embedded into a menu bar,

which is embedded into a frame. For example, the two menus displayed in Figure
4 at Chapter’s beginning can be created by these statements inside the constructor
method of a frame:

622

Figure 10.32: methods for text areas

abstract class

JTextComponent

Methods

getText(): String Return the entire text contents of the component
as one string.

setText(String s) Reset the text contents of the components to s.

getCaretPosition(): int Return the character position where the insertion
caret is positioned.

setCaretPosition(int p) Move the insertion caret to position p.

moveCaretPosition(int p) Like setCaretPosition but also selects the text
that falls between the previous caret position and
the new position, p.

getSelectedText(): String Return the string that was selected by the user by
dragging the mouse across the string.

getSelectionStart(): int Return the index of the first character of the se-
lected text.

getSelectionEnd(): int Return the index of the last character, plus one, of
the selected text.

cut() Remove the selected text and hold it in the compo-
nent’s clipboard.

copy() Copy the selected text into the component’s clip-
board.

paste() Insert a copy of the text in the component’s clip-
board at the caret position.

isEditable(): boolean Return whether the user may alter the contents of
the text component.

setEditable(boolean b) Set whether the user may alter the contents of the
text component.

class JTextArea extends

JTextComponent

Methods

setFont(Font f) Set the font used to display the text to f. A typical
value for f is new Font("Courier", Font.PLAIN,

14).

setLineWrap(boolean b) State whether or not a line longer than the width of
the text area will be displayed completely by “wrap-
ping” it to the next line.

insert(String s, int i) Insert string s at position i in the text area.

replaceRange(String s, int

start, int end)

Replace the string within the text area starting
at position start and ending at position end-1 by
string s.

10.11. TEXTAREAS AND MENUS 623

JMenuBar mbar = new JMenuBar();

JMenu file = new JMenu("File"); // the "File" menu

... // statements go here that add menu items to the File menu

mbar.add(file); // attach menu to menu bar

JMenu edit = new JMenu("Edit"); // the "Edit" menu

// add these menu items to the Edit menu:

edit.add(new JMenuItem("Cut"));

edit.add(new JMenuItem("Copy"));

edit.add(new JMenuItem("Paste"));

edit.addSeparator(); // adds a separator bar to the menu

JMenu search = new JMenu("Search");

... // statements go here that add menu items to the Search menu

edit.add(search); // a menu can be added to a menu

mbar.add(edit);

setJMenuBar(mbar); // attach menu bar to frame

Menu items act like buttons—when selected, they generate action events. As written,
the above statements do not attach action listeners to the menu items, but we can
do so in the same way that we have done for buttons. We pursue this in the next
section.

10.11.1 Case Study: Text Editor

We put menus and text areas to work in an interactive text editor. Figure 4 displays
the view of the editor we will build. The editor uses two menus, each of which
contains several menu items. A user selects a menu item by clicking the mouse on
the menu name, dragging the mouse to the desired item, and releasing the mouse.
This generates an action event, like a button push, that can be handled with an
actionPerformed method. Building menu items, action listeners, and menus will be
straightforward.
A first draft of the text editor’s architecture appears in Figure 33. The editor’s

model will be an EditModel that extends a JTextArea. We do this because the editor’s
model is just the text contained in the text area—the text area becomes the model. A
variety of menu items (controllers) will consult the model and update it. The editor’s
view will be presented by EditFrame, which displays the menus and text area.
When selected, the ReplaceMenuItem will display a secondary frame, called ReplaceFrame,

that helps a user find and replace a string in the text area. Figure 34 shows the
ReplaceFrame that appears. Unlike a dialog, the ReplaceFrame is created when the
application starts; it appears and disappears as directed by the user. (Pressing its
Close button makes the frame disappear.) Unlike a dialog, the frame can be open
and operating at the same time the EditFrame is also open and operating.
The construction of the view, class EditFrame, is portrayed in Figure 35. It is

straightforward. The classes for the various menu items and ReplaceFrame will be

624

Figure 10.33: partial class diagram of text editor

ReplaceFrame

EditFrame

ClearMenuItem

QuitMenuItem

CopyMenuItem

PasteMenuItem

CutMenuItem

FindMenuItem

AWT/Swing classes that detect events

EditModel

ActionListener

JFrame

JTextArea

ReplaceMenuItem

Figure 10.34: editor with auxiliary frame

10.11. TEXTAREAS AND MENUS 625

Figure 10.35: view for text editor

import java.awt.*;

import javax.swing.*;

/** EditFrame displays a text editor with two menus and a text area. */

public class EditFrame extends JFrame

{ // the EditModel, a subclass of JTextArea, is the ‘‘model’’:

private EditModel buffer = new EditModel("", 15, 50);

/** Constructor EditFrame builds the editor interface */

public EditFrame()

{ // Create the ReplaceFrame, which appears when the user selects ‘‘Replace’’:

ReplaceFrame second frame = new ReplaceFrame(buffer);

Container cp = getContentPane();

cp.setLayout(new BorderLayout());

JMenuBar mbar = new JMenuBar();

JMenu file = new JMenu("File"); // defines the "File" menu

file.add(new ClearMenuItem("New", buffer));

file.add(new QuitMenuItem("Exit"));

mbar.add(file); // attach menu to menu bar

JMenu edit = new JMenu("Edit"); // defines the "Edit" menu

edit.add(new CutMenuItem("Cut", buffer));

edit.add(new CopyMenuItem("Copy", buffer));

edit.add(new PasteMenuItem("Paste", buffer));

edit.addSeparator();

JMenu search = new JMenu("Search"); // defines the "Search" submenu

search.add(new FindMenuItem("Find", buffer));

search.add(new ReplaceMenuItem("Replace", second frame));

edit.add(search);

mbar.add(edit);

setJMenuBar(mbar); // attach menu bar to frame

JScrollPane sp = new JScrollPane(buffer); // embed into a scroll pane

cp.add(sp, BorderLayout.CENTER);

setTitle("EditFrame");

pack();

setVisible(true);

}

}

626

seen momentarily. (For the moment, pretend the menu items are like the buttons we
have used.)
Next, Figure 36 shows the model/text area, EditModel. The model extends a

JTextArea with methods to clear the text area and to find strings within it. The
most interesting method, find, fetches the text within the text area with the getText
method. (See Table 32.) Next, it uses a string search method for strings: text.indexOf(s,
position) returns the index within text, starting from position, where string s first
appears. (If s does not appear, -1 is returned.) Next, the caret is moved to the end
position where s was found (by using setCaretPosition) and is dragged backwards,
selecting the found string, by moveCaretPosition. (See Table 32.)
The model’s methods are used by the various menu items, which are listed in

Figure 37.
The majority of the menu items do no more than send a single message to

EditModel; these menu items are written as subclasses of an abstract class, EditorMenuItem.
FindMenuItem works a bit harder: Its actionPerformed method generates an input

dialog that asks the user for a string to find. Then, the EditModel’s findFromCaret
method is asked to locate the string. If the string is not found, the user is asked, by
means of a confirm dialog, if the search should be performed from the front of the
text area. If the user so wishes, this is done.
The last menu item, ReplaceMenuItem, displays the ReplaceFrame, which helps a

user find a string and replace it by another. The ReplaceFrame is depicted in Figure
38.
Although it increases the size of the class and limits flexibility, we have made

ReplaceFrame the action listener for its three buttons. This shows how one actionPerformed
method can handle three different button pushes in three different ways—the mes-
sage, e.getSource(), asks parameter e the identity of the button that was pushed, and
based on the answer, the appropriate steps are executed. The method, replaceRange,
in the text area is used to replace the string that is found by the string the user typed
as the replacement; see Table 28.

Exercises

1. Add to the text editor’s GUI a menu that lists these font sizes: 12, 14, and 16.
When the user selects one of the sizes from the menu, the text displayed in the
text area changes to the selected size.

2. You can add buttons to a menu–try this: Modify class AbsTempFrame in Figure
28 so that it uses a menu to hold the Go, Reset, and Bye buttons.

3. Create an “appointments” GUI that displays a text area, a Save button, and a
five-item menu consisting of Monday, Tuesday, Wednesday, Thursday, and Friday.
When the GUI’s user selects one of the menu items, the text area displays a
message saved for the item. (Initially, all the messages for all items are empty.)

10.11. TEXTAREAS AND MENUS 627

Figure 10.36: text area for editor

import java.awt.*; import javax.swing.*;

/** EditModel models a text area */

public class EditModel extends JTextArea

{ /** EditModel builds the text area

* @param initial text - the starting text for the text area

* @param rows - the number of rows

* @param cols - the number of columns */

public EditModel(String initial text, int rows, int cols)

{ super(initial text, rows, cols); // create the underlying JTextArea

setLineWrap(true);

setFont(new Font("Courier", Font.PLAIN, 14));

}

/** clear resets the text area to be empty */

public void clear()

{ setText(""); }

/** find locates string s in the text area, starting from position */

private int find(String s, int position)

{ String text = getText();

int index = text.indexOf(s, position); // see Table 9, Chapter 3

if (index != -1) // did we find string s?

{ setCaretPosition(index + s.length()); // resets the caret

moveCaretPosition(index); // selects the string

}

return index;

}

/** findFromStart locates a string starting from the front of the text area

* @param s - the string to be found

* @return the position where s is first found; -1, if s not found */

public int findFromStart(String s)

{ return find(s, 0); }

/** findFromCaret locates a string starting from the caret position

* @param s - the string to be found

* @return the position where s is first found; -1, if s not found */

public int findFromCaret(String s)

{ return find(s, getCaretPosition()); }

}

628

Figure 10.37: menu item-controllers for text editor

import javax.swing.*; import java.awt.event.*;

/** QuitMenuItem terminates the text editor. */

public class QuitMenuItem extends JMenuItem implements ActionListener

{ public QuitMenuItem(String label)

{ super(label);

addActionListener(this);

}

public void actionPerformed(ActionEvent e)

{ System.exit(0); }

}

import javax.swing.*; import java.awt.event.*;

/** EditorMenuItem defines a generic menu item for the text editor */

public abstract class EditorMenuItem extends JMenuItem implements ActionListener

{ private EditModel buffer; // address of the model manipulated by the menu item

public EditorMenuItem(String label, EditModel model)

{ super(label);

buffer = model;

addActionListener(this);

}

/** myModel returns the address of the model this menu item manipulates */

public EditModel myModel()

{ return buffer; }

public abstract void actionPerformed(ActionEvent e);

}

import java.awt.event.*;

/** ClearMenuItem clears a text area */

public class ClearMenuItem extends EditorMenuItem

{ public ClearMenuItem(String label, EditModel model)

{ super(label, model); }

public void actionPerformed(ActionEvent e)

{ myModel().clear(); }

}

10.11. TEXTAREAS AND MENUS 629

Figure 10.37: menu item-controllers for text editor (cont.)

import java.awt.event.*;

/** CutMenuItem cuts the selected text from the text area. */

public class CutMenuItem extends EditorMenuItem

{ public CutMenuItem(String label, EditModel model)

{ super(label, model); }

public void actionPerformed(ActionEvent e)

{ myModel().cut(); }

}

import java.awt.event.*;

/** CopyMenuItem copies selected text into the clipboard */

public class CopyMenuItem extends EditorMenuItem

{ public CopyMenuItem(String label, EditModel model)

{ super(label, model); }

public void actionPerformed(ActionEvent e)

{ myModel().copy(); }

}

import java.awt.event.*;

/** PasteMenuItem moves contents of the clipboard into the text area */

public class PasteMenuItem extends EditorMenuItem

{ public PasteMenuItem(String label, EditModel model)

{ super(label, model); }

public void actionPerformed(ActionEvent e)

{ myModel().paste(); }

}

630

Figure 10.37: menu item-controllers for text editor (concl.)

import javax.swing.*; import java.awt.event.*;

/** FindMenuItem generates a dialog to find a string in the text area */

public class FindMenuItem extends EditorMenuItem

{ public FindMenuItem(String label, EditModel model)

{ super(label, model); }

public void actionPerformed(ActionEvent e)

{ String s = JOptionPane.showInputDialog(this, "Type string to be found:");

if (s != null)

{ int index = myModel().findFromCaret(s);

if (index == -1)

{ int response = JOptionPane.showConfirmDialog(this,

"String " + s + " not found. Restart search from beginning of buffer?");

if (response == JOptionPane.YES OPTION)

{ index = myModel().findFromStart(s);

if (index == -1)

{ JOptionPane.showMessageDialog(this,

"String " + s + " not found");

}

}

}

}

}

}

import javax.swing.*; import java.awt.event.*;

/** ReplaceMenuItem shows the frame that helps the user replace strings */

public class ReplaceMenuItem extends JMenuItem implements ActionListener

{ private ReplaceFrame my view;

public ReplaceMenuItem(String label, ReplaceFrame view)

{ super(label);

my view = view;

addActionListener(this);

}

public void actionPerformed(ActionEvent e)

{ my view.setVisible(true); }

}

10.11. TEXTAREAS AND MENUS 631

Figure 10.38: frame that replaces strings

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/** ReplaceFrame shows a frame that helps a user find and replace a string */

public class ReplaceFrame extends JFrame implements ActionListener

{ private EditModel model;

private JButton replace = new JButton("Replace");

private JButton clear = new JButton("Clear");

private JButton close = new JButton("Close");

private JTextField find text = new JTextField("", 20);

private JTextField replace text = new JTextField("", 20);

public ReplaceFrame(EditModel my model)

{ model = my model;

Container cp = getContentPane();

cp.setLayout(new BorderLayout());

JPanel p1 = new JPanel(new GridLayout(2, 1));

JPanel p11 = new JPanel(new FlowLayout(FlowLayout.RIGHT));

p11.add(new JLabel("From caret, replace "));

p11.add(find text);

p1.add(p11);

JPanel p12 = new JPanel(new FlowLayout(FlowLayout.RIGHT));

p12.add(new JLabel("by "));

p12.add(replace text);

p1.add(p12);

cp.add(p1, BorderLayout.CENTER);

JPanel p2 = new JPanel(new FlowLayout());

p2.add(replace);

p2.add(clear);

p2.add(close);

cp.add(p2, BorderLayout.SOUTH);

replace.addActionListener(this);

clear.addActionListener(this);

close.addActionListener(this);

setTitle("ReplaceFrame");

pack();

setVisible(false);

}

632

Figure 10.38: frame that replaces strings (concl.)

/** actionPerformed handles all button pushes on this frame

* @param e - contains the identity of the button that is pushed */

public void actionPerformed(ActionEvent e)

{ if (e.getSource() == close) // was it the Close button?

{ setVisible(false); }

else if (e.getSource() == clear) // the Clear button?

{ find text.setText("");

replace text.setText("");

}

else if (e.getSource() == replace) // the Replace button?

{ String find = find text.getText();

int location = model.findFromCaret(find);

if (location == -1) // string not found?

{ JOptionPane.showMessageDialog(this,

"String " + find + " not found");

}

else { model.replaceRange(replace text.getText(),

location, location + find.length());

}

}

}

}

The user can edit the message, and when she pushes Save, the message is saved
with the selected item.

4. Create a GUI that displays two text areas. Write controllers that let a user cut,
copy, and paste text from one text area to the other.

10.12 Event-Driven Programming with Observers

We saw in this Chapter how events, triggered by button pushes and menu-item selects,
direct the execution of a program. We can write a program that triggers its own
events internally by using the Java class Observer and interface Observable from
the java.util package. This lends itself to an event-driven programming style that
further “decouples” components from one another.

First, we must learn how event listeners are programmed into graphical compo-
nents in AWT/Swing. Every event-generating graphical component (e.g., a button)
has, as part of its internal model, an array of addresses of its listener objects. A listener
object, ob, is added to button b’s array by the message, b.addActionListener(ob).

10.12. EVENT-DRIVEN PROGRAMMING WITH OBSERVERS 633

Figure 10.39: a counter that generates its own events

import java.util.*;

/** Counter3 holds a counter that can be observed by Observers */

public class Counter3 extends Observable

{ private int count; // the count

/** Constructor Counter3 initializes the counter

* @param start - the starting value for the count */

public Counter3(int start)

{ count = start; }

/** increment updates the count and signals all Observers */

public void increment()

{ count = count + 1;

setChanged(); // marks that an event has occurred

notifyObservers(); } // signals all Observers that an event has occurred

/** countOf accesses count.

* @return the value of count */

public int countOf()

{ return count; }

}

In the general case, a component can have multiple listeners and a listener can be
registered with multiple components. (But for simplicity, we usually match com-
ponents with their listeners on a one-one basis.) When an event occurs within the
component, the addresses of all its listeners are fetched, and each listener is sent an
actionPerformed message.

It is possible to implement listeners and event handling for nongraphical compo-
nents. An object can be made to generate its own “events,” and when an object does
this, the object’s Observers are sent an update message, which is asking the Observer
to “handle” the event. Object, ob, is added to object b’s Observers by the message,
b.addObserver(ob).

Here is an example. We rewrite class Counter in Figure 9 so that it can generate
its own events for its Observers. The new class appears in Figure 39. The class begins
with import java.util.*, and it extends Observable; this gives the class two new
methods, setChanged and notifyObservers, which are used in the class’s increment to
generate an event and to signal the class’s Observers. The class also inherits another
method, addObserver, which we see momentarily.

An important aspect of the Figure is that the counter does not know who its
Observers are. This ensures that the counter is not “coupled” too strongly to the

634

other classes in the program. (See Chapter 6 for a discussion about coupling.)

Next, say that another class, call it class PrintCount, wishes to print a message
to the display every time the counter is incremented. The class must register itself as
one of the Observers of Counter3. It can be done like this:

import java.util.*;

public class PrintCount implements Observer

{ private Counter3 count;

public PrintCount(Counter3 c)

{ count = c;

count.addObserver(this); // this object registers as an Observer of count

}

/** update prints the newest value of the counter

* @param ob - the object that signalled the event (here, the counter)

* @param extra_arg - a parameter that we will not use */

public void update(Observable ob, Object extra_arg)

{ System.out.println("new count = " + count.countOf()); }

}

The class implements Observer (see Figure 7), which means that it possesses an
update method. With the message, count.addObserver(this), the newly created
PrintCount object registers itself as an Observer of its Counter3 parameter. Now,
whenever the counter object generates a notifyObservers message, PrintCount’s
update method will be invoked.

The Observer interface requires that update possess two parameters; the first
contains the address of the object that sent the notifyObservers message. (In the
above example, this must be the counter object.) The second parameter holds a
value, v, that is sent when the observed object sends a notifyObservers(v) message.
(In the above example, the second argument will have value null, since the simpler
message, notifyObservers(), was used.)

As noted above, an advantage to using class Observable and interface Observer

is that it lets one class activate the method of a second class without knowing the
identity of the second class. We exploit this in the next section. But a major disad-
vantage is that the class that generates the events extends Observable. Since Java
allows a class to extend at most one other class, this makes it impossible to use class
Observable with any class that already extends another. For example, we cannot
revise the scrolling list example in Figure 26 so that class Counter2 extends class
Observable, because Counter2 already extends class Counter from Figure 9. (The
best we can do is revise the header line of class Counter2 in Figure 26 so that it
extends Counter3, producing a slightly convoluted development.)

10.12. EVENT-DRIVEN PROGRAMMING WITH OBSERVERS 635

Figure 10.40: MVC-architecture with Observers and multiple views

Frame4a

Panel4a

Counter3Count3Button

Observable

Observer

10.12.1 Observers and the MVC-Architecture

A primary motivation for writing applications in Model-View-Controller style was to
decouple the application’s components so that they are easily modified and reused.
We have been most successful in this regard with the model components, which are
ignorant of the views and controllers that use them, and least successful with the
controllers, which know the identities of the model and all the views that depict the
model.
Applications with GUIs often have complex views that evolve while the application

executes, and it may be unrealistic to make a controller contact all the view objects
that must change after the controller sends a message to the model. In this situation,
it is better to make the controller ignorant of the views and make the views into
Observers of the model. For this reason, we learn how to employ Observers in MVC-
architectures.
Figure 19 showed a simple GUI that displayed two “views” of a counter—a numer-

ical view in a frame and a graphical view in a panel. The application that generated
the GUI appeared in Figure 20. It used a controller, class CountButton, that was
given the identity of both the counter and the frame. (See Figure 13.) When the user
pushed the CountButton, the button sent a message to the counter and a message to
the frame. The latter refreshed its numerical count and told the panel to repaint its
graphical presentation.
We can simplify the CountButton so that it knows nothing about view objects;

we also decouple the frame from the panel. We do these steps by registering the
frame and the panel as two Observers of the model. The MVC-architecture we design
appears in Figure 40. The Figure shows that the controller is decoupled from the
view; the views are notified indirectly to update themselves, through the Observer

interface. And, thanks to class Observable, the model remains decoupled from the
other components in the application.
Figure 41 presents the controller, Count3Button, and Figure 42 shows the view

classes, Frame4a and Drawing4a. Finally, Figure 43 gives the start-up class that creates

636

Figure 10.41: controller decoupled from views

import javax.swing.*;

import java.awt.event.*;

public class Count3Button extends JButton implements ActionListener

{ private Counter3 model; // see Figure 39

public Count3Button(String my label, Counter3 my model)

{ super(my label);

model = my model;

addActionListener(this);

}

public void actionPerformed(ActionEvent evt)

{ model.increment(); }

}

the application’s objects and registers them as the model’s Observers.

When an application with a GUI is said to have an “MVC-architecture,” it nor-
mally means that the components are connected as depicted in Figure 40—controllers
are decoupled from views, and views independently update themselves when contacted
by events generated by the model. Because of Java’s demand that a model extend
Observable, it might not be possible to use this pattern in all cases, however, so our
previous MVC-designs still have value.

Exercises

1. For practice, return to Figures 13-15. Replace class Counter by class Counter3

in Figure 39; revise class Frame2c to be an Observer of Counter3; and simplify
class CountButton so that it no longer sends a message to the view. Redraw the
application’s class diagram and compare it to Figure 15; to how many classes
is the controller coupled? the model? the view?

2. As in the previous example, convert the slide-puzzle application in Figures 24
and 25 so that its model has Observers.

10.13 Summary

We studied how to design and built graphical user interfaces (GUIs) for applications.
Here are the new concepts:

10.13. SUMMARY 637

Figure 10.42: view classes

import java.awt.*; import javax.swing.*; import java.util.*;

/** Frame4a is a frame with a label, button, and panel */

public class Frame4a extends JFrame implements Observer

{ private Counter3 count; // address of model object; see Figure 39

private JLabel lab = new JLabel("count = 0"); // label for the frame

/** Constructor Frame4a creates a frame with label, drawing, and 2 buttons

* @param c - the model object, a counter

* @param drawing - a panel that displays a drawing */

public Frame4a(Counter3 c, JPanel drawing)

{ count = c;

Container cp = getContentPane();

cp.setLayout(new BorderLayout());

JPanel p1 = new JPanel(new FlowLayout());

p1.add(lab);

cp.add(p1, BorderLayout.NORTH);

cp.add(drawing, BorderLayout.CENTER);

JPanel p2 = new JPanel(new FlowLayout());

p2.add(new Count3Button("Count", count));

p2.add(new ExitButton("Quit"));

cp.add(p2, BorderLayout.SOUTH);

setTitle("Example4");

setSize(200,150);

setVisible(true);

}

/** update revises the label that displays the count */

public void update(Observable model, Object extra arg)

{ lab.setText("count = " + count.countOf()); }

}

638

Figure 10.42: view classes (concl.)

import java.awt.*; import javax.swing.*; import java.util.*;

/** Panel4a creates a panel that displays a small painting. */

public class Panel4a extends JPanel implements Observer

{ private Counter3 count;

public Panel4a(Counter3 model)

{ count = model;

setSize(200, 80);

}

/** update repaints the panel */

public void update(Observable model, Object extra arg)

{ repaint(); }

public void paint(Graphics g)

{ g.setColor(Color.white);

g.fillRect(0, 0, 150, 80);

g.setColor(Color.red);

for (int i = 0; i != count.countOf(); i = i+1)

{ g.fillOval(i * 25, 0, 20, 20); }

}

}

Figure 10.43: startup class for application

/** Example4a starts the application */

public class Example4a

{ public static void main(String[] args)

{ Counter3 model = new Counter3(0);

Panel4a panel = new Panel4a(model);

Frame4a frame = new Frame4a(model, panel);

model.addObserver(panel);

model.addObserver(frame);

}

}

10.13. SUMMARY 639

New Terminology

• graphical user interface (GUI): an input/output view that lets a user submit
input by pressing buttons, selecting menu items, typing text, etc., and shows
the user the output in graphical form.

• event: input for a program—can be a button push, typing of text, selecting a
menu item, etc. The graphical component—button, text field, or menu item—
that is used to cause the event is called the event source.

• event-driven programming: the style of programming one uses to receive and
react to events, typically using a collection of controller components, one that
does computation in reaction to each form of event.

• event handler (event listener): a controller component that receives and reacts
to an event; this is called handling the event.

• action event: an event caused by a button push or a menu selection. An action
event is handled by an event listener called an action listener.

• java.awt and javax.swing: the Java packages that contain classes that help a
programmer write GUIs. Called AWT/Swing, for short.

• component: the Java term for a graphical object that has a position, a size, and
can have events occur within it.

• container: a graphical component that can hold other components. A panel is
the usual form of container.

• window: a “top level” component that can be displayed.

• frame: a window with a title bar and menus. Meant to be

• dialog: a temporary window that can appear and disappear while an application
executes. There are three forms:

– message dialog: displays a warning or error message

– confirm dialog: displays a question that the user must answer by pressing
a button

– input dialog: displays a text field into which a user can type input text

• label: a component that displays text that the user can read but cannot alter

• text component: a component into which a user can type text; this can be a text
field, into which one line of text is typed, or a text area, into which multiple
lines can be typed.

640

• button: a component that can be pushed, triggering an action event

• list: a component that displays items that can be chosen (“selected”)

• menu: a component that, when selected, displays a sequence of menu items,
each of which can be selected, triggering an action event

• menu bar: a component that holds a collection of menus

• layout: the manner in which a collection of components are arranged for display
in a GUI. Some forms of layout are

– flow layout: the components are arranged in a linear order, like the words
in a line of text

– border layout: components are explicitly assigned to the “north,” “south,”
“east,” “west,” or “center” regions of the container

– grid layout: components are arranged as equally-sized items in rows and
columns, like the entries of a matrix or grid

• content pane: the part of a frame where components are inserted for display

• glass pane: the part of a frame that “overlays” the content pane. Normally left
“clear” but it can be painted upon by means of a frame’s paint method.

• list selection event: a form of event caused by selecting an item from a list. Such
events are handled by list selection listeners.

Points to Remember

Some principles to remember are

• A programmer assembles a GUI as a composite of graphical components like
buttons, labels, and text fields. The components must be inserted into a frame’s
content pane, which must be told to use a particular layout for arranging the
components.

• Graphical components can generate events, e.g., button pushes or text inser-
tions. Therefore, an application becomes event driven—the events generated by
button pushes and text insertions, activate controllers (event handlers or event
listeners) that send messages to the application’s model to compute results.

• The graphical components in Java’s AWT/Swing framework have internal Model-
View-Controller (MVC) architectures, and a programmer often works with a a
graphical component by reading and updating its internal model. Indeed, for
components like text areas and lists, the component sometimes serves as the

10.14. PROGRAMMING PROJECTS 641

model for the overall application—one example is a text editor program, whose
model is a text area component.

• The standard MVC architecture for an application with a GUI uses the observer
pattern to connect its components: events from the GUI trigger controllers. A
controller sends a message to the model to compute. The model computes
answers and signals its Observers (the view) that new results await display.
The Observers fetch the results from the model and display them on the GUI.
This pattern decouples controllers from views and encourages better reuse of
controller components.

New Classes for Later Use

Figure 5 lists the classes we use for constructing graphical user interfaces.

10.14 Programming Projects

1. Revise the bank-account manager application in Figure 9, Chapter 6, so that
its input- and output-view classes are combined into one pleasant-to-use GUI.

2. For any Programming Project that you worked in Chapter 6, write a GUI for
it. For example, if you built Project 2, Chapter 6 (the mortgage calculator),
then write a helpful GUI into which a user can type principal, interest, and year
values and receive answers regarding monthly payments and totals.

3. For any Programming Project that you worked in Chapter 7, write a GUI for
it. For example, if you built Project 3, Chapter 7 (the lottery-odds calculator),
then write a helpful GUI into which a user can type her lottery picks, get the
odds of winning, and then generate a sample play of the lottery.

4. Write an application that lets two humans play tic-tac-toe (noughts-and-crosses)
by clicking on the buttons of a 3-by-3 grid.

5. Write an application with a GUI that lets two humans play checkers by clicking
on the pieces, which are positioned on an 8-by-8 grid.

6. Build an application that looks and behaves like a typical hand-held calculator,
with a grid of buttons for numerals and arithmetic operations and a display at
the top that displays the answers of the calculations.

7. Build an appointments-manager application. The application lets a user store,
edit, and view appointments that are saved according to a particular day of
the month and a particular hour of the day. The application might behave as
follows. Initially, the days of the current month are displayed, on buttons:

642

| | 1 | 2 | 3 | 4 | 5 | 6 |

| 7 | 8 | 9 | 10 | 11 | 12 | 13 |

| 14 | 15 | 16 | 17 | 18 | 19 | 20 |

| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

| 28 | 29 | 30 | 31 | | | |

When a user moves the mouse over a date and clicks, a new window appears that
displays a summary of the appointments for the selected date. For example, if
the 8th is selected, we might see the following window appear:

| Appointments for the 8th:

| ----------------------

| | 8:30 French 111 class.

| | 10:30 Calculus class.

| | 12:00 Lunch with Fred.

| -----------------------

In addition, the above window must have buttons or menus or text fields that
let a user view and edit the details of an appointment, add an appointment,
delete an appointment, etc. For example, one might wish to view the details
of the 8:30 appointment on the 8th. By somehow selecting and clicking, a new
window (or a text area within the existing window) might display:

| 8:30 French 111 class.

| Exam followed by video for Lesson 12;

| remember to study!

The above window might have additional buttons or menus that let one modify,
save, or even delete the appointment.

8. Build an application that indexes a user’s book or music collection. The ap-
plication helps a user organize her book listings by genre (e.g., novel, mystery,
biography), by author, and by title. A user can enter new books and can query
the listing of books by genre, by author, or by title.

10.14. PROGRAMMING PROJECTS 643

When you design the application’s GUI, consider the merits and drawbacks of
having the GUI be one large window, whose buttons and menus perform all the
actions listed above, versus a collection of smaller, specialized windows, which
can appear and disappear as needed to perform an operation.

9. Design and build a “pebble dropping game,” where a human alternates with
a computer at dropping pebbles into six vertical chutes. Like tic-tac-toe, the
objective is to be the first player to arrange pebbles in a row, vertically, hori-
zontally, or diagonally. The game board first appears with six empty chutes:

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

The human selects a chute and drops a pebble in it; the pebble falls as far as it
can:

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | |X| | | |

The computer responds with its own move:

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | |X|O| | |

The human might respond by dropping a pebble on top of another:

| | | | | | |

| | | | | | |

| | | | | | |

644

| | | | | | |

| | | |X| | |

| | |X|O| | |

The game continues in this way until a player wins or all chutes are full.

10. Build an animated version of the pebble dropping game, called “Tetris”: Given
a playing area 6 columns wide and 12 rows high, the computer generates 4-by-4
blocks that appear at random positions above the playing area and fall to the
bottom. As they fall, the human player can operate controls that move a falling
block to the left or right. The objective is to evenly stack the falling blocks
in the playing area so that the maximum number of blocks can be saved. The
game ends when the pile of blocks reaches the top of the playing area.

(a) Build the basic Tetris game described above, and add a score counter that
remembers the number of blocks stacked until the game ends.

(b) Extend the game so that when a row is completely occupied with blocks,
that row disappears from the playing area, and the rows of blocks above
it drop down one row.

(c) Extend the game so that in addition to 4-by-4 blocks,

- -

| | |

- -

| | |

- -

the computer drops these 1-by-4 and 2-by-3 configurations:

- - - - - -

| | | | | | | |

- - - - - - -

| | |

- -

When the computer initially drops the two new shapes, it can randomly
rotate them, e.g., the 1-by-4 shape might be rotated 90 degrees so that
it looks like a 4-by-1 shape. Add controls that rotate the falling shapes
clockwise and counterclockwise.

(d) Modify the game so that the blocks fall downwards faster as a player’s
score increases.

11. Build an animated berry-eating game, called “Pac-Man”: The game board is
a 12-by-12 grid. Initially, one game square is occupied by the Pac-Man; the

10.15. BEYOND THE BASICS 645

others hold “berries.” (It is traditional that the Pac-Man be represented by a
smile-face that is ready to “eat,” e.g.,

When the game starts, the Pac-Man moves forwards from square to square,
eating each berry it finds on a square that it occupies. The human must tell
the Pac-Man when to change direction, e.g., turn left or turn right.

(a) Build the basic Pac-Man game described above; attach a clock that counts
the elapsed time until the Pac-Man eats all the berries on the board.

(b) Modify the game board so that it is a maze; that is, some squares are
occupied by barriers or separated by barriers.

(c) Extend the game so that, approximately every 5 seconds, 3 “goblins” ap-
pear on the game board at random positions. Moving at the same speed as
the Pac-Man, each goblin tries to “eat” the Pac-Man. If a goblin succeeds,
the game ends. The goblins disappear after 5 seconds.

12. Build an animated chase game, called “Frogger”: The playing area consists of 6
rows, which are traffic lanes upon which animated cars and trucks travel. The
game’s player is represented by a “frog,” whose objective is to move across all 6
rows without being hit by a moving vehicle. (That is, a vehicle “hits” the frog
if it occupies the same playing space as the frog.)

(a) Build an initial version of the game where there are no vehicles. When the
game starts, the frog appears at a random space in the bottommost row of
the board. With the use of controls, a player can move the frog forwards
or turn the frog left or right.

(b) Next, create one vehicle for each traffic lane. Each vehicle traverses its
lane, and after a short random time delay, reappears to traverse its lane
again. Stop the game if a vehicle and the frog land in the same playing
space.

(c) Modify the game so that a seventh row is placed in the middle of the
playing area. No vehicles travel on this “divider,” but the frog can move
onto this space and “rest.”

(d) Modify the game so that vehicles randomly travel at different velocities.

10.15 Beyond the Basics

10.15.1 Applets

646

10.15.2 Tables and Spreadsheets

10.15.3 Handling Mouse Clicks and Drags

10.15.4 Threads of Execution

10.15.5 GUI Design and Use-Cases

10.15.6 Summary of Methods for Graphical Components

These optional sections described additional capabilities of the AWT/Swing frame-
work. The final section is a tabular summary of all the classes and methods encoun-
tered in the chapter.

10.15.1 Applets

At the end of Chapter 4, we saw how to convert an application into an applet. The
same technique can be applied, without change, to convert a GUI-based application
into an applet: The applet is constructed from the application’s view class, so that
instead of extending JFrame the view class extends JApplet. We follow the following
steps:

• Remove the setSize, setTitle, and setVisible statements from the frame’s
constructor method. Also, remove the addWindowListener statement, if any.

• Move the instructions in the application’s main method into the frame’s con-
structor method, and rename the constructor method public void init().

• Write an HTML file for a Web page that starts the applet. A sample file might
look like this:

<title>My Slide Puzzle</title>

<body bgcolor=white>

Here is my slide puzzle as an applet:

<p>

<applet code = "PuzzleApplet.class" width=300 height=300>

Comments about the applet go here. This applet will be a simple

adaptation of class PuzzleFrame in Figure 24. </applet>

<p>

</body>

Once these changes are made, test the applet with the appletviewer program (which
is available as part of your IDE or as part of the JDK; see Chapter 4), and once
the applet meets with your satisfaction, only then use a web browser to see the final

10.15. BEYOND THE BASICS 647

result. What you will see is the program’s interface embedded into the Web page at
the position where you placed the applet command.
For example, the GUI in Figure 24 for the slide puzzle is converted into an applet,

PuzzleApplet, by making the above-listed changes; Figure 44 shows the result.
The other model and view classes stay the same—the program can create dialogs

and frames, use lists, menus, and buttons, just like before. One pragmatic disad-
vantage is that older models of Web browsers might not work correctly with all the
AWT/Swing components. This problem should disappear quickly as time passes and
proper Web browsers appear.
As seen above, the applet command in the HTML file sets the size of an applet

and automatically displays it. It is also possible for the HTML file to transmit actual
parameters into an applet. For example, perhaps the web page that displays the slide
puzzle sets the puzzle’s size. This can be done with the following two modifications:

1. Modify the applet command in the HTML page to use a parameter command:

<applet code = "PuzzleApplet.class" width=300 height=300>

<param name="size" value="5">

Comments about the applet go here. This applet will be a simple

adaptation of class PuzzleFrame in Figure 24. </applet>

2. Within the applet’s init method, replace the statement, size = 4, by the fol-
lowing:

String s = getParameter("size");

size = new Integer(s).intValue();

The HTML parameter command creates a String-typed “actual parameter” that
is fetched by the getParameter method inside the applet’s init method. Multiple
parameters can be created this way, as long as each parameter is labelled uniquely in
the HTML file.
Finally, it is also possible to “detach” an applet from the web page that creates it

so that the applet’s GUI appears as a new application on the user’s display. Indeed,
this is also the easiest way to convert an application into an applet, because only the
header line of the main method changes; everything else remains the same:

• Replace the header line of the main method by public void init() in the fol-
lowing class:

import javax.swing.*;

public class ExampleApplet extends JApplet

{

public void init()

{ ... the body of the main method goes here ... }

}

648

Figure 10.44: slide puzzle applet

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

/** PuzzleApplet shows a slide puzzle, adapted from Figure 24 */

public class PuzzleApplet extends JApplet

{ private SlidePuzzleBoard board; // the board that is displayed

private int size; // the board’s size

private int button size = 60; // width/height of button

private PuzzleButton[][] button; // buttons for the positions on the board

/** init builds the interface */

public void init()

{ // these statements are moved here from the former main method:

size = 4; // a 4 x 4 slide puzzle

board = new SlidePuzzleBoard(size); // model

// the remainder of the constructor method stays the same:

button = new PuzzleButton[size][size];

Container cp = getContentPane();

...

// but remember to remove these statements:

// addWindowListener(new ExitController());

// setTitle("PuzzleFrame");

// setSize(size * button size + 10, size * button size + 20);

// setVisible(true);

}

/** update consults the model and redraws the puzzle grid. */

public void update()

{ ... } // as before; see Figure 24

}

10.15. BEYOND THE BASICS 649

• Within the HTML file, use this command:

<applet code = "ExampleApplet.class" width=0 height=0>

This applet displays nothing within the Web page itself, but it generates

a view just like an ordinary application would do. </applet>

For example, if we return to the slide-puzzle example in Figure 24, we can leave
class PuzzleFrame and all its collaborators untouched; we merely revise the main

method in the startup class, Puzzle, into the following:

import javax.swing.*;

public class PuzzleGeneratorApplet extends JApplet

{ public void init()

{ int size = 4; // a 4 x 4 slide puzzle

SlidePuzzleBoard board = new SlidePuzzleBoard(size);

PuzzleFrame frame = new PuzzleFrame(size, board);

}

}

If we start the PuzzleGeneratorApplet from this HTML file:

<title>Slide Puzzle Generator</title>

<body bgcolor=white>

Congratulations! You have just started the Slide Puzzle application!

<applet code = "PuzzleGeneratorApplet.class" width=0 height=0>

</applet>

</body>

we will see the greeting in the web browser and a separate, newly created slide puzzle.
The slide puzzle will execute as long as the web browser itself executes.

10.15.2 Tables and Spreadsheets

The AWT/Swing framework contains a class JTable that makes relatively quick
work of creating and displaying tables and spreadsheets. Figure 45 displays a simple
GUI that contains a JTable component.
The view shows that a table is a grid, containing rows and columns. Each column

has its own label. Indeed, the table’s view lets a user “stretch” a column’s width by
moving the mouse to the right edge of the column’s label and dragging the label’s
right edge to the desired width. This trick is helpful for reading extra long strings
that might be displayed in the column’s cells.
The table’s rows are numbered 0, 1, 2, etc.; the labels above the columns are not

included in the row numbering. For example, in Figure 45 the string, George Wallace,
appears in the cell at Row 2, Column 0; the label, Illinois, appears above Column
1.

650

Figure 10.45: a simple JTable

Like other graphical components, a JTable has its own internal view, controller,
and model. All three can be customized, but we spend our efforts on the model, which
is the the part that a programmer must build for her JTable. We call the model a
table model. A table model must be built from a class that implements interface
TableModel, which is displayed in Figure 46. The interface lists behaviors that a table
model must have so that it can be read, updated, and displayed by the controller part
and the view part of a JTable. We study the interface’s methods in the examples
that follow.

The best way of building a class that implements TableModel is to extend an
AWT/Swing prebuilt abstract class, AbstractTableModel. This class has codings for
all the methods listed in Figure 46, except for getRowCount, getColumnCount, and
getValueAt. So, a programmer can quickly construct a table model by extending
AbstractTableModel with the missing methods.

Figure 47 shows the table model built this way for the view in Figure 45.

The class, VoteModel, extends AbstractTableModel. It uses three arrays to re-
member the candidate names that should appear in Column 0, the region names that
should appear above the columns, and the vote counts for each candidate in each
region. The class implements the missing three methods and revises getColumnName
so that the table has useful labels for the columns. (Without the last method, the
table model would be displayed with labels like A, B, and C.)

Since the table model will be used to count votes in an election, two additional
methods, getVoteCount and changeVoteCount, are inserted. The latter invokes an
AbstractTableModel method, fireTableDataChanged, to signal the table model’s lis-
teners when the table is changed; this causes the model’s view to update itself on the
display.

The crucial method in Figure 47, is getValueAt, which the JTable’s view repeat-
edly invokes to learn the contents of the cells in the grid it displays. For simplicity,
getValueAt can return a result of any object type whatsoever. The method is written
so that it returns candidates’ names, which are string objects, when asked about Col-

10.15. BEYOND THE BASICS 651

Figure 10.46: interface TableModel

public interface TableModel

{ /** getColumnCount returns the number of columns in the table */

public int getColumnCount();

/** getColumnName returns the label for Column j of the table */

public String getColumnName(int j);

/** getRowCount returns the number of rows in the table */

public int getRowCount() ;

/** getValueAt returns an object that contains the value at Row i,

Column j, within the table */

public Object getValueAt(int i, int j);

/** setValueAt updates Row i, Column j, of the table to have value v */

public void setValueAt(v, i, j);

/** isCellEditable returns whether the user can change the value at Row i,

Column j by editing the display of that cell in the table’s view */

public boolean isCellEditable(int i, int j);

/** addTableModelListener adds a listener to the table */

public void addTableModelListener(TableModelListener l) ;

/** removeTableModelListener removes a listener from the table */

public void removeTableModelListener(TableModelListener l)

/** getColumnClass returns the data type of the objects held in Column j */

public Class getColumnClass(int j);

652

Figure 10.47: model for vote table

import javax.swing.table.*;

public class VoteModel extends AbstractTableModel

{ // The table will be displayed with the region names across the top.

// Candidate i’s name appears at table cell Row i, Column 0;

// Candidate i’s votes from Region j appear at table cell Row i, Column j+1

private String[] region; // regions’ names

private String[] candidate; // candidates’ names

private int[][] votes; // the votes for candidate i, region j,

public VoteModel(String[] person, String[] district)

{ super();

candidate = person;

region = district;

votes = new int[candidate.length][region.length];

}

public int getRowCount()

{ return candidate.length; }

public int getColumnCount()

{ return region.length + 1; }

public Object getValueAt(int table row, int table column)

{ Object result = null;

if (table column == 0) // is it a the candidate’s name?

{ result = candidate[table row]; }

else { result = new Integer(votes[table row][table column-1]); }

return result;

}

public String getColumnName(int column)

{ String answer = "";

if (column == 0)

{ answer = "Candidate"; }

else { answer = region[column-1]; }

return answer;

}

/** getVoteCount returns the votes for person in district */

public int getVoteCount(int person, int district)

{ return votes[person][district]; }

...

10.15. BEYOND THE BASICS 653

Figure 10.47: model for vote table (concl.)

/** changeVoteCount updates person’s votes in district to new count

* and signals the table’s listeners that the table has changed */

public void changeVoteCount(int person, int district, int new count)

{ votes[person][district] = new count;

fireTableDataChanged();

}

}

umn 0; when entries in other columns are requested, the integer vote count is fetched
and “wrapped” in a newly created Integer object. Think of getValueAt as a clever
“array look-up operation” that knows when to return names and when to return vote
counts to help the view display the table in Figure 45.
The table model is embedded in a JTable object and displayed by the application’s

frame, which is displayed along with the start-up class, in Figure 48.

Updating the Table

The application constructed in Figure 48 is useless, because there is no means of
casting votes and updating the table model. So, we improve the application so that
a user can vote from a region for a candidate, and we improve the table model so
that it remembers both the votes cast as well as candidates’ and regions’ totals. The
revised table model will be displayed as seen in Figure 49, and a secondary frame will
appear in which a user can select one region and one candidate and cast one vote.
The Figure shows that six votes have already been cast in the election, and the

seventh vote is ready to be entered.
The hardest work in this application is extending VoteModel in Figure 47 so that

its getValueAt method can correctly calculate the total of a row or the total of a
column when asked. Figure 50 shows the result, called class VoteModelWithTotals.
The getValueAt must handle requests for the values in the extra row and the

extra column; all other requests it sends to the getValueAt method in its superclass.
Notice that getColumnName is extended in a simple way to return the label for the
extra column.
Figure 51 shows the view class for casting votes, and Figure 52 includes the con-

troller and start-up class for the application.

Spreadsheets

For our purposes, a spreadsheet is a table that a user can edit by typing new in-
formation into the cells displayed in the table’s view. A JTable can be made into a

654

Figure 10.48: view for displaying the vote-count table

import java.awt.*;

import javax.swing.*;

/** VoteFrame displays a table of votes */

public class VoteFrame extends JFrame

{

/** VoteFrame constructs the view

* @param model - a table model */

public VoteFrame(VoteModel model)

{ JTable vote table = new JTable(model); // embed the table model in a JTable

JScrollPane pane = new JScrollPane(vote table);

Container cp = getContentPane();

cp.setLayout(new BorderLayout());

cp.add(pane, BorderLayout.CENTER);

setSize(500, 120);

setTitle("Presidential Vote Table");

setVisible(true);

}

}

/** Vote1 starts the application */

public class Vote1

{ public static void main(String[] args)

{ String[] candidates = {"Hubert Humphrey", "Richard Nixon",

"George Wallace"};

String[] states = {"Illinois", "Idaho", "Iowa", "Ohio"};

VoteModel model = new VoteModel(candidates, states);

VoteFrame view = new VoteFrame(model);

}

}

10.15. BEYOND THE BASICS 655

Figure 10.49: vote table with totals and voting frame

spreadsheet by improving its table model so that the model’s cells are “editable.” This
is done by writing new versions of the table model’s isCellEditable and setValueAt

methods.
For example, we can alter the vote table in Figure 49 so that a user can click on a

displayed cell and type a new number into it. When the user presses the Enter key or
clicks on a different cell, this causes the typed valued to replace the one that formerly
appeared in the cell. Figure 53 shows how a user is altering Row 2, Column 2 of the
table with a vote count of 1000; when the user presses Enter, this inserts the 1000
votes and all totals are revised accordingly.
Figure 54 shows how the table model is extended with methods that allow cell

editing. The isCellEditable method calculates exactly which cells of the table model
can be edited. (The cells that hold candidates’ names and the cells that display the
totals cannot be edited.) The setValueAt method takes the string that the user typed,
attempts to convert it into an integer and update the cell where the user typed it.
Badly formed integers are “trapped” by the exception handler.

10.15.3 Handling Mouse Clicks and Drags

AWT/Swing provides a basic collection of mouse events that can be handled:

• When a mouse is moved into a component (e.g., a frame or a panel, or a text

656

Figure 10.50: table model that computes vote totals

/** VoteModelWithTotals is a table model that computes votes and totals */

public class VoteModelWithTotals extends VoteModel

{ // The expanded model has one extra column (the total votes for each

// candidate) and one extra row (the total votes cast in each region)

private int number of candidates;

private int number of regions;

public VoteModelWithTotals(String[] candidate, String[] region)

{ super(candidate, region);

number of candidates = candidate.length;

number of regions = region.length;

}

public int getRowCount()

{ return super.getRowCount() + 1; }

public int getColumnCount()

{ return super.getColumnCount() + 1; }

public Object getValueAt(int table row, int table column)

{ Object result = null;

if (table column == (number of regions + 1)) // a candidate’s vote total?

{ if (table row < number of candidates)

{ result = new Integer(computeTotalForPerson(table row)); }

else { result = ""; }

}

else if (table row == number of candidates) // total votes in a region?

{ if (table column > 0)

{ result = new Integer(computeTotalForRegion(table column-1)); }

else { result = "Votes cast in state:"; }

}

else { result = super.getValueAt(table row, table column); }

return result;

}

public String getColumnName(int column)

{ String answer = "";

if (column == (number of regions + 1)) // is it the last column?

{ answer = "Total"; }

else { answer = super.getColumnName(column); }

return answer;

}

...

10.15. BEYOND THE BASICS 657

Figure 10.50: table model that computes vote totals (concl.)

/** computeTotalForPerson totals all votes for candidate who */

private int computeTotalForPerson(int who)

{ int total = 0;

for (int j = 0; j != number of regions; j = j+1)

{ total = total + super.getVoteCount(who, j); }

return total;

}

/** computeTotalForRegion totals all votes cast in region where */

private int computeTotalForRegion(int where)

{ int total = 0;

for (int i = 0; i != number of candidates; i = i+1)

{ total = total + super.getVoteCount(i, where); }

return total;

}

}

area), we say that the mouse enters the component. Similarly, the mouse exits
the component when it is moved outside it.

• When a mouse’s button is pushed without moving the mouse, we say that the
mouse is clicked. It is possible to click the mouse multiple times at one click; a
double click is an example.

• When a mouse’s button is pushed and the mouse is moved while the button is
held, we say that the mouse is pressed. Eventually, the button is released.

Figure 55 lists interface MouseListener, which a class must implement to handle
the mouse events listed above. The methods of a mouse listener react to mouse events.
Table 56 lists some useful methods for extracting information from a mouse event.
A class that implements MouseListener might not wish to handle all forms of

mouse events. There is a default listener, called MouseAdapter, which implements

MouseListener with “do nothing” event handlers for all mouse events. The simplest
way to build a mouse listener with limited abilities is to extend MouseAdapter.
Here is a simple example: Each time the mouse is clicked over a frame, the frame’s

mouse listener prints the position where the mouse was clicked. The class that handles
the mouse clicks can be written this simply:

import java.awt.event.*;

import javax.swing.*;

public class TestListener extends MouseAdapter

{ public TestListener(JFrame f)

658

Figure 10.51: view for vote casting

import java.awt.*; import java.awt.event.*; import javax.swing.*;

/** CastVoteFrame displays a frame that lets a user cast a vote */

public class CastVoteFrame extends JFrame

{ JList state list; // the region names from which a user selects

JList candidate list; // the candidates from which a user selects

/** CastVoteFrame constructs the view

* @param states - the names of the regions a voter can choose

* @param candidates - the names of the candidates a voter can choose

* @param b - the button the user pushes to cast a vote */

public CastVoteFrame(String[] states, String[] candidates, VoteButton b)

{ Container cp = getContentPane();

cp.setLayout(new BorderLayout());

JPanel p1 = new JPanel(new GridLayout(1,2));

state list = new JList(states);

p1.add(state list);

candidate list = new JList(candidates);

p1.add(candidate list);

cp.add(p1, BorderLayout.CENTER);

JPanel p2 = new JPanel(new FlowLayout());

p2.add(b);

b.setViewTo(this);

cp.add(p2, BorderLayout.SOUTH);

pack();

setTitle("Cast a vote");

setVisible(true);

}

/** getInputs returns the inputs the user selected and clears the frame

* @return (1) the index of the selected candidate;

* (2) the index of the selected state */

public int[] getInputs()

{ int[] input = new int[2];

input[0] = candidate list.getSelectedIndex();

candidate list.clearSelection();

input[1] = state list.getSelectedIndex();

state list.clearSelection();

return input;

}

}

10.15. BEYOND THE BASICS 659

Figure 10.52: controller and start-up class for voting application

import java.awt.*; import java.awt.event.*; import javax.swing.*;

/** VoteButton implements a button that computes.... */

public class VoteButton extends JButton implements ActionListener

{ private VoteModel model; // the table model that is updated

private CastVoteFrame frame; // the frame from which the vote is extracted

public VoteButton(String label, VoteModel m)

{ super(label);

model = m;

addActionListener(this);

}

public void setViewTo(CastVoteFrame f)

{ frame = f; }

public void actionPerformed(ActionEvent evt)

{ int[] vote = frame.getInputs();

if (vote[0] != -1 && vote[1] != -1)

{ int count = model.getVoteCount(vote[0], vote[1]);

model.changeVoteCount(vote[0], vote[1], count + 1);

}

else { JOptionPane.showMessageDialog(frame,

"State and Candidate not properly selected---vote ignored");

}

}

}

public class Vote2

{ public static void main(String[] args)

{ String[] candidates = {"Hubert Humphrey", "Richard Nixon",

"George Wallace"};

String[] states = {"Illinois", "Idaho", "Iowa", "Ohio"};

VoteModelWithTotals model = new VoteModelWithTotals(candidates, states);

VoteFrame view = new VoteFrame(model);

VoteButton controller = new VoteButton("Vote", model);

CastVoteFrame frame = new CastVoteFrame(states, candidates, controller);

}

}

660

Figure 10.53: a voting spreadsheet

{ super();

f.addMouseListener(this); // registers this object as a listener of f

}

public void mouseClicked(MouseEvent e)

{ System.out.println("Mouse clicked at " + e.getX() + ", " + e.getY()); }

}

For a frame, v, we state

new TestListener(v)

and this connects the listener to v.
Mouse listeners work well at helping users draw on panels and frames. For exam-

ple, we might write an application that translates mouse clicks into tiny red and blue
boxes and converts mouse drags into yellow ovals:

10.15. BEYOND THE BASICS 661

Figure 10.54: table model spreadsheet

public class VoteSpreadsheet extends VoteModelWithTotals

{ public VoteSpreadsheet(String[] candidate, String[] region)

{ super(candidate, region); }

/** isCellEditable returns whether the cell at table row, table column

* can be edited by a user */

public boolean isCellEditable(int table row, int table column)

{ return (table row < (super.getRowCount() - 1) // not a candidate’s total

&& table column > 0 // not a candidate’s name

&& table column < (super.getColumnCount() - 1)); // not a region total

}

/** setValueAt attempts to insert new value into the cell at table row,

* table column. If new value is not an integer, it is ignored */

public void setValueAt(Object new value, int table row, int table column)

{ String s = (String)new value;

try { int i = new Integer(s).intValue();

changeVoteCount(table row, table column-1, i);

}

catch(RuntimeException e)

{ } // ignore the user’s clumsiness of typing a nonnumeric

}

}

/** Vote3 starts the spreadsheet application. */

public class Vote3

{ public static void main(String[] args)

{ String[] candidates = {"Hubert Humphrey", "Richard Nixon",

"George Wallace"};

String[] states = {"Illinois", "Idaho", "Iowa", "Ohio"};

VoteSpreadsheet model = new VoteSpreadsheet(candidates, states);

VoteFrame view = new VoteFrame(model);

}

}

662

Figure 10.55: interface for mouse listeners

public interface MouseListener

{ /** mouseClicked handles one or more clicks of a stationary mouse */

public void mouseClicked(MouseEvent e)

/** mouseEntered handles the entry of a moving mouse into the component */

public void mouseEntered(MouseEvent e)

/** mouseExited handles the exit of a moving mouse from the component */

public void mouseExited(MouseEvent e)

/** mousePressed handles the mouse press that initiates a mouse drag */

public void mousePressed(MouseEvent e)

/** mouseReleased handles the mouse release that terminates a mouse drag */

public void mouseReleased(MouseEvent e)

}

Figure 10.56: methods of a mouse event

class MouseEvent an event caused by moving a mouse or pressing its
button

Methods

getClickCount(): int Return the number of clicks the user made with the
mouse.

getX(): int Return the x-position where the mouse event oc-
curred.

getY(): int Return the y-position where the mouse event oc-
curred.

10.15. BEYOND THE BASICS 663

Figure 10.57: view for drawing shapes on a frame

import java.awt.*; import javax.swing.*;

/** MouseView lets a user draw yellow ovals and tiny colored boxes */

public class MouseView extends JPanel

{ private int width; // the panel’s width

private int depth; // the panel’s depth

/** MouseView builds the panel with width w and depth d */

public MouseView(int w, int d)

{ width = w; depth = d;

JFrame my frame = new JFrame();

my frame.getContentPane().add(this);

my frame.setSize(width, depth);

my frame.setTitle("Mouse tester");

my frame.setVisible(true);

}

public void paintComponent(Graphics g)

{ g.setColor(Color.white);

g.fillRect(0, 0, width, depth);

}

/** clear erases the frame */

public void clear()

{ repaint(); }

/** paintBox paints a small box of color c at position x pos, y pos */

public void paintBox(int x pos, int y pos, Color c)

{ Graphics g = getGraphics();

g.setColor(c);

g.fillRect(x pos, y pos, 10, 10);

}

/** paintOval paints an oval at x pos, y pos of size width by depth */

public void paintOval(int x pos, int y pos, int width, int depth)

{ Graphics g = getGraphics();

g.setColor(Color.yellow);

g.fillOval(x pos, y pos, width, depth);

g.setColor(Color.black);

g.drawOval(x pos, y pos, width, depth);

}

}

664

Figure 57 shows a view class that has the methods for painting tiny boxes and yellow
ovals. The class’s paintComponent method clears the frame, meaning that moving or
closing/opening the frame makes it lose all previous drawings. If one wishes to retain
the drawings, then a model object is required for remembering the shapes and their
locations.
Figure 58 shows the controller class that translates the mouse clicks and drags

into drawings. The class contains a main method that tests the view and controller.
The mouseClicked method clears the frame on a double click; a single click draws

a box. For fun, the color (red or blue) is chosen based on the location of the click. A
mouse drag must be handled in two stages: mousePressed saves the position where the
drag starts, and mouseReleased retrieves this information and calculates the position
and size of the oval that the user indicated. Because the user might drag the mouse
from right to left and from bottom to top, Math.min and Math.abs are employed.
Remember that a mouse listener handles mouse events for only that graphical

component for which it is registered via addMouseListener. If the view object is a
frame with buttons, panels, text areas, etc., then each component requires its own
mouse listener to process mouse entries, exits, clicks, and presses. And, if a component
like a text area is embedded in a frame, then the text area’s mouse listener takes
precedence over the frame’s mouse listener when the mouse enters the text area.
The MouseListener interface in Figure 52 reports events related to the mouse’s

button. Events tied to mouse movement are described by the MouseMotionListener,
which is documented in the API for java.awt.event.

10.15.4 Threads of Execution

How can one application run two animations simultaneously? The throbbing-ball
animation in Figure 23 showed that one animation can operate, provided that the
controller whose loop runs the animation executes last. (See the last statement of
main in class StartThrob, Figure 25.) But if there are two animations to control,
both controllers cannot be “last.”
The underlying problem is a Java application has one sequence, or “thread,” of

instructions to execute. If the thread of instructions leads to a nonterminating loop,
the instructions that follow the loop will never be performed. Therefore, to operate
two nonterminating loops, two threads of execution are necessary.
The Java language makes it possible to give an object its own thread of execution,

so that the object executes as if it were a separate application. More precisely, the
object must have a method named run, and when the object’s own thread of execution
is created, the object’s run method executes.
We can use multiple threads with the throbbing-ball animation so that two balls

throb simultaneously. The model class, ThrobbingBall, and its view, ThrobPanel
(Figure 24), are left intact. The first key modification is adding the phrase, implements
Runnable to the header line of class ThrobController in Figure 25:

10.15. BEYOND THE BASICS 665

Figure 10.58: controller for mouse clicks and drags

import java.awt.*;

import java.awt.event.*;

/** MouseController controls drawing based on mouse clicks */

public class MouseController extends MouseAdapter

{ private MouseView view; // the view object where shapes are drawn

public MouseController(MouseView f)

{ view = f;

view.addMouseListener(this);

}

/** mouseClicked handles a single click by drawing a small box;

* it handles a multiple click by clearing the view

* @param e - the event that remembers the position and number of clicks */

public void mouseClicked(MouseEvent e)

{ if (e.getClickCount() > 1) // a ‘‘double click’’?

{ view.clear(); } // then, clear the view

else { int x = e.getX(); // else, draw a box

int y = e.getY();

Color c = Color.red;

if ((x + y)% 2 == 0) // for fun, use blue on even pixel values

{ c = Color.blue; }

view.paintBox(x, y, c);

}

}

private int start x; // remembers the position where the user

private int start y; // started to drag the mouse

/** mousePressed remembers the start position of a mouse drag

* @param e - the event that remembers the position */

public void mousePressed(MouseEvent e)

{ start x = e.getX();

start y = e.getY();

}

...

666

Figure 10.58: controller for mouse clicks and drags (concl.)

/** mouseReleased draws an oval based on the end position of the mouse drag

* @param e - the event that remembers the end position */

public void mouseReleased(MouseEvent e)

{ int new x = Math.min(start x, e.getX()); // compute upper left corner

int new y = Math.min(start y, e.getY());

int width = Math.abs(start x - e.getX()); // compute absolute size

int depth = Math.abs(start y - e.getY());

view.paintOval(new x, new y, width, depth);

}

/** test the controller with a view: */

public static void main(String[] args)

{ new MouseController(new MouseView(300, 200)); }

}

public class ThrobController implements Runnable

{ ...

public void run()

{ ... }

...

}

The interface, Runnable, promises that the class contains a method named run; this
is the method that will execute with its own thread.
Next, we modify the frame that displays the animations so that it shows two

panels of throbbing balls:

import java.awt.*;

import javax.swing.*;

public class Throb2Frame extends JFrame

{ public Throb2Frame(int size, ThrobPanel p1, ThrobPanel p2)

{ Container cp = getContentPane();

cp.setLayout(new GridLayout(1,2)); // display the animations side by side

cp.add(p1);

cp.add(p2);

setSize(size * 2 + 50, size + 10);

setVisible(true);

}

}

The important modifications occur in the start-up class, where each animation con-
troller is given its own thread of execution:

10.15. BEYOND THE BASICS 667

/** StartThrobs builds two animation panels and displays them. */

public class StartThrobs

{ public static void main(String[] a)

{ int panel_size = 180;

ThrobbingBall b1 = new ThrobbingBall();

ThrobPanel w1 = new ThrobPanel(panel_size, b1);

ThrobbingBall b2 = new ThrobbingBall();

ThrobPanel w2 = new ThrobPanel(panel_size, b2);

new Throb2Frame(200, w1, w2);

new Thread(new ThrobController(w1, b1, 200)).start();

new Thread(new ThrobController(w2, b2, 300)).start();

System.out.println("Animations have started!");

}

}

The phrase, new Thread(...).start(), gives an object its own thread of execution for
its run method, which immediately executes. In the above example, this causes the
two panels of animations to run simultaneously. Note also that the println statement
executes properly in main’s thread of execution after the two other threads are created
and running.
Threads can be used to build crude simulations where objects appear to have

“life” of their own. Consider a simulation of two sales agents, both of whom are
selling tickets to an opera. One agent works three times as fast as the other at selling
tickets. We might model the sales agents with objects that have their own threads of
execution; the objects share an object that holds the opera tickets. Here is the class
that models the opera tickets:

public class Tickets

{ private int how_many_left; // quantity of unsold tickets

public Tickets(int initial_value)

{ how_many_left = initial_value; }

public boolean ticketsAvailable()

{ return how_many_left > 0; }

public int sellTicket()

{ int ticket_number = how_many_left;

how_many_left = how_many_left - 1;

return ticket_number;

}

}

And here is a sales agent:

public class SalesAgent implements Runnable

668

{ private int id; // the sales agent’s ‘‘name’’

private Tickets ticket_source; // the object that has the tickets

private int time; // the time the agent pauses between sales

public SalesAgent(int i, Tickets t, int speed)

{ id = i;

ticket_source = t;

time = speed;

}

public void run()

{ int i;

while (ticket_source.ticketsAvailable())

{ i = ticket_source.sellTicket();

System.out.println("Agent " + id + " sells ticket " + i);

delay(); // pause so that other threads might resume

}

System.out.println("Agent" + id + " is finished");

}

private void delay()

{ try{ Thread.sleep(time); }

catch (InterruptedException e) {}

}

}

The loop in the run method sells tickets until no more are available. The delay in
the loop is crucial, as explained below.
The start-up class creates threads for the two sales agents:

public class StartTicketSales

{ public static void main(String[] args)

{ Tickets c = new Tickets(20);

new Thread(new SalesAgent(1, c, 100)).start();

new Thread(new SalesAgent(2, c, 300)).start();

}

}

The application executes the two sales agents, which display their sales in the display.
As expected, the first sales agent sells three times as many tickets as the second.
The invocation of delay within the SalesAgent’s run method is crucial—on some

computers, the computer executes a thread for as long as possible, and only when
there is a delay in a thread’s execution will the computer resume execution of other
threads. Here, the delay method ensures that both of the sales agents have opportu-
nities to sell tickets.

10.15. BEYOND THE BASICS 669

Further, there is great danger when distinct threads of execution share an object.
To see this, move the invocation, delay(), within run’s loop to the beginning of the
loop:

while (ticket_source.ticketsAvailable())

{ delay(); // this causes erroneous behavior!

i = ticket_source.sellTicket();

System.out.println("Agent " + id + " sells ticket " + i);

}

Because the sales agent pauses between checking ticket availability and selling the
ticket, it is possible for two agents to both confirm availability of the last available
ticket and for both of them to sell it! This is indeed what happens when the above
example uses the altered loop.
The above problem is called a race condition (both agents are “racing” to sell the

last available ticket), and it is one of many problems that can arise when multiple
threads share an object. These problems cannot be analyzed further here. As a rule,
do not use the techniques in this section when the order in which a shared object
receives messages from multiple threads can affect the outcome of the application.

10.15.5 GUI Design and Use-Cases

Most of the previous discussion on program design has focussed on model construc-
tion. With the inclusion of GUIs, the design of the view becomes equally important
to a program’s success. We begin by repeating the guidelines for GUI design given
at the beginning of this Chapter:

• Organize sequences of events into natural units for processing.

• Make it difficult or impossible for the user to generate a truly nonsensical se-
quence of events.

To help meet these guidelines, design a GUI so that any order of events generated from
a frame can be sensibly processed. If one event simply must occur before another,
then make the first event generate a secondary frame or dialog from which the second
event can occur. Also, consider all possible orders in which events might occur, and
write the controllers so that they respond accordingly. It also helps to design the
GUI so that if the user forgets to submit a particular input/event, a default value
is automatically supplied. When an input must be one of a finite number of choices
(e.g., “pick one: Celsius or Fahrenheit”), a component like a list of two items is better
than one like a text field.
The above advice is based on the designer knowing all the events a user might

generate—where does the designer get this knowledge? A standard technique for
cataloguing events is generating use-cases. A “use-case” is a description of the steps

670

that occur when a user submits one request to the application for computation—it is
a “case study” of one “use” of the application. By inventing a collection of use-cases,
a designer gains insight towards the design of the application’s architecture and its
GUI.
Here is an example of a use-case for a program that manages the balance in a

user’s bank account (see Chapter 6): A user deposits $10.50 into her account.

1. The user submits 10.50 to the GUI.

2. The user indicates the amount is a deposit.

3. The user signals that the transaction should be made.

4. Computation occurs, and an acknowledgement, along the with account’s new
balance, appears on the GUI.

This use-case makes clear that the GUI must have a component that helps the user
submit a numerical amount and a component that helps the user select and perform
a deposit. There should be a model of the bank account that receives the deposit,
and there should be a GUI component that displays the new balance.
The above use-case does not make clear whether text fields, buttons, lists, or

labels should be used in the GUI—this is the decision of the designer. The nature of
the model is not decided, either. Additional use-cases are needed.
Here is another example of a use-case for the bank-account application:

1. The user submits 10000.00 into the GUI.

2. The user indicates the amount is a withdrawal.

3. The user signals that the transaction should be made.

4. The application reports that the withdrawal is refused because the account’s
balance is smaller than the withdrawal amount.

This use-case is concerned with an error situation, and it makes clear that the GUI
must have a means for reporting the error and helping the user correct the mistake.
A third use-case is:

1. Without submitting a numerical amount, the user signals that a withdrawal
should be done.

2. The application reports an error.

This use-case reminds the designer that the application should deal with unexpected
orders of events and missing input information.

10.15. BEYOND THE BASICS 671

To develop a representative set of use-cases, a designer must discuss the application
with its users, study the problem area and its past solutions, and conceive “thought
experiments” about what might happen when the application is used.

Based on such use-cases, the application’s designer compiles a list of the expected
behaviors (“methods”) of the application—deposits, withdrawals, account queries,
interest calculations, etc.—and the designer constructs a GUI that guides the user
through the operation of the application in a way that minimizes the potential for
invalid input. (For example, the GUI should make it difficult or impossible for a user
to demand a deposit or withdrawal without first specifying an amount.)

Here is a final thought to remember when you design an application’s GUI: Users
do not like to read instructions. Therefore, an interface should be organized to lead
a naive user through a useful execution of a program even when the user is mostly
uninformed about how to use the program. One way to help naive users is to limit
the possible activities a user might do with a frame. For example, if a frame consists
of just one button, the obvious (and only) action that a user could take is to push
the button. Of course, real interfaces are rarely so simple, but strive to minimize the
number of choices a user makes with any specific window. It is always better to lead
a user step-by-step through a program execution with multiple dialogs and frames
than it is to design one complex frame that triggers all the program’s methods.

If used judiciously, disabling buttons and menu items (through the use of the
setEnabled(false) method) can effectively limit a user’s actions. For example, a
text editor’s “paste” menu item can be disabled at the times the user has not cut
or copied text into the editor’s “clipboard.” But too much disabling and reenabling
buttons can confuse a user as to the state of the application.

10.15.6 Summary of Methods for Graphical Components

The Tables that follow list the methods we used in this Chapter with AWT/Swing
components; they complement Figure 5. A more comprehensive listing can be located
in the API documentation for the packages java.awt, java.awt.event, javax.swing,
javax.swing.event, and javax.table.

672

abstract class Component the basic unit for GUI construction in the AWT
framework

Methods
setSize(int width, int

depth), setVisible(boolean

yes), setLocation(int x, int

y), setBackground(Color c),
paint(Graphics g), repaint(),
getGraphics()

See Table 18, Chapter 4.

setForeground(Color c) Sets the foreground color of this object to c (if
such a notion is sensible for the object).

isShowing(): boolean Returns whether the component is showing on
the display.

getLocationOnScreen():

Point

Returns the coordinates, encased in a Point ob-
ject, of (the upper left corner of) the compo-
nent’s location on the display.

setLocation(Point p) Positions the component to appear at location
p on the display.

setFont(Font f) Sets the component’s text font to f.

classes Point and Font x,y coordinate positions and text fonts
Constructor
new Point(int x, int y) Constructs a point representing the pixel posi-

tion, x, y.
Methods
translate(int dx, int dy) Changes a point’s value so that its former posi-

tion, x, y, becomes x + dx, y + dy.
Constructor
new Font(String fontname,

int style, int typesize)

Creates a new font. fontname might be
"Courier", "TimesRoman", "SansSerif", and
others; style might be Font.PLAIN, Font.BOLD,
or Font.ITALIC; typesize is typically between 8
and 20.

10.15. BEYOND THE BASICS 673

class Container extends

Component

a component that can hold other components

Methods
setLayout(LayoutManager

layout)

Tells the container to use layout to arrange the
components that are inserted into it.

add(Component ob) Inserts ob inside the container at the end of its
layout.

add(Component ob, Object

restriction)

Inserts ob inside the container, using the
restriction to determine ob’s position in the
layout. (See class BorderLayout for examples
of restrictions.)

class Window extends

Container

a top-level component that can be displayed by
itself

Methods
pack() Sets the size of the window just large enough

that it displays all the components inserted into
it. (Note: Empty panels are not always dis-
played at full size; use setSize in this case.)

dispose() Removes the window from the display and
makes it impossible to display it again.

addWindowListener(WindowListener

listener)

Registers listener as a listener (event handler)
for window events generated by this object.

class JFrame extends Window a window with a title and menu bar
Methods
setTitle(String s) See Table 18, Chapter 4.
getContentPane(): Container Returns the frame’s content pane, into which

components can be inserted.
setJMenuBar(JMenuBar mbar) Attaches menu bar mbar to the top of the frame.

class JApplet extends

Container

a top-level component that can be displayed in
a Web page

Methods
init() Initializes the applet immediately after the ap-

plet is constructed.
getParameter(String s):

String

Fetches from the applet command that started
the applet the actual parameter labelled by s

getContentPane(): Container Returns the applet’s content pane, into which
components can be inserted.

setJMenuBar(JMenuBar mbar) Attaches menu bar mbar to the top of the applet.

674

abstract class JComponent

extends Container

the basic graphical object in the Swing frame-
work

abstract class Abstract

Button extends JComponent

a component that can be “pushed” or “set” or
“selected” by a user

Methods
addActionListener(ActionListener

listener)

Attaches listener to this button as its listener
(event handler) for action events.

setEnabled(boolean b) Sets whether or not the button generates an
action event when it is pushed.

isEnabled(): boolean Returns whether or not the button generates an
action event when it is pushed.

getText(): String Returns the text that appears on the button’s
face in the view.

setText(String s) Sets the text that appears on the button’s face
to s.

doClick() Generates an action event, just like when the
user pushes the button.

isSelected(): boolean Returns whether or not the button is “selected,”
that is, pushed inwards.

setSelected(boolean b) Sets whether or not the button is “selected,”
that is, pushed inwards.

class JButton extends

AbstractButton

a button

Constructor
JButton(String s) Constructs a button whose face displays s.

class JMenuItem extends

AbstractButton

a menu item

Constructor
JMenuItem(String s) Constructs a menu item whose face displays s.

class JMenu extends

JMenuItem

a “container” for menu items

Constructor
JMenu(String s) Constructs a menu whose face displays s.
Methods
add(Component c) Adds component c (normally, a menu or menu

item) to the end of this menu.
addSeparator() Adds a separator bar to the end of this menu.

10.15. BEYOND THE BASICS 675

class JLabel extends

JComponent

a component that displays a string

Constructor
JLabel(String s) Constructs a label that displays s.
Methods
getText():String Returns the text displayed by the label.
setText(String s) Sets the label to display s.

class JList extends

JComponent

a sequence of items that can be selected by the
user

Constructor
JList(Object[] items) Constructs a list whose internal model is the

array, items. The elements of items must be
objects that possess a method, toString():

String. (Note: String objects have this
method by default.) The items are indexed 0,
1, 2, etc.

Methods
setSelectionMode(int mode) Sets whether at most one

(ListSelectionModel.SINGLE SELECTION)
or more than one
(ListSelectionModel.MULTIPLE INTERVAL SELECTION)
item can be selected from the list by the user.

getSelectedIndex(): int Returns the index number of the item currently
selected. (If no item is selected, -1 is returned.
If multiple items are selected, the lowest num-
bered index is returned.)

getSelectedIndices(): int[] Returns an array whose elements are the index
numbers of all items currently selected.

setSelectedIndex(int i) Makes item i of the list appear selected in the
list’s view.

setSelectedIndices(int[] r) Makes all the items in array r appear selected
in the list’s view.

clearSelection() Unselects all selected items.
addListSelectionListener(ListSelectionListener

listener)

Registers listener as a listener (event handler)
for list selection events within this object.

676

class JMenuBar extends

JComponent

a component to which menus are attached

Constructor
JMenuBar() Constructs a menu bar.
Methods
add(JMenu m) Attaches menu m to the menu bar.

class JOptionPane extends

JComponent

displays dialogs

Methods
showMessageDialog(Component

owner, Object message)

Displays a message dialog (that is, a dialog that
displays message, normally a string, and an OK

button) that suspends the execution of owner
until the user dismisses the dialog.

showConfirmDialog(Component

owner, Object message): int

Displays a confirm dialog (that is, a dialog
that displays message, normally a string,
and three buttons, Yes, No, and Cancel).
The dialog suspends the execution of owner

until the user dismisses it. When dis-
missed, the dialog returns one of these four
integer results: JOptionPane.YES OPTION,
JOptionPane.NO OPTION,
JOptionPane.CANCEL OPTION, or
JOptionPane.CLOSED OPTION. (The last oc-
curs when the user pushes the “X”-button to
terminate the dialog.)

showInputDialog(Component

owner, Object message):

String

Displays an input dialog (that is, a dialog that
displays message, a text field, and two buttons,
OK and Cancel). The dialog suspends the execu-
tion of owner until the user dismisses it. When
dismissed by a push of Ok, the dialog returns the
contents of the text field. Otherwise, the dialog
returns null.

class JPanel extends

JComponent

the simplest possible JComponent

Constructors
JPanel() Constructs a panel.
JPanel(LayoutManager layout) Constructs a panel that uses layout to arrange

its components.

10.15. BEYOND THE BASICS 677

class JScrollPane extends

JComponent

a scroll bar that attaches to a component

Constructor
JScrollPane(Component c) Wraps a scroll bar around c.

abstract class

JTextComponent extends

JComponent

a component that holds user-editable text

Methods
getText(): String Returns, as one string, the entire contents of

the text component
setText(String s) Resets the contents of the text component to s.
getCaretPosition(): int Returns the position of the insertion caret

within the text component.
setCaretPosition(int i) Repositions the insertion caret to position i, a

nonnegative integer.
moveCaretPosition(int i) “Drags” the caret from its exiting position to

position i, in the process selecting all the text
that falls between the old and new positions.

getSelectedText(): String Returns the text that is selected within the text
component.

getSelectionStart(): int Returns the position where the selected text be-
gins.

getSelectionEnd(): int Returns the position where the selected text
ends.

replaceSelection(String s) Replaces the currently selected text by s.
cut() Removes the selected text from the text com-

ponent and copies it into the component’s clip-
board.

copy() Copies the selected text into the component’s
clipboard.

paste() Copies the text in the component’s clipboard
into the text component at the position marked
by the insertion caret.

isEditable(): boolean Returns whether or not the user is allowed to
alter the contents of the text component.

setEditable(boolean b) States whether or not the user is allowed to alter
the contents of the text component.

678

class JTextField extends

JTextComponent

a text component that holds one line of text

Constructor
JTextField(String s, int i) Constructs a text field that displays i columns

(that is, can display at most i copies of the
letter, “m”) whose initial value is s.

Methods
addActionListener(ActionListener

listener)

Registers listener as a listener (event handler)
for action events (that is, presses of Enter) gen-
erated in this object.

class JTextArea extends

JTextComponent

a text component that holds multiple lines of
text

Constructor
JTextArea(String s, int

rows, int columns)

Constructs a text area of size rows by columns

whose initial value is s.
Methods
setLineWrap(boolean b) State whether text lines that are longer than

the text area’s width should be “wrapped” to
appear on the next line.

insert(String s, int i) Insert s at position i within the text area.
replaceRange(String s, int

start, int end)

Remove the text starting at position start and
ending at position end - 1 and replace it by s.

class Observable an object that can generate its own “events” for
its Observers

Methods
addObserver(Observer ob) Registers ob as an Observer (“event handler”)

of this object.
setChanged() Asserts that this object has “changed” its inter-

nal state, causing an “event.”
notifyObservers() If this object has “changed,” (see setChanged),

then send an update message to this object’s
Observers. Next, reset the object so that it is
no longer “changed.”

notifyObservers(Object arg) If this object has “changed,” (see setChanged),
then send an update message to this object’s
Observers. Include with the message as its sec-
ond parameter, arg. Next, reset the object so
that it is no longer “changed.”

10.15. BEYOND THE BASICS 679

class WindowEvent an event generated by the user opening, closing,
or adjusting the size of a window

Method
getWindow(): Window Return the address of the window where this

event occurred.

class ActionEvent an event caused by the user clicking a button
or selecting a menu item

Methods
getSource(): Object Return the address of this event’s source.
getActionCommand(): String Return the text that appears on the face of the

event source object.

class ListSelectionEvent an event caused by the user selecting a list item
Methods
getFirstIndex(): int Return the index of the first of the items whose

selection generated this event.
getLastIndex(): int Return the index of the last of the items whose

selection generated this event.

